Water Conservation and Green Infrastructure Adaptations to Reduce Water Scarcity for Residential Areas with Semi-Arid Climate: Mineral de la Reforma, Mexico
Abstract
:1. Introduction
Problem Statement and Scope
2. Materials and Methods
2.1. Location of the Study Area
2.2. Climate
2.3. Design of Proposed Scenarios
2.4. Definition of the Physical Characteristics of the Watershed
2.5. Rainwater Harvesting Volumes
2.6. Design Hydrograph Estimation
2.6.1. Rational Method for Estimate Maximum Discharge
2.6.2. Curve Number Method to Estimate Effective Rainfall
2.6.3. SCS Dimensionless Unit Hydrograph to Determine Design Hydrographs
3. Results
3.1. Rainwater Harvested on Dwellings
3.2. Estimation of the Design Event
3.2.1. Basin Response Times
3.2.2. Design Rainfall
3.2.3. Effective Rainfall and Design Hydrographs
3.2.4. Peak Discharge and Design Hydrograph
4. Discussion
4.1. Conservation Measures (RWH)
4.2. Green Infrastructure
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Neibaur, E.E.; Anderson, E.P. An examination of factors affecting sustainability of domestic rainwater harvesting systems in a rural, semi-arid region of Mexico. Water Sci. Technol. Water Supply 2016, 16, 1388–1397. Available online: http://iwaponline.com/ws/article-pdf/16/5/1388/411691/ws016051388.pdf (accessed on 1 October 2020). [CrossRef]
- Lane, L.J.; Nichols, M.H. Semi-arid climates and terrain. Environ. Geol. 1999. [Google Scholar] [CrossRef]
- Scanlon, B.R. Evaluation of Methods of Estimating Recharge in Semiarid and Arid Regions in the Southwestern U.S.; Water Science and Applications, Series; Groundwater recharge in a desert environment: The southwestern United States; Hogan, J.F., Phillips, F.M., Scanlon, B.R., Eds.; AGU: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Pontifes, P.A.; García-Meneses, P.M.; Gómez-Aísa, L.; Monterroso-Rivas, A.I.; Caso-Chávez, M. Land use/land cover change and extreme climatic events in the arid and semi-arid ecoregions of Mexico. Atmósfera 2018, 31, 355–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, W.; Peng, C. Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Sanches-Fernandes, L.F.; Terêncio, D.P.S.; Pacheco, F.A.L. Rainwater harvesting systems for low demanding applications. Sci. Total Environ. 2015, 529, 91–100. [Google Scholar] [CrossRef]
- Yannopoulos, S.; Giannopoulou, I.; Kaiafa-Saropoulou, M. Investigation of the Current Situation and Prospects for the Development of Rainwater Harvesting as a Tool to Confront Water ScarcityWorldwide. Water 2019, 11, 2168. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Molaei, O.; Kouchakzadeh, M.; Fashi, F.H. Evaluation of rainwater harvesting performance for water supply in cities with cold and semi-arid climate. Water Supply. 2019, 19, 1322–1329. Available online: http://iwaponline.com/ws/article-pdf/19/5/1322/571141/ws019051322.pdf (accessed on 29 January 2020). [CrossRef] [Green Version]
- Campisano, A.; Gnecco, I.; Modica, C.; Palla, A. Designing domestic rainwater harvesting systems under different climatic regimes in Italy. Water Sci. Technol. Water Supply 2013, 67, 2511–2518. Available online: http://iwaponline.com/wst/article-pdf/67/11/2511/440343/2511.pdf (accessed on 16 December 2019). [CrossRef]
- US Environmental Protection Agency (US EPA). Guidelines for Water Reuse, EPA Report 625-R-04-108; US Environmental Protection Agency: Washington, DC, USA, 2004. Available online: https://www.epa.gov/sites/production/files/2019-08/documents/2004-guidelines-water-reuse.pdf (accessed on 21 January 2020).
