An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events
Abstract
:1. Introduction
2. Study Background
2.1. Water-Related Disaster Events
2.2. Disaster Management Plan (DMP) Phases
2.3. Multi-Criteria Decision Analysis (MCDA)
- The choice problem, in which MCDA is used to select the best option from a set of alternatives.
- The sorting problem, in which MCDA is used to assign a set of alternatives to predetermined categories.
- The ranking problem, in which MCDA is used to order the alternatives partially or completely.
- The description problem, in which MCDA is used to define alternatives, construct a set of criteria, and determine all or some alternatives’ performance for the criteria, considering additional information.
- Analytical hierarchy process (AHP): Formulates the decision into a hierarchy of criteria and uniquely uses pairwise comparisons provided by experts’ judgments to elicit preferences [20]. These preferences are then aggregated to provide recommendations.
- Analytic network process (ANP): Technique used to model a problem (hierarchic or a network structure) to represent the problem, as well as pairwise comparisons to establish relations within the structure [21].
- Weighted sum model (WSM): A simple method for evaluating alternatives with different criteria that are expressed in the same units [20]. The value function is established based on a simple addition of scores for each alternative with respect to each criterion, multiplied by criteria weights [23]. This method is also known as simple additive weighting (SAW).
- Weighted product model (WPM): Similar to WSM/SAW, except that multiplication is used for aggregation instead of addition [24].
- Goal programming (GP): An analytical approach devised to address decision-making problems where targets have been assigned to all the attributes and where the decision-maker (DM) is interested in minimizing the nonachievement of the corresponding goals [25].
- Elimination and choice translating reality (ELECTRE): A family of methods that utilize outranking relations to select, sort, or rank alternatives [23].
- Multi-attribute utility theory (MAUT): A methodology to incorporate risk preferences and uncertainty into multi-criteria decision support methods [26].
- Simple multi-attribute rating technique (SMART): A method very similar to WSM where all performance scores are measured/rated on a scale of 0 to 100 and then aggregated using the weighted sum approach [15].
- Preference ranking organization method for enrichment of evaluations (PROMETHEE): A family of methods that utilize outranking relations for identifying: partial ranking (I), complete ranking (II), interval ranking (III), complete or partial ranking (IV) for a continuous solution, segmentation constraints problems (V) and human brain representation (VI) [27].
- Technique for order preferences by similarity to ideal solutions (TOPSIS): Used to identify an alternative that is closest to an ideal solution and farthest from a negative ideal solution. The distances are usually measured in terms of Euclidean distance [23], although other distances are also possible.
- Simulated uncertainty range evaluations (SURE): Allows the decision-maker to provide minimum, maximum, and most likely values for each alternative with respect to each criterion. The WSM method and simulations are used to calculate distributions that represent the strength and uncertainty of each alternative [28].
3. Methodology
3.1. Identification of the Key Research Question
3.2. Identification of Relevant Articles
3.3. Selection of the Relevant Articles: Inclusion and Exclusion Criteria
3.4. Reporting and Summarizing the Results
4. Findings
4.1. Trends of Articles Based on 10 Keywords from 2000 to 2020
4.2. Trends of Articles Based on WRD and DMP
4.3. MCDA Technique for WRD Events
4.4. MCDA Application Based on DMP
4.5. Application of MCDA Mixed-Method Techniques
4.6. Criteria Selection in MCDA Application
5. Discussion and Research Opportunities
5.1. Research Opportunities
5.1.1. Using Novel MCDA Techniques
5.1.2. Considering More Criteria
5.1.3. Considering Other DMP Phases
5.1.4. Investigating Drought Events
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuwajima, J.I.; Fan, F.M.; Schwanenberg, D.; Dos Reis, A.A.; Niemann, A.; Mauad, F.F. Climate change, water-related disasters, flood control and rainfall forecasting: A case study of the São Francisco River, Brazil. Geol. Soc. 2019, 488, 259–276. [Google Scholar] [CrossRef]
- WWAP. The United Nations World Water Development Report 2018: Nature-Based Solutions; UNESCO: Paris, France, 2018. [Google Scholar]
- Cissé, G. Water-related disaster management and adaptation to climate change: Bridges and challenges? Water Int. 2013, 38, 11–16. [Google Scholar] [CrossRef]
- CRED. Emergency Events Database (EM-DAT). Available online: https://www.emdat.be/classification (accessed on 7 January 2020).
