Assessment on the Effectiveness of Urban Stormwater Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Roadmap
- (1)
- Phase I: Determining the planning objectives. Based on the analysis of the study area and considering the knotty problems, developmental requirements, and construction situation, the planning objectives for a Sponge City are determined, including runoff volume control, flooding control, and pollution control.
- (2)
- Phase II: Designing the planning scheme. The design runoff control volume is calculated from the Technical Guidelines for Sponge City Construction (hereafter, Guidelines) [23]. The study area is then divided into several catchment zones, and suitable sponge facilities are selected based on the zones’ regional characteristics, such as bio-retention cells and grassed pitches [24]. Finally, a general engineering planning scheme is established for spongy facilities.
- (3)
- Phase III: Developing a rainfall–runoff model using a stormwater management model (SWMM). A rainfall–runoff SWMM is developed, and values of each parameter are determined as input data for the model, including the area, slope, and length of sub-catchments and drainage systems. Then, the temporal distribution of design storm intensity is established from the synthetic rainfall pattern of Chicago storms with recurrence intervals of 2, 5, 10, and 20 years considered. Finally, two hydrological scenarios are proposed for simulation analysis and comparison, of which Scenario 1 is the traditional drainage system without sponge facilities and Scenario 2 is the drainage system with sponge facilities.
- (4)
- Phase IV: Evaluating the planning objectives. Based on the Guidelines, the effectiveness of spongy facilities for controlling runoff volume and water quality is analyzed. Additionally, the effectiveness of sponge facilities for flood control is evaluated under storm conditions with different recurrence intervals.
2.3. Sponge City Planning
2.4. Assessment on Sponge Facilities’ Effectiveness
2.4.1. Runoff Simulation Model
2.4.2. Assessment of the Flood Control Ability of Spongy Facilities via Synthetic Design Rainfall
3. Results
3.1. Runoff Control Volume
3.2. Assessment of Flooding Control
3.3. Calculation of Water Quality
4. Discussions
4.1. Runoff Control Volume
4.2. Flooding Control Assessment
4.3. Application of LID
4.4. Management Implication and Future Direction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larsen, T.A.; Hoffmann, S.; Luthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Vecchi, G.A.; Smith, J.A. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature 2018, 563, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.M.; Shi, P.J.; Liu, Y.S. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–524. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Hou, X.; Guo, H.; Wang, F.; Li, M.; Xue, X.; Liu, X.; Zeng, S. Is the sponge city construction sufficiently adaptable for the future stormwater management under climate change? J. Hydrol. 2020, 588, 125055. [Google Scholar] [CrossRef]
- Yu, S.L.; Jia, H.F. China’s ambitious Sponge City initiative: A monumental effort for green/grey infrastructure integration. ASCE EWRI Curr. 2016, 17, 8–9. (In Chinese) [Google Scholar]
- Wu, Z.J.; Zhang, Y.X. Spatial variation of urban thermal environment and its relation to green space patterns: Implication to sustainable landscape planning. Sustainability 2018, 10, 2249. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.J.; Zhang, Y.X. Water bodies’ cooling effects on urban land daytime surface temperature: Ecosystem service reducing heat island effect. Sustainability 2019, 11, 787. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Du, L.; Yang, X.; Du, X.; Wang, J.; Hao, J.L. Sustainable strategies for transportation development in emerging cities in China: A simulation approach. Sustainability 2018, 10, 844. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.Z.; Li, C. Main practices and thoughts on comprehensive renovation of old residential areas in Beijing. Constr. Sci. Technol. 2016, 9, 20–23. [Google Scholar]