- Nnaji, C.C.; Mama, N.C. Preliminary assessment of rainwater harvesting potential in Nigeria: Focus on flood mitigation and domestic water supply. Water Resour. Manag. 2014, 28, 1907–1920. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, S.; Zhang, J.; Wang, Y.; Wang, Y. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China. Resour. Conserv. Recycl. 2017, 126, 74–85. [Google Scholar] [CrossRef]
- Lizárraga-Mendiola, L.; Vázquez-Rodríguez, G.; Blanco-Piñón, A.; Rangel-Martínez, Y.; González-Sandoval, M. Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico. Water 2015, 7, 4622–4637. [Google Scholar] [CrossRef] [Green Version]
- AbdelKhaleq, R.A.; Ahmed, I.A. Rainwater harvesting in ancient civilizations in Jordan. Water Sci. Technol. Water Supply 2007, 7, 85–93. [Google Scholar] [CrossRef]
- Kahinda, J.M.; Taigbenu, A.E.; Boroto, R.J. Domestic rainwater harvesting as an adaptation measure to climate change in South Africa. Phys. Chem. Earth 2010, 35, 742–751. [Google Scholar] [CrossRef]
- Tabatabaee, J.; Han, M.Y. Rainwater harvesting potentials for drought mitigation in Iran. Water Sci. Technol. Water Supply 2010, 64, 816–821. Available online: http://iwaponline.com/wst/article-pdf/62/4/816/446434/816.pdf (accessed on 13 March 2020). [CrossRef]
- Shokory, J.A.N.; Rabanizada, E. Sustainable household water-saving and demand management options for Kabul City. IOP Conf. Ser. Earth Environ. Sci. 2020, 511, 012003. [Google Scholar] [CrossRef]
- Pereira-Lindoso, D.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S.; Nasuti, S. Harvesting Water for Living with Drought: Insights from the Brazilian Human Coexistence with Semi-Aridity Approach towards Achieving the Sustainable Development Goals. Sustainability 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- Tamagnone, P.; Comino, E.; Rosso, M. Rainwater harvesting techniques as an adaptation strategy for flood mitigation. J. Hydrol. 2020, 586, 124880. [Google Scholar] [CrossRef]
- Fry, T.J.; Maxwell, R.M. Evaluation of distributed BMPs in an urban watershed—High resolution modeling for stormwater management. Hydrol. Process. 2017, 31, 2700–2712. [Google Scholar] [CrossRef]
- Graham, P.; Maclean, L.; Medina, D.; Patwardhan, A.; Vasarhelyi, G. The role of water balance modeling in the transition to low impact development. Water Qual. Res. J. Can. 2004, 39, 331–342. Available online: https://www.cawq.ca/journal/temp/article/121.pdf (accessed on 16 November 2019). [CrossRef] [Green Version]
- Winston, R.J.; Dorsey, J.D.; Hunt, W.F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Sci. Total Environ. 2016, 553, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yoon, K.S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yao, H.; Tang, Y.; Yu, S.L.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manag. 2015, 149, 65–76. [Google Scholar] [CrossRef]
- Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Chaffin, B.C.; Shuster, W.D.; Garmestani, A.S.; Furio, B.; Albro, S.L.; Gardiner, M.; Spring, M.; Odom-Green, O. A tale of two rain gardens: Barriers and bridges to adaptive management of urban stormwater in Cleveland, Ohio. J. Environ. Manag. 2016, 183, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions—An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar] [CrossRef]
- Yao, L.; Chen, L.; Wei, W.; Sun, R. Potential reduction in urban runoff by green spaces in Beijing: A scenario analysis. Urban For. Urban Green. 2015, 14, 300–308. [Google Scholar] [CrossRef]
- Dreelin, E.A.; Fowler, L.; Ronald Carroll, C. A test of porous pavement effectiveness on clay soils during natural storm events. Water Res. 2006, 40, 799–805. [Google Scholar] [CrossRef]
- Alfredo, K.; Montalto, F.; Goldstein, A. Observed and modeled performances of prototype green roof test plots subjected to simulated low-and high-intensity precipitations in a laboratory experiment. J. Hydrol. Eng. 2009, 15, 444–457. [Google Scholar] [CrossRef]
