Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Orchards
2.2. Monitoring Stations and Data Processing
2.3. High Resolution Aerial Imagery Data Acquisition
2.4. Soil Salinity Assessment
3. Results
3.1. Meteorological Variables
3.2. Orchard Canopy Features
3.3. Soil Salinity Conditions
3.4. Energy Flux Density Analysis
3.5. Soil Moisture and Canopy Temperature Interpretation
3.6. Actual Evapotranspiration
4. Discussion
5. Conclusions
- -
- Since the ET of date palms is likely reduced from its potential, the ET measured is referred as observed or actual ET (ETa), which is limited by water deficits and salinity in addition to energy limited, whereas the potential crop ET (ETc) is limited by energy availability to vaporize water and not soil hydrology or salinity. The values reported in this paper are actual crop coefficients that are calculated as: Ka = ETa/ETo rather than standard crop coefficients expressed as: Kc = ETc/ETo. This approach was used because it is difficult to find a date palm grove in a desert region that does not experience some water and/or salinity stress during a year.
- -
- Spatial CIMIS ETo was used rather than the ETo of one individual CIMIS station in the region. The variability in the ETo might be a factor causing differences in Ka for the various date palm orchards. In this study, the monthly spatial CIMIS ETo at the experimental sites varied from 1 to 4% more to 5% less than the monthly mean ETo of the Oasis CIMIS station, which was the closest station to the six orchards.
- -
- Various factors could impact the variability of Ka including irrigation management practices, salinity and/or soil differences, groundwater table, height of trees, and percentage ground shading (likely most important driver) that provides a good estimation of canopy size/volume and the amount of light that it can intercept.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zohary, D.; Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley; Oxford University Press: Oxon, UK, 2000. [Google Scholar]
- Montazar, A. Best irrigation management practices in California date palm. UC ANR Knowledge Stream, 30 September 2019. Available online: https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=31434(accessed on 30 September 2019).
- Abdul-Baki, A.A.; Aslan, S.; Linderman, R.; Cobb, S.; Davis, A. Soil, Water and Nutritional Management of Date Orchards in the Coachella Valley and Bard, 2nd ed.; US Department of Agriculture: Washington, DC, USA, 2002.
- Jaradat, A.; Zaid, A. Quality traits of date palm fruits in a center of origin and center of diversity. J. Food Agric. Environ. 2004, 2, 208–217. [Google Scholar]
- Al-Amoud, A.I.; Bacha, M.A.; Al-Darby, A.M. Seasonal water use of date palm in the central region of Saudi Arabia. Agric. Eng. J. 2000, 9, 51–62. [Google Scholar]
- Ministry of Environment and Water (MOEW). State of Environment Report 2015. United Arab Emirates; 2015; p. 36. Available online: www.moew.gov.ae (accessed on 14 June 2015).
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.L.; Itenfisu, D.; Steduto, P.; Berengena, J.; Baselga Yrisarry, J.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO 56 Penman-Monteith method. Agric. Water Man. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Payero, J.O.; Neale, C.M.U.; Wright, J.L.; Allen, R.G. Guidelines for validating Bowen ratio data. Trans. ASAE 2003, 46, 1051–1060. [Google Scholar] [CrossRef]
- Farahani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration: Progress in measurement and modelling in agriculture. Trans. ASABE 2007, 50, 1627–1638. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Furr, J.R.; Armstrong, W.W. The seasonal use of water by Khadrawy date palms. Date Grow. Inst. Rep. 1956, 23, 5–7. [Google Scholar]
- Kassem, M.A. Water requirements and crop coefficient of date palm trees ‘Sukriah cv’. MISR J. Agric. Eng. 2007, 24, 339–359. [Google Scholar]
- Mazahrih, N.T.; Al-Zu’bi, Y.; Ghnaim, H.; Lababdeh, L.; Ghananeem, M.; Ahmadeh, H.A. Determination actual evapotranspiration and crop coefficients of date palm trees (Phoenix dactylifera) in the Jordan Valley. Am. Eurasian J. Agric. Environ. Sci. 2012, 12, 434–443. [Google Scholar]