- Giupponi, C.; Mojtahed, V.; Gain, A.K.; Biscaro, C.; Balbi, S. Integrated Risk Assessment of Water-Related Disasters. In Hydro-Meteorological Hazards, Risks and Disasters; Shroder, J.F., Paron, P., Baldassarre, G.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 6; pp. 163–200. [Google Scholar] [CrossRef]
- Asian Development Bank. Water-Related Disasters and Disaster Risk Management in the People’s Republic of China; Asian Development Bank: Mandaluyong, Philippines, 2015. [Google Scholar]
- Birkmann, J.; Garschagen, M.; Van Tuan, V.; Binh, N.T. Vulnerability, Coping and Adaptation to Water Related Hazards in the Vietnamese Mekong Delta. In The Mekong Delta System; Springer: Berlin/Heidelberg, Germany, 2012; pp. 245–289. [Google Scholar]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- UNDRR. Structural and Non-Structural Measures. Available online: https://www.undrr.org/terminology/structural-and-non-structural-measures (accessed on 15 August 2020).
- Klonner, C.; Marx, S.; Usón, T.; Porto de Albuquerque, J.; Höfle, B. Volunteered geographic information in natural hazard analysis: A systematic literature review of current approaches with a focus on preparedness and mitigation. Int. J. Geo. Inf. 2016, 5, 103. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Vasilescu, L.G.; Khan, A. Disaster management cycle—A theoretical approach. J. Manag. Mark. 2008, 6, 43–50. [Google Scholar]
- Yu, M.; Yang, C.; Li, Y. Big Data in Natural Disaster Management: A Review. Geoscience 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.N. Multicriterion Analysis in Engineering and Management; PHI Learning: New Delhi, India, 2010. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Mohammadinia, L.; Ardalan, A.; Khorasani-Zavareh, D.; Ebadi, A.; Malek-Afzali, H.; Fazel, M. The Resilient Child Indicators in Natural Disasters: A Systematic Review Protocol. Health Emergencies Disasters Q. 2017, 2, 95–100. [Google Scholar] [CrossRef]
- Doocy, S.; Daniels, A.; Packer, C.; Dick, A.; Kirsch, T.D. The Human Impact of Earthquakes: A Historical Review of Events 1980–2009 and Systematic Literature Review. PLoS Curr. 2013, 5, 5. [Google Scholar] [CrossRef]
- Ochi, S.; Hodgson, S.; Landeg, O.; Mayner, L.; Murray, V. Disaster-Driven Evacuation and Medication Loss: A Systematic Literature Review. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Doocy, S.; Daniels, A.; Murray, S.; Kirsch, T.D. The Human Impact of Floods: A Historical Review of Events 1980–2009 and Systematic Literature Review. PLoS Curr. 2013, 5, 5. [Google Scholar] [CrossRef]
- Aruldoss, M.; Lakshmi, T.M.; Venkatesan, V.P. A survey on multi criteria decision making methods and its applications. Am. J. Inf. Syst. 2013, 1, 31–43. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Allen, R.; Thanassoulis, E. Improving envelopment in data envelopment analysis. Eur. J. Oper. Res. 2004, 154, 363–379. [Google Scholar] [CrossRef]
- Qin, X.; Huang, G.; Chakma, A.; Nie, X.; Lin, Q. A MCDM-based expert system for climate-change impact assessment and adaptation planning—A case study for the Georgia Basin, Canada. Expert Syst. Appl. 2008, 34, 2164–2179. [Google Scholar] [CrossRef]
- Budiharjo; Windarto, A.P.; Muhammad, A. Comparison of weighted sum model and multi attribute decision making weighted product methods in selecting the best elementary school in Indonesia. Int. J. Softw. Eng. Appl. 2017, 11, 69–90. [Google Scholar]
- Romero, C. A general structure of achievement function for a goal programming model. Eur. J. Oper. Res. 2004, 153, 675–686. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar] [CrossRef]
- Behzadian, M.; Kazemzadeh, R.; Albadvi, A.; Aghdasi, M. PROMETHEE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2010, 200, 198–215. [Google Scholar] [CrossRef]
