Significant Baseflow Reduction in the Sao Francisco River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Sources
2.2.1. Streamflow Data
2.2.2. Precipitation, Evapotranspiration and Water Storage Change Data
2.3. Partitioning of Streamflow into Baseflow and Quickflow
2.4. Trend Analysis
3. Results
3.1. Streamflow and Baseflow Spatial Variation
3.2. Trends in Streamflow, Baseflow and Quickflow
3.3. Trends in Precipitation, Evapotranspiration and Water Storage Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WEF—World Economic Forum. The Global Risks Report 2019, 14th ed.; World Economic Forum: Cologny/Geneva, Switzerland, 2019; ISBN 978-1-944835-15-6. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- UN—United Nations. The Millennium Development Goals Report; Way, C., Ed.; United Nations: New York, NY, USA, 2015; ISBN 978-92-1-101320-7. [Google Scholar]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth Futur. 2017, 5, 545–559. [Google Scholar]
- Van Loon, A.F.; Van Lanen, H.A.J. Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resour. Res. 2013, 49, 1483–1502. [Google Scholar] [CrossRef]
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Van Beek, L.P.; Wanders, N.; Bierkens, M.F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 2013, 8, 34036. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Water scarcity challenges to business. Nat. Clim. Chang. 2014, 4, 318–320. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 2009, 13, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Gesualdo, G.C.; Oliveira, P.T.; Rodrigues, D.B.B.; Gupta, H.V. Assessing water security in the São Paulo metropolitan region under projected climate change. Hydrol. Earth Syst. Sci. 2019, 23, 4955–4968. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, T.; VanderSteen, J.; Sophocleous, M.A.; Taniguchi, M.; Alley, W.M.; Allen, D.M.; Zhou, Y. Groundwater sustainability strategies. Nat. Geosci. 2010, 3, 378–379. [Google Scholar] [CrossRef]
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 5904–5911. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Müller Schmied, H.; Schuh, C.; Portmann, F.T.; Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 2014, 50, 5698–5720. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; de Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richey, A.S.; Thomas, B.F.; Lo, M.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Lettenmaier, D.P.; Alsdorf, D.; Dozier, J.; Huffman, G.J.; Pan, M.; Wood, E.F. Inroads of remote sensing into hydrologic science during the WRR era. Water Resour. Res. 2015, 51, 7309–7342. [Google Scholar] [CrossRef]
- Gleeson, T.; Richter, B. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Res. Appl. 2018, 34, 83–92. [Google Scholar] [CrossRef]
- Barlow, P.M.; Leake, S.A. Streamflow Depletion by Wells—Understanding and Managing the Effects of Groundwater Pumping on Streamflow; Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Zipper, S.C.; Dallemagne, T.; Gleeson, T.; Boerman, T.C.; Hartmann, A. Groundwater Pumping Impacts on Real Stream Networks: Testing the Performance of Simple Management Tools. Water Resour. Res. 2018, 54, 5471–5486. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Gleeson, T.; Kerr, B.; Howard, J.K.; Rohde, M.M.; Carah, J.; Zimmerman, J. Rapid and Accurate Estimates of Streamflow Depletion Caused by Groundwater Pumping Using Analytical Depletion Functions. Water Resour. Res. 2019, 55, 5807–5829. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bhanja, S.N.; Wada, Y. Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, I.E.M.; Gleeson, T.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental flow limits to global groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
- OAS/GEF/ANA. São Francisco River Basin—Integrated Management of Land Based Activities in the São Francisco River Basin; Washington, DC, USA. 2005. Available online: https://www.oas.org/dsd/SAFUP/sf.HTM (accessed on 21 December 2020).
- ANA—Agência Nacional de Águas. Brazilian Water Resources Report—2017; Full Report; Agência Nacional de Águas: Brasília, Brazil, 2018. [Google Scholar]
- ANA—Agência Nacional de Águas. Conjuntura dos Recursos Hídricos no Brasil 2019: Informe Anual; Agência Nacional de Águas: Brasília, Brazil, 2019. [Google Scholar]
- CODEVASF—Companhia de Desenvolvimento dos Vales dSão Francisco e do Parnaíba. Plano Nascente São Francisco: Plano de Preservação e Recuperação de Nascentes da Bacia do rio São Francisco; de Oliveira Motta, E.J., Gonçalves, N.E.W., Eds.; Editora iABS: Brasília, Brazil, 2016; ISBN 978-85-64478-39-8. [Google Scholar]
- ANA—Agência Nacional de Águas Sala de Situação da Agência Nacional de Águas. Available online: https://www.ana.gov.br/sala-de-situacao/sao-francisco/sao-francisco-saiba-mais (accessed on 13 April 2020).