- Ben Aïssa, I.; Bouarfa, S.; Perrier, A. Utilisation de la mesure thermique du flux de sève pour l’évlauation de la transpiration d’un plmier dattier. In Economies d’Eau en Systèmes Irrigués au Maghreb; Hartani, T., Douaoui, A., Kuper, M., Eds.; Actes du quatrième atelier régional du projet Sirma, Mostaganem, Algéria; CIRAD: Montpellier, France, 2008. [Google Scholar]
- Al-Muaini, A.; Green, S.; Dakheel, A.; Abdullah, A.; Abou-Dahr, W.; Dixon, S.; Kemp, P.; Clothier, B. Irrigation management with saline groundwater of a date palm cultivar in the hyper-arid United Arab Emirates. Agric. Water Manag. 2019, 211, 123–131. [Google Scholar] [CrossRef]
- FAO. Regional Office for the Near East. In Proceedings of the Workshop on Irrigation of Date Palm and Associate Crops, Chapter 1 (Irrigated Date Palm Production in the Near East), Damascus, Syrian Arab Republic, 27−30 May 2007. [Google Scholar]
- Reilly, D. Date Palms for Australia- Future Developing the Industry; Nuffield Australia: Moama, Australia, 2012. [Google Scholar]
- Tolk, J.A.; Howell, T.A.; Evett, S.R. An evapotranspiration research facility for soil-plant-environment interactions. Appl. Eng. Agric. 2005, 21, 993–998. [Google Scholar] [CrossRef]
- Snyder, R.L.; Spano, D.; Paw U, K.T. Surface Renewal analysis for sensible and latent heat flux density. Bound. Layer Meteorol. 1996, 77, 249–266. [Google Scholar] [CrossRef]
- Spano, D.; Snyder, R.L.; Duce, P.; Paw U, K.T. Surface renewal analysis for sensible heat flux density using structure functions. Agric. For. Meteorol. 1997, 86, 259–271. [Google Scholar] [CrossRef]
- Lee, X.; Massman, W.J.; Law, B.E. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Kluwer: London, UK, 2004. [Google Scholar]
- Massman, W.J.; Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteorol. 2002, 113, 121–144. [Google Scholar] [CrossRef]
- Shaw, R.H.; Snyder, R.L. Evaporation and eddy covariance. In Encyclopedia of Water Science; Stewart, B.A., Howell, T., Eds.; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Paw U, K.T.; Snyder, R.L.; Spano, D.; Su, H.B. Surface renewal estimates of scalar exchange. In Micrometeorology in Agricultural Systems; Hatfield, J.L., Baker, J.M., Eds.; Agronomy Society of America: Madison, WI, USA, 2005; pp. 455–483. [Google Scholar]
- Montazar, A.; Rejmanek, H.; Tindula, G.N.; Little, C.; Shapland, T.M.; Anderson, F.E.; Inglese, G.; Mutters, R.G.; Linquist, B.; Greer, C.A.; et al. Crop coefficient curve for paddy rice from residual of the energy balance calculations. J. Irrig. Drain. Eng. 2017, 143, 04016076. [Google Scholar] [CrossRef] [Green Version]
- Shapland, T.M.; McElrone, A.J.; Paw U, K.T.; Snyder, R.L. A turnkey data logger program for field-scale energy flux density measurements using eddy covariance and surface renewal. Ital. J. Agrometeorol. 2013, 1, 5–16. [Google Scholar]
- Paw U, K.T.; Qiu, J.; Su, H.B.; Watanabe, T.; Brunet, Y. Surface renewal analysis: A new method to obtain scalar fluxes without velocity data. Agric. For. Meteorol. 1995, 74, 119–137. [Google Scholar] [CrossRef]
- Van Atta, C.W. Effect of coherent structures on structure functions of temperature in the atmospheric boundary layer. Arch. Mech. 1977, 29, 161–171. [Google Scholar]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Shapland, T.M.; Snyder, R.L.; Paw U, K.T.; McElrone, A.J. Thermocouple frequency response compensation leads to convergence of the surface renewal alpha calibration. Agric. For. Meteorol. 2014, 189, 36–47. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005; p. 192. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper 56; Food and Agricultural Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- De Vries, D.A. Thermal properties of soil. In Physics of Plant Environment; van Wijk, W.R., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1963; pp. 210–234. [Google Scholar]
- Snyder, R.L.; Pedras, C.; Montazar, A.; Henry, J.M.; Ackley, D.A. Advances in ET-based landscape irrigation management. Agric. Water Manag. 2015, 147, 187–197. [Google Scholar] [CrossRef]
- CIMIS. Available online: http://wwwcimis.water.ca.gov/SpatialData.aspx (accessed on 10 August 2020).
