Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System
Abstract
:1. Introduction
2. Wax Lake Delta
3. Methods
3.1. Numerical Model
3.2. Model Setup
4. Results
4.1. Model Calibration and Validation
4.2. Flow and Sediment Partitioning in the Channel Networks during Flood Event
4.3. Channel Morphology
4.4. Impact of Distributary Channel Geometry in Water and Sediment Distribution
4.5. Long Term Flow and Sediment Dynamics in the Channel Networks
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.W.; Vorosmarty, C.J.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Wright, L.D. Sediment transport and deposition at river mouths: A synthesis. GSA Bull. 1977, 88, 857–868. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vorosmarty, C.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Chang. 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Day, J.W., Jr.; Pont, D.; Hensel, P.F.; Ibanez, C. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Medi-terranean: The importance of pulsing events to sustainability. Estuaries 1995, 18, 636–647. [Google Scholar] [CrossRef]
- Allison, M.A.; Meselhe, E.A. The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration. J. Hydrol. 2010, 387, 346–360. [Google Scholar] [CrossRef]
- Gaweesh, A.; Meselhe, E. Evaluation of Sediment Diversion Design Attributes and Their Impact on the Capture Efficiency. J. Hydraul. Eng. 2016, 142, 04016002. [Google Scholar] [CrossRef]
- Hanegan, K. Modeling Evolution of the Wax Lake Delta in Atchafalaya Bay, Louisiana; Delft University of Technology: Delft, The Netherlands, 2011. [Google Scholar]
- Kim, W.; Mohrig, D.; Twilley, R.; Paola, C.; Parker, G. Is It Feasible to Build New Land in the Mississippi River Delta? Eos Trans. Am. Geophys. Union 2009, 90, 373–374. [Google Scholar] [CrossRef]
- Meselhe, E.A.; Sadid, K.M.; Allison, M.A. Riverside morphological response to pulsed sediment diversions. Geomorphology 2016, 270, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Yuill, B.T.; Khadka, A.K.; Pereira, J.; Allison, M.A.; Meselhe, E.A. Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function. Geomorphology 2016, 259, 12–29. [Google Scholar] [CrossRef]
- Galloway, W. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional system. AAPG 1975, 31, 127–156. [Google Scholar]
- Orton, G.J.; Reading, H.G. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 1993, 40, 475–512. [Google Scholar] [CrossRef]
- Caldwell, R.L.; Edmonds, D.A. The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study. J. Geophys. Res. Earth Surf. 2014, 119, 961–982. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Slingerland, R.L. Significant effect of sediment cohesion on delta morphology. Nat. Geosci. 2010, 3, 105–109. [Google Scholar] [CrossRef]
- Geleynse, N.; Storms, J.E.; Walstra, D.-J.R.; Jagers, H.A.; Wang, Z.B.; Stive, M.J. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 2011, 302, 217–226. [Google Scholar] [CrossRef]
- Liang, M.; Kim, W.; Passalacqua, P. How much subsidence is enough to change the morphology of river deltas? Geophys. Res. Lett. 2016, 43, 10. [Google Scholar] [CrossRef]
- Liang, M.; Van Dyk, C.; Passalacqua, P. Quantifying the patterns and dynamics of river deltas under conditions of steady forcing and relative sea level rise. J. Geophys. Res. Earth Surf. 2016, 121, 465–496. [Google Scholar] [CrossRef]
- Coleman, J.M. Dynamic changes and processes in the Mississippi River delta. GSA Bull. 1988, 100, 999–1015. [Google Scholar] [CrossRef]
- Day, G.; Dietrich, W.E.; Rowland, J.C.; Marshall, A. The depositional web on the floodplain of the Fly River, Papua New Guinea. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.; Kettner, A.J.; Correggiari, A.; Nelson, B.W. Distributary channels and their impact on sediment dispersal. Mar. Geol. 2005, 222–223, 75–94. [Google Scholar] [CrossRef]