- Feng, Y.; Burian, S.; Pomeroy, C. Potential of green infrastructure to restore predevelopment water budget of a semi-arid urban catchment. J. Hydrol. 2016, 542, 744–755. [Google Scholar] [CrossRef]
- Schubert, J.E.; Burns, M.J.; Fletcher, T.D.; Sanders, B.F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards. Adv. Water Resour. 2017, 108, 55–68. [Google Scholar] [CrossRef]
- Rodríguez-Sinobas, L.; Zubelzu, S.; Perales-Momparler, S.; Canogar, S. Techniques and criteria for sustainable urban stormwater management. The case study of Valdebebas (Madrid, Spain). J. Clean. Prod. 2018, 172, 402–416. [Google Scholar] [CrossRef]
- Guizani, M. Storm Water Harvesting in Saudi Arabia: A Multipurpose Water Management Alternative. Water Resour. Manag. 2016, 30, 1819–1833. [Google Scholar] [CrossRef]
- Newburn, D.A.; Alberini, A. Household response to environmental incentives for rain garden adoption. Water Resour. Res. 2016, 1345–1357. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Statistical Geography and Informatics (INEGI). Geographic Synthesis of the State of Hidalgo; National Institute of Statistical Geography and Informatics: Hidalgo, Mexico, 1992; 17p, ISBN 968-892-711-2. Available online: https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/2104/702825220945/702825220945_1.pdf (accessed on 3 April 2020). (In Spanish)
- National Water Commission (CONAGUA). National Climatological Database (Sistema CLICOM); CONAGUA: Jalisco, Mexico, 2020; Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 23 April 2020). (In Spanish)
- Google Earth Pro (7.0 beta). Location of the study area, Mineral de la Reforma, Hidalgo, Mexico. 20º04′30″ N, 98º43′30″ W. Eye alt 8.61 km. INEGI, DigitalGlobe 2020. Available online: https://earth.google.com/web/search/Mineral+de+la+Reforma,+Hgo./@20.08259671,-98.72506043,2427.3336312a,3573.127323d,35y,-0h,0t,0r/data=CigiJgokCfYvmUsLZyRAEfMlFiXLpzDAGdOE8fF0LRPAIbbZ8kFguFDA (accessed on 8 April 2020).
- Location of the Study Area: 20°04′30″ N, 98°43′30″ W. Data layers: Topography, land use, drainage basin. May 13, 2020. Using: Global Mapper Ink. v20.1, Blue Marble Geographics.
- Location of the Study Area: 20°04′30″ N, 98°43′30″ W. Data layers: Topography. May 15, 2020. Using: ARCHICAD Graphisoft 24.0.
- Schneider, S. Capture and rainwater storage. In Technical Options for Family Farming in Latin America and the Caribbean; Food and Agriculture Organization of the United Nations (FAO): Santiago, Chile, 2016; 270p, Available online: http://www.fao.org/3/a-i5534e.pdf (accessed on 11 June 2020).
- Kite, G.W. Frequency and Risk Analyze in Hydrology; Water Resources Publications LLC: Highlands Ranch, CO, USA, 2019; 266p, ISBN 978-1-887201-95-7. [Google Scholar]
- National Water Commission (CONAGUA). Technical Guidelines: Collection System for Rainwater for the Supply of Drinking Water at the Household Level; CONAGUA: Mexico City, Mexico, 2016; 42p, Available online: https://www.gob.mx/cms/uploads/attachment/file/152776/LINEAMIENTOS_CAPTACI_N_PLUVIAL.pdf (accessed on 2 February 2020). (In Spanish)
- Semaan, M.; Day, S.D.; Garvin, M.; Ramakrishnan, N.; Pearce, A. Optimal sizing of rainwater harvesting systems for domestic water usages: A systematic literature review. Resour. Conserv. Recycl. 2020, 6, 100033. [Google Scholar] [CrossRef]
- Hayes, D.C.; Young, R.L. Comparison of Peak Discharge and Runoff Characteristic Estimates from the Rational Method to Field Observations for Small Basins in Central Virginia; Scientific Investigations Report 2005-5254; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2006. Available online: https://pubs.usgs.gov/sir/2005/5254/sir05_5254.pdf (accessed on 3 April 2020).