- Pruitt, W.O.; Doorenbos, J. Empirical calibration a requisite for evapotranspiration formulae based on daily or longer mean climatic data. In Proceedings of the International Round Table Conference on “Evapotranspiration”, Budapest, Hungary, 26–28 May 1977; p. 20. [Google Scholar]
- Birdal, A.C.; Avdan, U.; Türk, T. Estimating tree heights with images from an unmanned aerial vehicle. Geomat. Nat. Hazards Risk 2017, 8, 1144–1156. [Google Scholar] [CrossRef] [Green Version]
- Pourreza, A.; Zuniga-Ramirez, G.; Zhang, X.; Cheung, K. Almond yield prediction using fusion of canopy profile and spectral features extracted from aerial imagery. Unpublished Article. 2020. [Google Scholar]
- Corwin, D.L.; Lesch, S.M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Comput. Electron. Agric. 2005, 46, 103–133. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-scale apparent soil electrical conductivity. In Methods of Soil Analysis; Logsdon, S., Ed.; Soil Science Society of America: Madison, WI, USA, 2016; Volume 1. [Google Scholar]
- Tompson, A.; Demir, Z.; Moran, J.; Mason, D.; Wagoner, J.; Kollet, S.; Kayyum, M.; McKereghan, P. Groundwater Availability Within the Salton Sea Basin; Report LLNL-TR-400426; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2008.
- Marino, G.; Zaccaria, D.; Snyder, R.L.; Lagos, O.; Lampinen, B.D.; Ferguson, L.; Grattan, S.R.; Little, C.; Shapiro, K.; Maskey, M.; et al. Actual evapotranspiration and tree performance of mature micro-irrigated pistachio orchards grown on saline-sodic soils in the San Joaquin Valley of California. Agriculture 2019, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Shapland, T.M.; Snyder, R.L.; Smart, D.R.; Williams, L.E. Estimation of actual evapotranspiration in wine grape vineyards located on hillside terrain using surface renewal analysis. Irrig. Sci. 2012, 30, 471–484. [Google Scholar] [CrossRef]
- Zapata, N.; Martínez-Cob, A. Evaluation of the surface renewal method to estimate wheat evapotranspiration. Agric. Water Manag. 2002, 55, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Tripler, E.; Ben-Gal, A.; Shani, U. Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix dactylifera, L.; cv. Medjool). Plant Soil 2007, 297, 147–155. [Google Scholar] [CrossRef]
- Tripler, E.; Shani, U.; Mualem, Y.; Ben-Gal, A. Long-term growth, water consumption and yield of date palm as a function of salinity. Agric. Water Manag. 2011, 99, 128–134. [Google Scholar] [CrossRef]
- Alazba, A. Estimating palm water requirements using Penman-Monteith mathematical model. J. King Saud Univ. Agric. Sci. 2004, 16, 137–152. [Google Scholar]
Experimental Site | Location/Coordinates | Irrigation Practice | Cultivar | Age of Date Palm | Tree Spacings (m × m) |
---|---|---|---|---|---|
DP1 | Coachella Valley, CA 33°36′29′′ N, 116°10′13′′ W | Drip + occasional surface irrigation | Medjool | 8-year | 8.8 × 9.1 |
DP2 | Coachella Valley, CA 33°36′03′′ N, 116°09′58′′ W | Drip + occasional surface irrigation | Deglet Noor | 17-year | 8.8 × 9.1 |