- ANA—Agência Nacional de Águas. Conjuntura dos Recursos Hídricos: Informe 2015; Agência Nacional de Águas: Brasília, Brazil, 2015. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística Censo Demográfico. Available online: https://censo2010.ibge.gov.br/ (accessed on 9 June 2020).
- MMA—Ministério do Meio Ambiente. Caderno da Região Hidrográfica do São Francisco; Ministério do Meio Ambiente: Brasília, Brazil, 2006. [Google Scholar]
- CBHSF—Comitê da Bacia Hidrográfica do Rio São Francisco. Plano de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco 2016-2025; Comitê da Bacia Hidrográfica do Rio São Francisco: Alagoas, Brazil, 2020. [Google Scholar]
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, A.N.; Coelho, V.H.R.; Xavier, A.C.; Barbosa, L.R.; Melo, D.C.D.; Xuan, Y.; Huffman, G.J.; Petersen, W.A.; das Almeida, C.N. Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmos. Res. 2019, 218, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.; Melo, D.C.D.; Rodrigues, D.B.B.; Xavier, A.C.; Guido, R.C.; Wendland, E. Aquifer Responses to Rainfall through Spectral and Correlation Analysis. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 1341–1354. [Google Scholar] [CrossRef]
- De Melo, D.C.D.; Scanlon, B.R.; Zhang, Z.; Wendland, E.; Yin, L. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil. Hydrol. Earth Syst. Sci. 2016, 20, 4673–4688. [Google Scholar] [CrossRef] [Green Version]
- De Melo, D.C.D.; Xavier, A.C.; Bianchi, T.; Oliveira, P.T.S.; Scanlon, B.R.; Lucas, M.C.; Wendland, E. Performance evaluation of rainfall estimates by TRMM Multi-satellite Precipitation Analysis 3B42V6 and V7 over Brazil. J. Geophys. Res. Atmos. 2015, 120, 9426–9436. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Van Den Berg, M.J.; Gash, J.H.; Parinussa, R.M.; De Jeu, R.A.M.; Beck, H.E.; Holmes, T.R.H.; Jiménez, C.; Verhoest, N.E.C.; Dorigo, W.A.; et al. El Niño-La Niña cycle and recent trends in continental evaporation. Nat. Clim. Chang. 2014, 4, 122–126. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- MAPBIOMAS Project MapBiomas—Collection 3.0 of Brazilian Land Cover & Use Map Series. Available online: https://mapbiomas.org/ (accessed on 9 June 2020).
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Lott, D.A.; Stewart, M.T. Base flow separation: A comparison of analytical and mass balance methods. J. Hydrol. 2016, 535, 525–533. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Wang, K.; Yang, T.; Liang, K.; Liu, C. Evaluation of typical methods for baseflow separation in the contiguous United States. J. Hydrol. 2020, 583, 124628. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Song, J.; Cheng, L. Evaluating relative merits of four baseflow separation methods in Eastern Australia. J. Hydrol. 2017, 549. [Google Scholar] [CrossRef]
- Lyne, L.D.; Hollick, M. Stochastic time-variable rainfall runoff modelling. In Proceedings of the Hydrology and Water Resources Symposium; Institution of Engineers Australia: Perth, Australia, 1979; pp. 89–92. [Google Scholar]
- Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated Base Flow Separation and Recession Analysis Techniques. Ground Water 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Posavec, K.; Parlov, J.; Nakić, Z. Fully Automated Objective-Based Method for Master Recession Curve Separation. Groundwater 2010, 48, 598–603. [Google Scholar] [CrossRef]
- Maillet, E. Essai d’Hydraulique Souterraine et Fluviale: Librairie Scientifique; Hermann: Paris, France, 1905. [Google Scholar]
- Carlotto, T.; Chaffe, P.L.B. Master Recession Curve Parameterization Tool (MRCPtool): Different approaches to recession curve analysis. Comput. Geosci. 2019, 132, 1–8. [Google Scholar] [CrossRef]
- Collischonn, W.; Fan, F.M. Defining parameters for Eckhardt’s digital baseflow filter. Hydrol. Process. 2013, 27, 2614–2622. [Google Scholar] [CrossRef]