- Hodgett, R.E.; Siraj, S. SURE: A method for decision-making under uncertainty. Expert Syst. Appl. 2019, 115, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Konidari, P.; Mavrakis, D. A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy 2007, 35, 6235–6257. [Google Scholar] [CrossRef]
- Savage, S. The Flaw of Averages. Available online: https://hbr.org/2002/11/the-flaw-of-averages# (accessed on 21 April 2021).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Hou, Z. Multicriterion Decision Making for Flood Control Operations: Theory and Applications. J. Am. Water Resour. Assoc. 2004, 40, 67–76. [Google Scholar] [CrossRef]
- Levy, J.K. Multiple criteria decision making and decision support systems for flood risk management. Stoch. Environ. Res. Risk Assess. 2005, 19, 438–447. [Google Scholar] [CrossRef]
- Lee, G.; Choi, J.; Jun, K.S. MCDM Approach for Identifying Urban Flood Vulnerability under Social Environment and Climate Change. J. Coast. Res. 2017, 79, 209–213. [Google Scholar] [CrossRef]
- Naubi, I.; Zardari, N.H.; Shirazi, S.M.; Roslan, N.A.; Yusop, Z.; Haniffah, M. Ranking of Skudai River Sub-Watersheds from Sustainability Indices—Application of Promethee Method. Int. J. GEOMATE 2017, 12, 124–131. [Google Scholar] [CrossRef]
- Karamouz, M.; Taheri, M.; Mohammadi, K.; Heydari, Z.; Farzaneh, H. A New Perspective on BMPs’ Application for Coastal Flood Preparedness. In Proceedings of the World Environmental and Water Resources Congress 2018, Minneapolis, MN, USA, 3–7 June 2018; ASCE: New York, NY, USA, 2018; pp. 171–180. [Google Scholar]
- Yang, C.-L.; Shieh, M.-C.; Huang, C.-Y.; Tung, C.-P. A Derivation of Factors Influencing the Successful Integration of Corporate Volunteers into Public Flood Disaster Inquiry and Notification Systems. Sustainability 2018, 10, 1973. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Taheri, M.; Khalili, P.; Chen, X. Building Infrastructure Resilience in Coastal Flood Risk Management. J. Water Resour. Plan. Manag. 2019, 145, 04019004. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, B.; Han, K.-Y. Application of Fuzzy TOPSIS to Flood Hazard Mapping for Levee Failure. Water 2019, 11, 592. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wu, Z.; Liang, Q. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Nat. Hazards 2019, 97, 455–475. [Google Scholar] [CrossRef]
- Abdullah, L.; Goh, C.; Zamri, N.; Othman, M. Application of interval valued intuitionistic fuzzy TOPSIS for flood management. J. Intell. Fuzzy Syst. 2020, 38, 873–881. [Google Scholar] [CrossRef]
- Akay, H.; Koçyiğit, M.B. Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Soft Comput. 2020, 24, 14251–14263. [Google Scholar] [CrossRef]
- Chandrawati, T.B.; Ratna, A.A.P.; Sari, R.F. Path Selection using Fuzzy Weight Aggregated Sum Product Assessment. Int. J. Comput. Commun. Control. 2020, 15. [Google Scholar] [CrossRef]
- Ghaleno, M.R.D.; Meshram, S.G.; Alvandi, E. Pragmatic approach for prioritization of flood and sedimentation hazard potential of watersheds. Soft Comput. 2020, 24, 1–14. [Google Scholar] [CrossRef]
- Hadipour, V.; Vafaie, F.; Kerle, N. An indicator-based approach to assess social vulnerability of coastal areas to sea-level rise and flooding: A case study of Bandar Abbas city, Iran. Ocean Coast. Manag. 2020, 188, 105077. [Google Scholar] [CrossRef]
- Karamouz, M.; Farzaneh, H. Margin of Safety Based Flood Reliability Evaluation of Wastewater Treatment Plants: Part 2—Quantification of Reliability Attributes. Water Resour. Manag. 2020, 34, 2043–2059. [Google Scholar] [CrossRef]
- Karamouz, M.; Hojjat-Ansari, A. Uncertainty based budget allocation of wastewater infrastructures’ flood resiliency considering interdependencies. J. Hydroinformatics 2020, 22, 768–792. [Google Scholar] [CrossRef]
- Laks, I.; Walczak, Z. Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland). Sustainability 2020, 12, 8056. [Google Scholar] [CrossRef]