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw Hill: New York, NY, USA, 1988. [Google Scholar]
- Natural Resources Conservation Service (NRCS). Part 630 Hydrology National Engineering Handbook; Chapter 16, Hydrographs; Natural Resources Conservation Service: Washington, DC, USA, 2007. Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17755.wba (accessed on 9 April 2020).
- Soil Conservation Service (SCS). Urban Hydrology for Small Watersheds; Technical Release 55; Soil Conservation Service: Washington, DC, USA, 1986. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf (accessed on 13 May 2020).
- Témez, J.R. Facets of the hydrometeorological and statistical calculation of maximum flows. Public Works Mag. 2003, 3, 47–51. [Google Scholar]
- National Water Commission (CONAGUA). Hydrology Instructions to Determine the Ordinary Maximum Peak Discharge Associated with the Delimitation of the Federal Zone; CONAGUA: Mexico City, Mexico, 1987; 140p, Available online: http://dimsec.com/wp-content/uploads/2017/09/INSTRUCTIVO-HIDROLOG%C3%8DA.pdf (accessed on 1 June 2020). (In Spanish)
- United States Department of Agriculture (USDA). Chapter 15, Time of Concentration. Part 630 Hydrology, 2010, National Engineering Handbook. Available online: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=27002.wba (accessed on 3 July 2020).
- Pérez-Sesma, J.A.; Maderey-Rascón, L.E.; Pereyra-Díaz, D.; Filobello-Niño, U.A. Estimation of flood design using the instantaneous hydrograph unit: A case study of the Tecolutla river watershed, Mexico. Geogr. Res. 2012, 79, 20–38. Available online: http://www.scielo.org.mx/pdf/igeo/n79/n79a3.pdf (accessed on 11 February 2020).
- Gericke, O.J.; Smithers, J.C. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrol. Sci. J. 2014, 59, 1935–1971. [Google Scholar] [CrossRef]
- Eaton, T.T. Approach and case-study of green infrastructure screening analysis for urban stormwater control. J. Environ. Manag. 2018, 209, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Woznicki, S.A.; Hondula, K.L.; Jarnagin, S.T. Effectiveness of landscape-based green infrastructure for stormwater management in suburban catchments. Hydrol. Process. 2018, 32, 2346–2361. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Liu, M.; Hu, Y.; Zhou, R.; Wu, W.; Huang, N. Evaluating the runoff storage supply-demand structure of green infrastructure for urban flood management. J. Clean. Prod. 2021, 280, 124420. [Google Scholar] [CrossRef]
- Alim, M.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Feasibility analysis of a small-scale rainwater system for drinking water production at Werrington, New South Wales, Australia. J. Clean Prod. 2020, 270, 122437. [Google Scholar] [CrossRef]
- Chapa, F.; Krauss, M.; Hack, J. A multi-parameter method to quantify the potential of roof rainwater harvesting at regional levels in areas with limited rainfall data. Resour. Conserv. Recycl. 2020, 161, 104959. [Google Scholar] [CrossRef]
- Escalante-Sandoval, C.; Reyes-Chávez, L. Regional estimation of design peak discharge. J. Hydraul. Eng. Mex. 2000, XV, 47–61. [Google Scholar]
- Akter, A.; Tanim, A.H.; Islam, M.K. Possibilities of urban flood reduction through distributed-scale rainwater harvesting. Water Sci. Eng. 2020, 13, 95–105. [Google Scholar] [CrossRef]
- Rashidi-Mehrabadi, M.H.; Saghafian, B.; Haghighi-Fashi, F. Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resour. Conserv Recy. 2013, 73, 86–93. Available online: http://dx.doi.org/10.1016/j.resconrec.2013.01.015 (accessed on 30 November 2020). [CrossRef]
- Palla, A.; Gnecco, I.; La, B.P. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 2017, 191, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Kisakye, V.; Van der Bruggen, B. Effects of climate change on water savings and water security from rainwater harvesting systems. Resour. Conserv. Recycl. 2018, 138, 49–63. [Google Scholar] [CrossRef]
- Shevade, L.J.; Lo, L.J.; Montalto, F.A. Numerical 3D Model Development and Validation of Curb-Cut Inlet for Efficiency Prediction. Water 2020, 12, 1791. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Chapman, C.; Horner, R.R. Performance assessment of a street-drainage bioretention system. Water Environ. Res. 2010, 82, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Schall, J.D.; Morris, J.L.; Doherty, C.L.; Stein, S.M.; Warner, J.C. Urban Drainage Design Manual: Hydraulic Engineering Circular No. 22, 3rd ed.; Federal Highway Administration: Washington, DC, USA, 2016. Available online: https://www.fhwa.dot.gov/engineering/hydraulics/pubs/10009/10009.pdf (accessed on 1 June 2020).