DP3 | Coachella Valley, CA 33°38′11′′ N, 116°12′34′′ W | Drip + occasional surface irrigation | Deglet Noor | 20-year | 9.1 × 9.1 |
DP4 | Coachella Valley, CA 33°34′03′′ N, 116°12′14′′ W | Surface irrigation | Deglet Noor | 22-year | 9.1 × 9.1 |
DP5 | Imperial Valley, CA 33°05′18′′ N, 115°45′00′′ W | Micro sprinkler − surface irrigation for salt leaching | Deglet Noor | 17-year | 8.2 × 8.2 |
DP6 | Imperial Valley, CA 32°47′42′′ N, 114°34′47′′ W | Surface irrigation | Medjool | 15-year | 9.1 × 9.1 |
Experimental Site | Generic Horizon (m) | Soil Texture | Organic Matter (%) | CEC (meq/100 g) | pH | ||
---|---|---|---|---|---|---|---|
Sand (%) | Clay (%) | Silt (%) | |||||
DP1 | 0–0.3 | 69.3 | 7.0 | 23.7 | 1.9 | 12.4 | 7.8 |
0.3–0.6 | 72.0 | 6.0 | 22.0 | 0.9 | 10.4 | 7.8 | |
0.6–0.9 | 77.1 | 4.0 | 18.9 | 0.6 | 11.6 | 8.0 | |
0.9–1.2 | 77.3 | 3.5 | 19.2 | 0.7 | 11.8 | 8.0 | |
DP2 | 0–0.3 | 69.8 | 7.3 | 22.9 | 1.5 | 13.9 | 7.8 |
0.3–0.6 | 74.5 | 6.4 | 19.1 | 0.7 | 9.2 | 8.1 | |
0.6–0.9 | 85.2 | 3.3 | 11.5 | 0.4 | 6.6 | 8.0 | |
0.9–1.2 | 85.8 | 3.6 | 10.6 | 0.7 | 7.7 | 8.0 | |
DP3 | 0–0.3 | 65.8 | 7.6 | 26.6 | 1.3 | 14.1 | 7.8 |
0.3–0.6 | 61.9 | 8.6 | 29.6 | 1.0 | 15.6 | 8.0 | |
0.6–0.9 | 34.2 | 17.6 | 48.1 | 0.9 | 24.1 | 8.1 | |
0.9–1.2 | 40.4 | 16.2 | 43.4 | 0.9 | 24.8 | 8.2 | |
DP4 | 0–0.3 | 64.4 | 5.9 | 29.7 | 0.8 | 14.7 | 7.8 |
0.3–0.6 | 65.5 | 4.9 | 29.6 | 0.9 | 12.2 | 7.9 | |
0.6–0.9 | 65.8 | 4.8 | 29.3 | 1.5 | 16.5 | 7.5 | |
0.9–1.2 | 59.6 | 4.6 | 35.8 | 1.0 | 12.2 | 7.8 | |
DP5 | 0–0.3 | 37.3 | 5.4 | 57.3 | 1.4 | 26.1 | 8.0 |
0.3–0.6 | 29.3 | 22.9 | 47.8 | 0.8 | 27.9 | 8.2 | |
0.6–0.9 | 19.3 | 24.5 | 56.2 | 0.8 | 35.8 | 8.2 | |
0.9–1.2 | 12.1 | 23.0 | 64.9 | 0.9 | 35.1 | 8.2 | |
DP6 | 0–0.3 | 20.3 | 22.2 | 57.5 | 1.7 | 30.2 | 8.1 |
0.3–0.6 | 35.9 | 12.0 | 52.1 | 1.0 | 25.0 | 7.9 | |
0.6–0.9 | 52.1 | 7.7 | 40.2 | 0.7 | 15.5 | 8.1 | |
0.9–1.2 | 86.9 | 2.5 | 10.6 | 0.6 | 8.3 | 8.1 |
Month | Total ETo (mm) | Total Rain (mm) | Solar Radiation (w m−2) | Average Air Temperature (oC) | Average Relative Humidity (%) | Dew Point (oC) | Ave. Wind Speed (m s−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10-Year Average | Study Period | 10-Year Average | Study Period | 10-Year Average | Study Period | 10-Year Average | Study Period | 10-Year Average | Study Period | 10-Year Average | Study Period | 10-Year Average | Study Period | |
January | 70.3 | 79.1 | 2.2 | 0.0 | 136.7 | 149 | 14.4 | 17.0 | 46.0 | 51.0 | 2.0 | 6.5 | 1.6 | 1.9 |
February | 90.2 | 110.2 | 3.9 | 1.1 | 182.7 | 191 | 16.1 | 18.6 | 43.0 | 40.0 | 2.6 | 4.1 | 1.8 | 2.2 |
March | 148.2 | 136.0 | 6.9 | 57.5 | 238.9 | 227 | 19.5 | 20.5 | 37.0 | 46.0 | 3.8 | 7.8 | 2.0 | 2.3 |
April | 176.3 | 165.3 | 9.4 | 50.5 | 285.3 | 282 | 21.9 | 21.5 | 34.0 | 45.0 | 4.6 | 8.4 | 2.3 | 2.1 |
May | 213.0 | 210.2 | 8.6 | 4.5 | 313.3 | 312 | 25.3 | 26.3 | 33.0 | 44.0 | 7.1 | 12.6 | 2.4 | 2.4 |
June | 223.6 | 231.2 | 4.5 | 4.1 | 324.9 | 335 | 30.0 | 33.2 | 31.0 | 38.0 | 10.2 | 15.8 | 2.1 | 2.1 |