- Mishra, D.; Satapathy, S. MCDM Approach for Mitigation of Flooding Risks in Odisha (India) Based on Information Retrieval. Int. J. Cogn. Informatics Nat. Intell. 2020, 14, 77–91. [Google Scholar] [CrossRef]
- Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative analysis of Multi-Criteria Decision-Making methods for flood disaster risk in the Yangtze River Delta. Int. J. Disaster Risk Reduct. 2020, 51, 101768. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.-L. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Nat. Hazards 2020, 104, 2277–2306. [Google Scholar] [CrossRef]
- Vignesh, K.S.; Anandakumar, I.; Ranjan, R.; Borah, D. Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Model. Earth Syst. Environ. 2021, 7, 767–781. [Google Scholar] [CrossRef]
- Ozturk, D.; Batuk, F. Implementation of GIS-based multicriteria decision analysis with VB in ArcGIS. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 1023–1042. [Google Scholar] [CrossRef]
- Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A. KULTURisk regional risk assessment methodology for water-related natural hazards—Part 2: Application to the Zurich case study. Hydrol. Earth Syst. Sci. 2015, 19, 1561–1576. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, P.; Mourato, S.; Moreira, M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia (Portugal). Geomat. Nat. Hazards Risk 2015, 7, 1367–1389. [Google Scholar] [CrossRef] [Green Version]
- Kansal, M.L.; Osheen; Tyagi, A. Hotspot Identification for Urban Flooding in a Satellite Town of National Capital Region of India. In Proceedings of the World Environmental and Water Resources Congress 2019, Pittsburgh, PA, USA, 19–23 May 2019; ASCE: New York, NY, USA, 2019; pp. 12–24. [Google Scholar]
- Abdelkarim, A.; Al-Alola, S.S.; Alogayell, H.M.; Mohamed, S.A.; Alkadi, I.I.; Ismail, I.Y. Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process to Assess Flood Hazard on the Al-Shamal Train Pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia. Water 2020, 12, 1702. [Google Scholar] [CrossRef]
- Abdrabo, K.; Kantoush, S.; Saber, M.; Sumi, T.; Habiba, O.; Elleithy, D.; Elboshy, B. Integrated Methodology for Urban Flood Risk Mapping at the Microscale in Ungauged Regions: A Case Study of Hurghada, Egypt. Remote Sens. 2020, 12, 3548. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Mogheir, Y.K. Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine). Arab. J. Geosci. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Daksiya, V.; Mandapaka, P.V.; Lo, E.Y.M. Effect of climate change and urbanisation on flood protection decision-making. J. Flood Risk Manag. 2021, 14. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Olorunfemi, I.E.; Akinluyi, F.O.; Adeyemi, M.A.; Ajayi, J.A. Enhanced flood hazard modelling using hydraulic, analytical hierarchical process and height above nearest drainage models in Ogunpa river basin, Ibadan, Southwestern Nigeria. Model. Earth Syst. Environ. 2021, 7, 967–981. [Google Scholar] [CrossRef]
- Morea, H.; Samanta, S. Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the Kemp-Welch Catchment, Central Province, Papua New Guinea. Appl. Geomat. 2020, 12, 427–440. [Google Scholar] [CrossRef]
- Nachappa, T.G.; Piralilou, S.T.; Gholamnia, K.; Ghorbanzadeh, O.; Rahmati, O.; Blaschke, T. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 2020, 590, 125275. [Google Scholar] [CrossRef]
- Stavropoulos, S.; Zaimes, G.N.; Filippidis, E.; Diaconu, D.C.; Emmanouloudis, D. Mitigating Flash Floods with the Use of New Technologies: A Μulti-Criteria Decision Analysis to Map Flood Susceptibility for Zakynthos Island, Greece. J. Urban Reg. Anal. 2020, 12, 233–248. [Google Scholar] [CrossRef]
- Ziarh, G.F.; Asaduzzaman; Dewan, A.; Nashwan, M.S.; Shahid, S. Integration of catastrophe and entropy theories for flood risk mapping in peninsular Malaysia. J. Flood Risk Manag. 2021, 14. [Google Scholar] [CrossRef]