- Hiatt, M.; Passalacqua, P. Hydrological connectivity in river deltas: The first-order importance of channel-island exchange. Water Resour. Res. 2015, 51, 2264–2282. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, D.A.; Paola, C.; Hoyal, D.C.J.D.; Sheets, B.A. Quantitative metrics that describe river deltas and their channel networks. J. Geophys. Res. Space Phys. 2011, 116, 4. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Slingerland, R.L. Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Jerolmack, D.J.; Swenson, J.B. Scaling relationships and evolution of distributary networks on wave-influenced deltas. Geophys. Res. Lett. 2007, 34, 5. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, A.; Longjas, A.; Zaliapin, I.; Foufoula-Georgiou, E. Delta channel networks: 1. A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resour. Res. 2015, 51, 3998–4018. [Google Scholar] [CrossRef]
- Tejedor, A.; Longjas, A.; Zaliapin, I.; Foufoula-Georgiou, E. Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resour. Res. 2015, 51, 4019–4045. [Google Scholar] [CrossRef]
- Roberts, H.H.; Coleman, J.M.; Bentley, S.J.; Walker, N. An Embryonic Major Delta Lobe: A New Generation of Delta Studies in the Atchafalaya-Wax Lake Delta System. AAPG 2003, 53, 690–703. [Google Scholar]
- Roberts, H.H. Evolution of Sedimentary Architecture and Surface Morphology: Atchafalaya and Wax Lake Deltas (1973-1994): ABSTRACT. AAPG Bull. 1997, 81, 47. [Google Scholar] [CrossRef]
- Allen, Y.C.; Couvillion, B.R.; Barras, J.A. Using Multitemporal Remote Sensing Imagery and Inundation Measures to Improve Land Change Estimates in Coastal Wetlands. Chesap. Sci. 2012, 35, 190–200. [Google Scholar] [CrossRef]
- Shaw, J.B.; Estep, J.D.; Whaling, A.R.; Sanks, K.M.; Edmonds, D.A. Measuring subaqueous progradation of the Wax Lake Delta with a model of flow direction divergence. Earth Surf. Dyn. 2018, 6, 1155–1168. [Google Scholar] [CrossRef] [Green Version]
- DuMars, A.J. Distributary Mouth Bar Formation and Channel Bifurcation in the Wax Lake Delta, Atchafalaya Bay, Louisiana; Louisiana State University: Baton Rouge, LA, USA, 2002. [Google Scholar]
- Deltares. Delft3D-FLOW User Manual; Deltares: Delft, The Netherlands, 2014. [Google Scholar]
- Lesser, G.; Roelvink, J.; van Kester, J.; Stelling, G. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Unified view of sediment transport by current and waves. II: Suspended transport. J. Hydraul. Eng. 2007, 133, 668–689. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Unified view of sediment transport by current and waves. I: Initiation of motion, bed roughness, and bed-load transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef] [Green Version]
- Van Rijn, L.C. Unified view of sediment transport by currents and waves. III: Graded beds. J. Hydraul. Eng. 2007, 133, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Elias, E.; Teske, R.; Van Der Spek, A.; Lazar, M. Modelling tidal-inlet morphodynamics on medium time scales. In The Proceedings of the Coastal Sediments 2015; World Scientific: San Diego, CA, USA, 2015. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- United States. Army. Corps of Engineers, Mississippi River Commission. Atchafalaya River hydrographic survey, 1998–1999: Old River to Atchafalaya Bay including main channel and distributarie. New Orleans, La.: The District. 1999. Available online: https://www.worldcat.org/title/atchafalaya-river-hydrographic-survey-1998-1999-old-river-to-atchafalaya-bay-including-main-channel-and-distributaries/oclc/45169665 (accessed on 10 May 2021).