- Yoshida, T.; Troch, P.A. Coevolution of volcanic catchments in Japan. Hydrol. Earth Syst. Sci. 2016, 20, 1133–1150. [Google Scholar] [CrossRef] [Green Version]
- Sawicz, K.; Wagener, T.; Sivapalan, M.; Troch, P.A.; Carrillo, G. Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol. Earth Syst. Sci. 2011, 15, 2895–2911. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.S.; Emanuel, R.E.; Vose, J.M.; Nelson, S.A.C. Continental U.S. streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics. Water Resour. Res. 2015, 51, 6262–6275. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Hellwig, J.; Stahl, K. An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times. Hydrol. Earth Syst. Sci. 2018, 22, 6209–6224. [Google Scholar] [CrossRef] [Green Version]
- Young, D.; Zégre, N.; Edwards, P.; Fernandez, R. Assessing streamflow sensitivity of forested headwater catchments to disturbance and climate change in the central Appalachian Mountains region, USA. Sci. Total Environ. 2019, 694, 133382. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Stollberg, R.; Weiss, H.; Chang, H.K. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System. Sci. Total Environ. 2019, 135845. [Google Scholar] [CrossRef]
- Valipour, M.; Bateni, S.M.; Gholami Sefidkouhi, M.A.; Raeini-Sarjaz, M.; Singh, V.P. Complexity of Forces Driving Trend of Reference Evapotranspiration and Signals of Climate Change. Atmosphere 2020, 11, 1081. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H. Trends in precipitation extremes over the Yellow River basin in North China: Changing properties and causes. Hydrol. Process. 2017, 31, 2412–2428. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Bürger, G. On trend detection. Hydrol. Process. 2017, 31, 4039–4042. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Solomatine, D.P. River flow forecasting using artificial neural networks. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 1–7. [Google Scholar] [CrossRef]
- Sabzevari, A.A.; Zarenistanak, M.; Tabari, H.; Moghimi, S. Evaluation of precipitation and river discharge variations over southwestern Iran during recent decades. J. Earth Syst. Sci. 2015, 124, 335–352. [Google Scholar] [CrossRef]
- Drápela, K.; Drápelová, I. Application of Mann-Kendall Test and the Sen’s Slope Estimates for Trend Detection in Deposition data From Bílý Kříž (Beskydy Mts., the Czech Republic 1997–2010); Beskydy: Brno, Czech Republic, 2011. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. Rank-invariant Method of Linear and Polynomial Regression Analysis, 1-2; Confidence Regions for the Parameters of Linear Regression Equations in Two, Three and More Variables: (proceedings Knaw, _5_3(1950), Nr 3/4, Indagationes Mathematicae, _1_2(1950); Stichting Mathematisch Centrum, Statistische Afdeling: Amsterdam, The Netherlands, 1949. [Google Scholar]
- Oliveira PT, S.; Almagro, A.; Colman, C.B.; Kobayashi AN, A.; Rodrigues DB, B.; Neto, A.M. Nexus of water-food-energy-ecosystem services in the Brazilian Cerrado. In Water and Climate Modeling in Large Basins 5; Silva, R.C.V., Tucci, C.E.M., Scott, C.A., Eds.; ABRHidro: Porto Alegre, Brazil, 2019; pp. 7–30. [Google Scholar]
- Landau, E.C.; Guimarães, D.P.; de Sousa, D.L. Expansão Geográfica da Agricultura Irrigada por Pivôs Centrais na Região do Matopiba Entre 1985 e 2015, 1st ed.; Landau, E.C., Ed.; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2016; ISBN 1679-0154. [Google Scholar]
- Kustu, M.D.; Fan, Y.; Robock, A. Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: A synthesis of observed streamflow changes. J. Hydrol. 2010, 390, 222–244. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Engelbrecht, B.Z.; Chang, H.K. Evolução da contribuição do Sistema Aquífero Urucuia para o Rio São Francisco, Brasil. Águas Subterrâneas 2018, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Andrade, V.P.M.; da Silva, J.A.B.; de Sousa, J.S.C.; Oliveira, F.F.; Simões, W.L. Aspectos fisiológicos de videira submetida a manejos de irrigação e fertilização. Pesqui. Agropecu. Trop. 2017, 47, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.d.C. Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation. Remote Sens. 2010, 2, 1287–1319. [Google Scholar] [CrossRef] [Green Version]