- Mahaut, V.; Andrieu, H. Relative influence of urban-development strategies and water management on mixed (separated and combined) sewer overflows in the context of climate change and population growth: A case study in Nantes. Sustain. Cities Soc. 2019, 44, 171–182. [Google Scholar] [CrossRef]
- Zúñiga-Terán, A.A.; Staddon, C.; de Vito, L.; Gerlak, A.K.; Ward, S.; Schoeman, Y.; Hart, A.; Booth, G. Challenges of mainstreaming green infrastructure in built environment professions. J. Environ. Plan. Manag. 2020, 63, 710–732. [Google Scholar] [CrossRef]
- Barros-Ramalho-Alves, P.; Alexandra Alves Rufino, I.; Hermínio Cunha Feitosa, P.; Djordjević, S.; Javadi, A. Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
Input Parameter | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Watershed area (km2) | 1.43 | 1.43 | 1.43 |
Slope (%) | 9.5 | 9.5 | 9.5 |
Length (m) | 1414 | 1414 | 1414 |
Soil use | Grassland area (1.43 km2) | Grassland area (0.7026 km2) Dwelling (0.3105 km2) Sidewalks (0.0450 km2) Asphalt roadways (0.2860 km2) Commercial area (0.0610 km2) Ridges (0.0109 km2) Public green areas (0.0140 km2) | Grassland area (0.7026 km2) Dwelling (0.0 km2) Sidewalks (0.0450 km2) Asphalt roadways (0.2860 km2) Commercial area (0.0 km2) Ridges (0.0109 km2) Public green areas (0.0140 km2) |
Soil type | Phaeozem | Phaeozem | Sandy soil * |
Vegetation | Xerophile | Xerophile | Xerophile |
Month | Rainfall (mm) | Rainwater Harvested Volume (m3) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | StdDev | R50 | R60 | R75 | Vc50 | Vc60 | Vc75 | |
Jan | 9.10 | 14.00 | 7.10 | 4.00 | 0.00 | 0.38 | 0.21 | 0.00 |
Feb | 7.70 | 13.80 | 5.60 | 2.60 | 0.00 | 0.30 | 0.14 | 0.00 |
March | 14.10 | 21.10 | 11.00 | 6.30 | 0.00 | 0.59 | 0.34 | 0.00 |
Apr | 29.40 | 23.50 | 25.90 | 20.70 | 12.80 | 1.40 | 1.12 | 0.69 |
May | 40.40 | 28.80 | 36.10 | 29.70 | 19.80 | 1.95 | 1.61 | 1.07 |
Jun | 65.60 | 38.90 | 59.90 | 51.20 | 37.90 | 3.23 | 2.77 | 2.04 |
Jul | 59.40 | 43.70 | 53.00 | 43.30 | 28.30 | 2.86 | 2.34 | 1.53 |
Aug | 51.40 | 32.80 | 46.50 | 39.30 | 28.00 | 2.51 | 2.12 | 1.51 |
Sep | 62.20 | 43.30 | 55.80 | 46.20 | 31.40 | 3.01 | 2.50 | 1.69 |
Oct | 33.10 | 32.50 | 28.30 | 21.10 | 9.90 | 1.53 | 1.14 | 0.54 |
Nov | 10.60 | 14.10 | 8.60 | 5.40 | 0.60 | 0.46 | 0.29 | 0.03 |
Dec | 5.70 | 7.70 | 4.60 | 2.90 | 0.20 | 0.25 | 0.16 | 0.01 |
Total | 388.70 | 342.30 | 272.60 | 168.90 | 18.48 | 14.72 | 9.12 |
Tr (years) | Hp (mm) | Rt (mm) |
---|---|---|
2 | 31.70 | 12.33 |
5 | 53.00 | 20.61 |
10 | 72.60 | 28.24 |
20 | 89.90 | 34.98 |
Tr (years) |
Scenario 1 Re1 (mm) |
Scenario 2 Re2 (mm) |
Scenario 3 Re3 (mm) |
---|---|---|---|
2 | 0.00 | 0.00 | 0.00 |