- Roberts, H.H.; Walker, N.; Cuningham, R.; Kemp, G.P.; Majersk, S.Y. Evolution of Sedimentary Architecture and Surface Morphology: Atchafalaya and Wax Lake Delta, Louisiana (1973–1994); Gulf Coast Association of Geological Societies Transactions XL VII: 477–484; University of Texas at Austin, University Station: Austin, TX, USA, 1997. [Google Scholar]
- Roberts, H.H.; DeLaune, R.D.; White, J.; Li, C.; Braud, D.; Weeks, E. Delta Development and Coastal Marsh Accretion During Cold Front. Passages and River Floods: Relevance to River Diversions–Final Report; Prepared for Coastal Protection and Restoration Authority; Coastal Studies Institute, Louisiana State University: Baton Rouge, LA, USA, 2016; 132p. [Google Scholar]
- U.S. Army Corps of Engineers (USACE). Atchafalaya River System, 2006 Hydrographic Survey: Old River to Atchafalaya Bay and Distributaries; U.S. Army Corps of Engineers, New Orleans District: New Orleans, LA, USA, 2006.
- Shaw, J.B.; Mohrig, D.; Whitman, S.K. The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA. J. Geophys. Res. Earth Surf. 2013, 118, 1562–1584. [Google Scholar] [CrossRef]
- Thomas, W.A.; Heath, R.E.; Stewart, J.P.; Clark, D.G. The Atchafalaya River Delta. Report 5, The Atchafalaya River Delta Quasi-Two-Dimensional Model of Delta Growth and Impacts on River Stages; Army Engineer Waterways Experiment Station, Hydraulics Lab: Vicksburg, MS, USA, 1988. [Google Scholar]
- Ranasinghe, R.; Swinkels, C.; Luijendijk, A.; Roelvink, D.; Bosboom, J.; Stive, M.; Walstra, D. Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coast. Eng. 2011, 58, 806–811. [Google Scholar] [CrossRef]
- McCorquodale, J.A.; Amini, S.; Teran, G.; Gurung, T.; Kenny, S.; Gaweesh, A.; Meselhe, E.; Pereira, J. Development and Application of a Regional 3-D Model. for the Lower Mississippi River. Report. Mississippi Hydrodynamic and Delta Management Study; Prepared for and Funded by the Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2017.
- van Rijn, L.; Walstra, D.; Grasmeijer, B.; Sutherland, J.; Pan, S.; Sierra, J. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models. Coast. Eng. 2003, 47, 295–327. [Google Scholar] [CrossRef]
- Sendrowski, A.; Sadid, K.; Meselhe, E.; Wagner, W.; Mohrig, D.; Passalacqua, P. Transfer Entropy as a Tool for Hydrodynamic Model Validation. Entropy 2018, 20, 58. [Google Scholar] [CrossRef] [Green Version]
- Foufoula-Georgiou, E. NCED 2010 Annual Report; National Center for Earth-surface Dynamics Annual Progress Reports; University of Minnesota Twin Cities: Minneapolis, MN, USA, May 2010. [Google Scholar]
- Canestrelli, A.; Spruyt, A.; Jagers, B.; Slingerland, R.; Borsboom, M. A mass-conservative staggered immersed boundary model for solving the shallow water equations on complex geometries. Int. J. Numer. Methods Fluids 2015, 81, 151–177. [Google Scholar] [CrossRef]
- Spruyt, A.; Mosselman, E.; Jagers, B. A new approach to river bank retreat and advance in 2D numerical models of fluvial morphodynamics. In Proceedings of the IAHS Symposium of River, Coastal and Estuarine Morphodynamics, Beijng, China, 6–8 September 2011. [Google Scholar]
- Meselhe, E.A.; Georgiou, I.; Allison, M.A.; McCorquodale, J.A. Numerical modeling of hydrodynamics and sediment transport in lower Mississippi at a proposed delta building diversion. J. Hydrol. 2012, 472–473, 340–354. [Google Scholar] [CrossRef]