- Davis, A.P. Green engineering principles promote low impact development. Environ. Sci. Technol. 2005, 39, 338A–344A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Wang, C.H.; Fang, S.M.; Chen, X.L. Practice of drainage and control of waterlogging in old residential areas based on the concept of Sponge City Construction. Water Wastewater Eng. 2017, 43, 45–47. (In Chinese) [Google Scholar]
- Liang, C.M.; Zhang, X.; Xia, J.; Xu, J.; She, D.X. The effect of Sponge City Construction for reducing directly connected impervious areas on hydrological responses at the urban catchment scale. Water 2020, 12, 1163. [Google Scholar] [CrossRef] [Green Version]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Herslund, L.; Mguni, P. Examining urban water management practices–challenges and possibilities for transitions to sustainable urban water management in Sub-Saharan cities. Sustain. Cities Soc. 2019, 48, 573. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, L.; Li, Y. Research on the path of residents’ willingness to upgrade by installing elevators in old residential quarters based on safety precautions. Saf. Sci. 2019, 118, 389396. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, R. A novel stormwater management system for urban roads in China based local conditions. Sustain. Cities Soc. 2019, 39, 163–171. [Google Scholar] [CrossRef]
- Jia, H.F.; Ma, H.T.; Sun, Z.X.; Yu, S.L.; Ding, Y.W.; Liang, Y. A closed urban scenic river system using stormwater treated with LID-BMP technology in a revitalized historical district in China. Ecol. Eng. 2014, 71, 448–457. [Google Scholar] [CrossRef]
- Zhang, L.W. Sponge City Case Studies; China Building Industry Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Technical Guidelines for Establishment of Intensity-Duration-Frequency Curve and Design Rainstorm Profile; China Meteorological Administration (CMA): Beijing, China, 2014. (In Chinese)
- Xu, T.; Jia, H.; Wang, Z.; Mao, X.; Xu, C. SWMM-based methodology for blockscale LID-BMPs planning based on site-scale multi-objective optimization: A case study in Tianjin. Front. Env. Sci. Eng. 2017, 11, 1. [Google Scholar]
- Jiang, B.; Cao, W.C.; Zhu, J.G. Planning and design of Sponge City in Kunshan City. China Water Wastewater 2016, 32, 70–73. (In Chinese) [Google Scholar]
- Che, W.; Zhao, Y.; Li, J.Q.; Wang, W.L.; Wang, J.L.; Wang, S.S.; Gong, Y.W. Explanation of Sponge City Development Technical Guide : Basic Concepts and Comprehensive Goals. China Water Wastewater 2015, 31, 1–5. [Google Scholar]
- Jia, H.F.; Yao, H.R.; Yu, S.L. Advances in LID BMPs research and practices for urban runoff control in China. Front. Environ. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Lu, W.; Luo, Z.J.; Du, J.J.; Ning, D. Shallow groundwater allowable withdrawal resources assessment in Wujiang Area. Coal Geol. China 2018, 30, 51–55. (In Chinese) [Google Scholar]
- Hou, P.C.; Xu, X.D.; Pan, G.X. Variation of soil quality with different land use change in Tai Lake region, Jiangsu, China: A case study of soil quality survey of Wujiang municipality in 2003. Ecol. Environ. 2007, 16, 152–157. (In Chinese) [Google Scholar]
- Rossman, L.A. Storm Water Management Model–User’s Manual Version 5.0; EPA/600/R-05/040; National Risk Management Research Laboratory, United States Environmental Protection Agency: Cincinnati, OH, USA, 2010. [Google Scholar]
- Ma, X.Y.; Zhu, Y.L.; Mei, K.; Zhuang, Y.J.; Zhuang, M.H. Application of SWMM in the simulation of non-point source pollution load in urban residential area. Res. Environ. Sci. 2012, 25, 95–102. (In Chinese) [Google Scholar]