- Gómez, D.; Wendland, E.; Carvalho Diniz Melo, D. Empirical rainfall-based model for defining baseflow and dynamical water use rights. River Res. Appl. 2020, 36, 189–198. [Google Scholar] [CrossRef]
Hydrographical Regions | Features | |||||
---|---|---|---|---|---|---|
Area (km2) | Population (million) | Mean P (mm year−1) | Mean ET (mm year−1) | Biome | Climate | |
Upper SFB | 100,085 | 7.1 | 1395 | 914 | 1 Cerrado | 3 Aw (hot and humid with wet summer) |
Middle SFB | 402,491 | 3.4 | 918 | 762 | 1 Cerrado (west) and 2 Caatinga (east) | 3 Aw and BShw (semiarid) |
Sub-middle SFB | 110,473 | 2.3 | 526 | 480 | 2 Caatinga | 3 BShw |
Lower SFB | 25,427 | 1.4 | 749 | 673 | 2 Caatinga and Atlantic rainforest | 3 As (hot and humid with wet winter) and 3 BSh (semiarid with short wet season) |
Reference | [38] | [39] | This study | This study | [40] | [41] |
Rain Gauge Number | Hydrographical Region | Trends | Trend Magnitude in m3 s−1 year−1 (mm year−1) | |||||
---|---|---|---|---|---|---|---|---|
40070000 | Upper SFB | 0.82 | NS | NS | NS | −0.94 (−0.30) | −0.83 (−0.26) | −0.15 (−0.05) |
40100000 | 0.83 | NS | NS | NS | −1.79 (−0.56) | −1.47 (−0.46) | −0.32 (−0.10) | |
42210000 | Middle SFB | 0.87 | | | | −15.21 (−1.19) | −12.87 (−1.01) | −2.31 (−0.18) |
43200000 | 0.85 | | | | −19.41 (−1.52) | −18.64 (−1.46) | −3.16 (−0.25) | |
44200000 | 0.86 | | | | −27.70 (−2.17) | −22.04 (−1.73) | −5.80 (−0.45) | |
44290002 | 0.86 | | | | −29.18 (−2.29) | −21.80 (−1.71) | −3.62 (−0.28) | |
44500000 | 0.85 | | | | −25.92 (−2.03) | −21.80 (−1.71) | −3.76 (−0.29) | |
45298000 | 0.86 | | | | −30.49 (−2.39) | −26.38 (−2.07) | −4.42 (−0.35) | |
45480000 | 0.87 | | | | −35.29 (−2.77) | −31.33 (−2.45) | −3.47 (−0.27) | |
46035000 | 0.89 | | | | −33.63 (−2.63) | −29.98 (−2.35) | −3.19 (−0.25) | |
46105000 | 0.89 | | | | −35.08 (−2.75) | −32.00 (−2.51) | −3.19 (−0.25) | |
46150000 | 0.88 | | | | −36.18 (−2.83) | −32.29 (−2.53) | −4.33 (−0.34) | |
46360000 | 0.89 | | | | −36.79 (−2.88) | −32.52 (−2.55) | −4.20 (−0.33) | |
48020000 | Sub−middle SFB | 0.90 | | | | −33.81 (−9.65) | −28.31 (−8.08) | −4.97 (−1.42) |
48290000 | 0.90 | | | | −31.95 (−9.12) | −25.35 (−7.24) | −5.32 (−1.52) | |
48590000 | 0.90 | | | | −33.61 (−9.59) | −29.74 (−8.49) | −4.37 (−1.25) | |
49330000 | Lower SFB | 0.87 | | | | −38.69 (−47.99) | −34.44 (−42.71) | −4.45 (−5.52) |
49370000 | 0.88 | | | | −36.48 (−45.24) | −29.79 (−36.95) | −6.72 (−8.33) | |
49660000 | 0.89 | | | | −31.16 (−38.65) | −26.69 (−33.10) | −5.15 (−6.39) | |
49705000 | 0.91 | | | | −29.12 (−36.12) | −24.71 (−30.65) | −4.00 (−4.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, M.C.; Kublik, N.; Rodrigues, D.B.B.; Meira Neto, A.A.; Almagro, A.; Melo, D.d.C.D.; Zipper, S.C.; Oliveira, P.T.S. Significant Baseflow Reduction in the Sao Francisco River Basin. Water 2021, 13, 2. https://doi.org/10.3390/w13010002
Lucas MC, Kublik N, Rodrigues DBB, Meira Neto AA, Almagro A, Melo DdCD, Zipper SC, Oliveira PTS. Significant Baseflow Reduction in the Sao Francisco River Basin. Water. 2021; 13(1):2. https://doi.org/10.3390/w13010002
Chicago/Turabian StyleLucas, Murilo Cesar, Natalya Kublik, Dulce B. B. Rodrigues, Antonio A. Meira Neto, André Almagro, Davi de C. D. Melo, Samuel C. Zipper, and Paulo Tarso Sanches Oliveira. 2021. "Significant Baseflow Reduction in the Sao Francisco River Basin" Water 13, no. 1: 2. https://doi.org/10.3390/w13010002
APA StyleLucas, M. C., Kublik, N., Rodrigues, D. B. B., Meira Neto, A. A., Almagro, A., Melo, D. d. C. D., Zipper, S. C., & Oliveira, P. T. S. (2021). Significant Baseflow Reduction in the Sao Francisco River Basin. Water, 13(1), 2. https://doi.org/10.3390/w13010002