- Miori, S.; Repetto, R.; Tubino, M. A one-dimensional model of bifurcations in gravel bed channels with erodible banks. Water Resour. Res. 2006, 42, W11413, pages 1–12. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Slingerland, R.L. Stability of delta distributary networks and their bifurcations. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Lane, E.W. Discussion of “The Importance of Fluvial Morphology in Hydraulic Engineering”. J. Hydraul. Div. 1956, 82, 1092–1095. [Google Scholar] [CrossRef]
- Wallace, J.; Stewart, L.; Hawdon, A.; Keen, R.; Karim, F.; Kemei, J. Flood water quality and marine sediment and nutrient loads from the Tully and Murray catchments in north Queensland, Australia. Mar. Freshw. Res. 2009, 60, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.M.; Kinzel, P.J.; Thanh, M.D.; Toan, D.D.; Shimizu, Y.; McDonald, R.R. Mechanics of Flow And Sediment Transport In Delta Distributary Channels. In Proceedings of the 2011 EIT International Conference on Water Resources Engineering, Phetchaburi, Thailand, 18–19 August 2011; pp. 8–14. [Google Scholar]
- Shaw, J.B.; Mohrig, D.; Wagner, R.W. Flow patterns and morphology of a prograding river delta. J. Geophys. Res. Earth Surf. 2016, 121, 372–391. [Google Scholar] [CrossRef]
- Bolla Pittaluga, M.; Repetto, R.; Tubino, M. Channel bifurcation in braided rivers: Equilibrium configurations and stability. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Edmonds, D.A. Stability of backwater-influenced river bifurcations: A study of the Mississippi-Atchafalaya system. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
Coarse Sediment | |||
---|---|---|---|
Class | D50 (mm) | Suspended Load Factor | Bed Load Factor |
Sand | 100 (80–150) * | 1.0 (0.5–2.0) | 1.0 (0.5–2.0) |
Fine Sediment | |||
Class | Settling Velocity (mm/s) | Critical Shear Stress (Pa) | Erosion Rate (km/m2/s) |
Silt | 0.1 (1.0–0.001) | 1.3 (1.0–1.5) | 1 × 10−4 (1 × 10−3–1 × 10−5) |
Clay | 0.001 (0.1–0.0001) | 1.3 (1.0–1.5) | 1 × 10−4 (1 × 10−3–1 × 10−5) |
Channels | Flow (m3/s) | Sand (M.tons/d) | Fines (M.tons/d) | SWR (Sand) | SWR (Fines) |
---|---|---|---|---|---|
Delta Apex | 3900 | 188,670 | 15,330 | ||
A | 330 | 14,670 | 380 | 0.3 | 0.97 |
B | 3570 | 176,380 | 14,480 | 1.03 | 1.02 |
1 (Mallard) | 450 | 21,050 | 570 | 0.32 | 1.02 |
2 | 1650 | 82,000 | 6290 | 0.97 | 1.03 |
3 | 700 | 33,340 | 1910 | 0.7 | 1.01 |
4 (East) | 570 | 25,480 | 710 | 0.32 | 0.98 |
5 (Gadwall) | 860 | 40,860 | 1340 | 0.39 | 1.03 |
6 (Main) | 630 | 29,340 | 760 | 0.31 | 1.02 |
7 (Gregg) | 420 | 18,860 | 290 | 0.2 | 0.99 |
8 (Pintail) | 280 | 12,570 | 190 | 0.2 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meselhe, E.; Sadid, K.; Khadka, A. Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System. Water 2021, 13, 1341. https://doi.org/10.3390/w13101341
Meselhe E, Sadid K, Khadka A. Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System. Water. 2021; 13(10):1341. https://doi.org/10.3390/w13101341
Chicago/Turabian StyleMeselhe, Ehab, Kazi Sadid, and Ashok Khadka. 2021. "Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System" Water 13, no. 10: 1341. https://doi.org/10.3390/w13101341
APA StyleMeselhe, E., Sadid, K., & Khadka, A. (2021). Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System. Water, 13(10), 1341. https://doi.org/10.3390/w13101341