- Zhang, S.J.; Gong, Y.W.; Chen, Y.X. Case Study of hydrological parameters sensitivity analysis using SWMM. J. Beijing Inst. Civ. Eng. Archt. 2012, 28, 45–48. (In Chinese) [Google Scholar]
- Chen, X.Y.; Zhang, N.; Wu, F.F.; He, B. Stormwater management model (SWMM): Principles, parameters and applications. China Water Wastewater 2013, 29, 4–7. (In Chinese) [Google Scholar]
- Zhou, Y.; Yu, M.H.; Chen, Y.X. Estimation of sub-catchment width in SWMM. China Water Wastewater 2014, 30, 61–64. (In Chinese) [Google Scholar]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1–25. [Google Scholar]
- Jiang, Y.L.; Lu, M.B. Evaluation and analysis of rainstorm intensity formula in central district of Suzhou City. Urban Roads Bridge Flood Ctrl. 2016, 8, 149–151. (In Chinese) [Google Scholar]
- Cheng, G. Simulation and Key Technology Research on Water Quality for Sponge City: A Case Study of a Test Area in Yixing City; Suzhou University of Science and Technology: Suzhou, China, 2016. [Google Scholar]
- Li, Y.; Li, H.X.; Huang, J.; Liu, C. An approximation method for evaluating flash flooding. J. Clean. Prod. 2020, 257, 120525. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I. Hydrologic modeling of low impact development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; Shan, H.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Ma, Y.C.; Jiang, Y.; Swallow, S. China’s sponge city development for urban water resilience and sus-tainability: A policy discussion. Sci. Total Environ. 2020, 729, 139078. [Google Scholar] [CrossRef]
- Mitchell, V.G. Applying integrated urban water management concepts: A review of Australian experience. J. Environ. Manag. 2006, 37, 598–605. [Google Scholar] [CrossRef]
- Mostafavi, M.; Doherty, G. Ecological Urbanism; Lars Müller Publishers: Baden, Switzerland, 2010. [Google Scholar]
- Mottaghi, M.; Aspegren, H.; Jönsson, K. Integrated urban design and open storm drainage in our urban environments: Merging drainage techniques into our city’s urban spaces. Water Pract. Technol. 2016, 11, 118–126. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, bmps, WSUD and more—the evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Fu, D. Understanding the challenges for the governance of China’s “sponge cities” initiative to sustainably manage urban stormwater and flooding. Nat. Hazards 2017, 89, 521–529. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Varis, O.; Kummu, M.; Lehr, C.; Shen, D. China’s stressed waters: Societal and environmental vulnerability in China’s internal and transboundary river systems. Appl. Geogr. 2014, 53, 105–116. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Qin, H.; Li, Z.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, D.Q.; Adhityan, A.; Ng, W.J.; Dong, J.W.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Gallo, E.L.; Brooks, P.; Lohse, K.A.; McLain, J.E. Temporal patterns and controls on runoff magnitude and solution chemistry of urban catchments in the semi-arid southwest. Hydrol. Proc. 2012, 27, 995–1010. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Smith, J.A.; Wright, D.B.; Baeck, M.L.; Villarini, G.; Tian, F.; Hu, H. Urbanization and climate change: An examination of nonstationarities in urban flooding. J. Hydrometeorol. 2013, 14, 1791–1809. [Google Scholar] [CrossRef]
- Ferguson, B.C.; Brown, R.R.; Deletic, A. Diagnosing transformative change in urban water systems: Theories and frameworks. Glob. Environ. Chang. 2013, 23, 264–280. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Modell. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Gersonius, B.; Radhakrishan, M. Flood resilience. Phil. Trans. R. Soc. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pendergrass, A.G. What precipitation is extreme? Science 2018, 360, 1072–1073. [Google Scholar] [CrossRef]