July | 221.7 | 237.9 | 1.6 | 3.8 | 289.0 | 320 | 33.1 | 33.0 | 36.0 | 33.0 | 15.4 | 14 | 2.0 | 2.1 |
August | 213.7 | 225.6 | 1.7 | 0.5 | 265.1 | 299 | 32.7 | 33.8 | 37.0 | 31.0 | 15.6 | 13.5 | 2.3 | 1.9 |
September | 177.6 | 170.7 | 3.3 | 1.1 | 242.3 | 254 | 30.2 | 29.5 | 38.0 | 41.0 | 13.5 | 14.2 | 2.3 | 1.8 |
October | 125.9 | 136.0 | 2.5 | 0.0 | 200.2 | 219 | 23.7 | 22.7 | 42.0 | 31.0 | 9.3 | 4.4 | 1.8 | 1.8 |
November | 77.9 | 86.8 | 2.2 | 3.9 | 152.8 | 174 | 17.3 | 21.2 | 47.0 | 35.0 | 5.5 | 4.9 | 1.6 | 1.4 |
December | 59.3 | 56.1 | 5.0 | 0.0 | 125.3 | 131 | 13.3 | 12.3 | 53.0 | 55.0 | 3.0 | 3.0 | 1.6 | 2.3 |
Statistical Indicator | DP4 | DP5 |
---|---|---|
Max | 12.7 | 8.5 |
Min | 3.6 | 1.3 |
SD | 1.7 | 1.4 |
Mean (the entire date palm orchard) | 9.2 (360) | 5.4 (410) |
Mean (within 10,000 m2 around the tower) | 11.5 (46) | 7.3 (59) |
Research | Sites | |||||
---|---|---|---|---|---|---|
Variable | DP1 | DP2 | DP3 | DP4 | DP5 | DP6 |
Maximum ETa (mm day−1) | 8.2 | 8.7 | 8.8 | 8.7 | 8.1 | 8.4 |
Mean ETa (mm day−1) | 3.8 | 4.1 | 4.1 | 4.1 | 3.6 | 3.6 |
CETa (mm) | 1401 | 1482 | 1501 | 1462 | 1310 | 1299 |
CETo (mm) | 1858 | 1859 | 1845 | 1843 | 1884 | 1707 |
Reference | Crop Coefficient | Note |
---|---|---|
Allen et al. (1998) [32] | 0.9–0.95 | FAO-56 |
Alazba (2004) [49] | 0.85 | A fixed Kc value reported in Saudi Arabia. |
Kassem (2007) [12] | 0.63–0.7 | This study was conducted in a commercial farm in Saudi Arabia using the Bowen ratio energy balance method and a soil water balance approach. |
FAO [16] | 0.7–1.0 | Regional values reported for Saudi Arabia and UAE. |
Mazahrih et al. (2012) [13] | 0.75–1.1 | The data of a neutron probe was used to monitor water balance and estimate actual evapotranspiration rates for 11-year-old palm. |
Al-Muaini (2019) [15] | 0.29 | The measurements were conducted using the compensation heat-pulse method on six Lulu date trees in the UAE. |
This study | 0.62–0.90 | The study was conducted in six commercial date palms with various soil and canopy features in the low desert region of California. Surface renewal and eddy covariance techniques were used. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montazar, A.; Krueger, R.; Corwin, D.; Pourreza, A.; Little, C.; Rios, S.; Snyder, R.L. Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water 2020, 12, 2253. https://doi.org/10.3390/w12082253
Montazar A, Krueger R, Corwin D, Pourreza A, Little C, Rios S, Snyder RL. Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water. 2020; 12(8):2253. https://doi.org/10.3390/w12082253
Chicago/Turabian StyleMontazar, Aliasghar, Robert Krueger, Dennis Corwin, Alireza Pourreza, Cayle Little, Sonia Rios, and Richard L. Snyder. 2020. "Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach" Water 12, no. 8: 2253. https://doi.org/10.3390/w12082253
APA StyleMontazar, A., Krueger, R., Corwin, D., Pourreza, A., Little, C., Rios, S., & Snyder, R. L. (2020). Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water, 12(8), 2253. https://doi.org/10.3390/w12082253