5 | 0.00 | 1.03 | 0.06 |
10 | 0.15 | 3.36 | 0.99 |
20 | 0.94 | 6.23 | 2.60 |
Tr (years) |
Scenario 1 Q1 (m3/s) |
Scenario 2 Q2 (m3/s) |
Scenario 3 Q3 (m3/s) |
---|---|---|---|
2 | 0.000 | 0.001 | 0.000 |
5 | 0.000 | 1.916 | 0.113 |
10 | 0.281 | 6.241 | 1.836 |
20 | 1.743 | 11.560 | 4.824 |
Reference | Location | Average Annual Rainfall (mm) | Rainfall Distribution | Rooftop Area (m2) | RWH Volume (m3/m) | Daily Consumption (L/d/capita) | Demand Satisfied (%) | Unit Volume of RWH (m3/m2 of Interception Area) |
---|---|---|---|---|---|---|---|---|
This study | Mexico | 160–700 | May-October | 60 | 1.07–2.04 | 0.012 | ||
[6] | Portugal | 500–700 | October-April | 1180.79 | 2.88 | 0.0024 | ||
[8] | Jordan | 200–600 | October-April | 50 | 6.8 | 71.4 | 34 | 0.136 |
[9] | Iran | 316.88–386.007 | September-March | 100–300 | 1.89–4.5 | 300 | 60 | 0.0189–0.015 |
[12] | Nigeria | 400 | July-September | 343 | 0.1–1.45 | 150 | 70 | 0.00029–0.004 |
[14] | Mexico | 376.96 | May-October | 100–200 | 5.25–5.95 | 38.4 | 100 | 0.052–0.029 |
[17] | Iran | 113.7–257.3 | September-March | 40 | 1.33 | 0.033 | ||
[62] | Iran | 288 | September-March | 60–240 | 1.14–4.58 | 240 | 100 | 0.019 |
Data range | 113.7–700 | 3–7 months | 40–1180.79 | 0.1–6.8 | 38.4–300 | 34–100 | 0.00029–0.136 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigurra-Alzati, C.A.; Ortiz-Gómez, R.; Vázquez-Rodríguez, G.A.; López-León, L.D.; Lizárraga-Mendiola, L. Water Conservation and Green Infrastructure Adaptations to Reduce Water Scarcity for Residential Areas with Semi-Arid Climate: Mineral de la Reforma, Mexico. Water 2021, 13, 45. https://doi.org/10.3390/w13010045
Bigurra-Alzati CA, Ortiz-Gómez R, Vázquez-Rodríguez GA, López-León LD, Lizárraga-Mendiola L. Water Conservation and Green Infrastructure Adaptations to Reduce Water Scarcity for Residential Areas with Semi-Arid Climate: Mineral de la Reforma, Mexico. Water. 2021; 13(1):45. https://doi.org/10.3390/w13010045
Chicago/Turabian StyleBigurra-Alzati, Carlos Alfredo, Ruperto Ortiz-Gómez, Gabriela A. Vázquez-Rodríguez, Luis D. López-León, and Liliana Lizárraga-Mendiola. 2021. "Water Conservation and Green Infrastructure Adaptations to Reduce Water Scarcity for Residential Areas with Semi-Arid Climate: Mineral de la Reforma, Mexico" Water 13, no. 1: 45. https://doi.org/10.3390/w13010045
APA StyleBigurra-Alzati, C. A., Ortiz-Gómez, R., Vázquez-Rodríguez, G. A., López-León, L. D., & Lizárraga-Mendiola, L. (2021). Water Conservation and Green Infrastructure Adaptations to Reduce Water Scarcity for Residential Areas with Semi-Arid Climate: Mineral de la Reforma, Mexico. Water, 13(1), 45. https://doi.org/10.3390/w13010045