- Roche, K.R.; Müller-Itten, M.; Dralle, D.N.; Bolster, D.; Müller, M.F. Climate change and the opportunity cost of conflict. Proc. Natl. Acad. Sci. USA 2020, 117, 1935–1940. [Google Scholar] [CrossRef]
- Jia, H.F.; Wang, Z.; Zhen, X.Y.; Clar, M.; Yu, S.L. China’s Sponge City construction: A discussion on technical approaches. Front. Environ. Sci. Eng. 2017, 11, 8. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.Q.; Ren, M.L.; Li, C.Z.; Wang, H. Sponge City Construction in China: A survey of the challenges and opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Hyndman, D.; Winkler, J.; Viña, A.; Deines, J.; Lupi, F.; Luo, L.F.; Li, Y.K.; Basso, B.; Zheng, C.M.; et al. Urban water sustainability: Framework and application. Ecol. Soc. 2016, 21, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zevenbergen, C.; Rabé, P.; Jiang, Y. The influences of sponge city on property values in Wuhan, China. Water 2018, 10, 766. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2020, 378, 20190222. [Google Scholar]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.Y.; Zhu, F.F.; Tang, Y.T.; Xu, Y.Y.; Thorne, C.R. “Sponge City” in China-a breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
Parameter | Range | Units | Parameter | Range | Units |
---|---|---|---|---|---|
Area | 0.003~0.5 | ha | Dstore-Imperv | 1.27~2 | mm |
Width | 2~70 | m | Dstore-Perv | 2~15 | mm |
Slope | 1~5 | ‰ | Max.Infil.Rate | 72.4~78.1 | Mm × h−1 |
Imperv | 30~80 | % | Min.Infil.Rate | 3.18~3.82 | Mm × h−1 |
N-Imperv | 0.01~0.03 | - | Decay Constant | 2~4 | h−1 |
N-Perv | 0.1~0.3 | - | Drying Time | 7~10 | day |
N-Roughness | 0.011~0.036 | - |
Partition Number | Catchment Area (m2) | Designed Runoff Control Volume Vs (m3) | Scale of Sponge Facilities | Runoff Control Volume Vs (m3) | |||
---|---|---|---|---|---|---|---|
Bioretention Cell (m2) | Permeable Pavement (m2) | Grassed Pitch (m2) | Stormwater Garden (m2) | ||||
S1 | 5555 | 62.29 | 134 | 619 | 432 | 0 | 73.70 |
S2 | 3900 | 43.73 | 132 | 523 | 302 | 0 | 72.60 |
S3 | 5376 | 60.29 | 183 | 165 | 339 | 0 | 100.65 |
S4 | 5420 | 60.78 | 182 | 344 | 515 | 0 | 100.10 |
S5 | 5818 | 65.24 | 99 | 110 | 351 | 243 | 188.10 |
S6 | 4864 | 54.54 | 150 | 261 | 337 | 0 | 82.50 |
S7 | 9104 | 102.09 | 312 | 495 | 727 | 0 | 171.60 |
S8 | 7650 | 85.79 | 158 | 426 | 701 | 0 | 86.90 |
S9 | 7970 | 89.38 | 172 | 591 | 743 | 0 | 94.60 |
Total | 55,657 | 624.14 | 1522 | 3534 | 4448 | 243 | 970.75 |
Partition Number | Catchment Area (m2) | Runoff Control Volume Vs(m3) | Comprehensive Removal Rate of SS (%) | Removal Rate of SS Load (%) | |
---|---|---|---|---|---|
Bioretention Cell (m3) | Stormwater Garden (m3) | ||||
S1 | 5555 | 65.66 | 0 | 70.0 | 56.0 |
S2 | 3900 | 64.68 | 0 | 70.0 | 56.0 |
S3 | 5376 | 89.67 | 0 | 70.0 | 56.0 |
S4 | 5420 | 89.18 | 0 | 70.0 | 56.0 |
S5 | 5818 | 48.51 | 119.07 | 70.0 | 56.0 |
S6 | 4864 | 73.5 | 0 | 70.0 | 56.0 |
S7 | 9104 | 152.88 | 0 | 70.0 | 56.0 |
S8 | 7650 | 77.42 | 0 | 70.0 | 56.0 |
S9 | 7970 | 84.28 | 0 | 70.0 | 56.0 |
Total | 55,657 | 56.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, W.; Chen, X.; Jun, C.; Hao, J.; Tang, X.; Zhai, J. Assessment on the Effectiveness of Urban Stormwater Management. Water 2021, 13, 4. https://doi.org/10.3390/w13010004
Zhang Y, Zhao W, Chen X, Jun C, Hao J, Tang X, Zhai J. Assessment on the Effectiveness of Urban Stormwater Management. Water. 2021; 13(1):4. https://doi.org/10.3390/w13010004
Chicago/Turabian StyleZhang, Yixin, Weihan Zhao, Xue Chen, Changhyun Jun, Jianli Hao, Xiaonan Tang, and Jun Zhai. 2021. "Assessment on the Effectiveness of Urban Stormwater Management" Water 13, no. 1: 4. https://doi.org/10.3390/w13010004
APA StyleZhang, Y., Zhao, W., Chen, X., Jun, C., Hao, J., Tang, X., & Zhai, J. (2021). Assessment on the Effectiveness of Urban Stormwater Management. Water, 13(1), 4. https://doi.org/10.3390/w13010004