- Jeihouni, M.; Toomanian, A.; Alavipanah, S.K.; Shahabi, M.; Bazdar, S. An application of MC-SDSS for water supply management during a drought crisis. Environ. Monit. Assess. 2015, 187, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Karamouz, M.; Zeynolabedin, A.; Olyaei, M.A. Regional Drought Resiliency and Vulnerability. J. Hydrol. Eng. 2016, 21, 05016028. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Annapoorani, V.; Kang, D.; Ramya, L. Sustainable Assessment for Selecting the Best Alternative of Reclaimed Water Use Under Hesitant Fuzzy Multi-Criteria Decision Making. IEEE Access 2019, 7, 137217–137231. [Google Scholar] [CrossRef]
- Kolvir, H.R.; Madadi, A.; SafarianZengir, V.; Sobhani, B. Monitoring and analysis of the effects of atmospheric temperature and heat extreme of the environment on human health in Central Iran, located in southwest Asia. Air Qual. Atmos. Health 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Rossi, G.; Cancelliere, A.; Giuliano, G. Case Study: Multicriteria Assessment of Drought Mitigation Measures. J. Water Resour. Plan. Manag. 2005, 131, 449–457. [Google Scholar] [CrossRef]
- Mondlane, A.; Hansson, K.; Popov, O. ICT for Flood Risk Management Strategies a GIS-based MCDA (M) Approach. In Proceedings of the 2013 IST-Africa Conference & Exhibition, Nairobi, Kenya, 29–31 May 2013. [Google Scholar]
- Xenarios, S.; Polatidis, H. Alleviating climate change impacts in rural Bangladesh: A PROMETHEE outranking-based approach for prioritizing agricultural interventions. Environ. Dev. Sustain. 2014, 17, 963–985. [Google Scholar] [CrossRef]
- Babaei, H.; Araghinejad, S.; Hoorfar, A. Developing a new method for spatial assessment of drought vulnerability (case study: Zayandeh-Rood river basin in Iran). Water Environ. J. 2012, 27, 50–57. [Google Scholar] [CrossRef]
- Rousta, B.A.; Araghinejad, S. Development of a Multi Criteria Decision Making Tool for a Water Resources Decision Support System. Water Resour. Manag. 2015, 29, 5713–5727. [Google Scholar] [CrossRef]
- Ozcelik, G.; Unver, M.; Temel Gencer, C. Evaluation of the Global Warming Impacts Using a Hybrid Method Based on Fuzzy Techniques: A Case Study in Turkey. Gazi U. J. Sci. 2016, 29, 883–894. [Google Scholar]
- Amineh, Z.B.A.; Hashemian, S.J.A.-D.; Magholi, A. Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR). J. Hydrol. 2017, 551, 577–595. [Google Scholar] [CrossRef]
- Boultif, M.; Benmessaoud, H.; Meriem, B.; Hassen, B. Using climate-soil-socioeconomic parameters for a drought vulnerability assessment in a semi-arid region: Application at the region of El Hodna, (M’sila, Algeria). Geogr. Pannonica 2017, 21, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Verma, M.K. Application of Analytic Hierarchy Process in Water Resources Planning: A GIS Based Approach in the Identification of Suitable Site for Water Storage. Water Resour. Manag. 2018, 32, 5093–5114. [Google Scholar] [CrossRef]
- Andersen, L.M.; Sugg, M.M. Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. Disaster Risk Reduct. 2019, 39, 101123. [Google Scholar] [CrossRef]
- Roy, S.; Hazra, S.; Chanda, A.; Das, S. Assessment of groundwater potential zones using multi-criteria decision-making technique: A micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustain. Water Resour. Manag. 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Karamouz, M.; Zeynolabedin, A.; Olyaei, M.A. Mapping Regional Drought Vulnerability: A Case Study. In Proceedings of the International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 23–25 November 2015; pp. 369–377. [Google Scholar]
- Kumar, V.; Del Vasto-Terrientes, L.; Valls, A.; Schuhmacher, M. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method. Sci. Total. Environ. 2016, 540, 344–357. [Google Scholar] [CrossRef]
- Aher, S.; Shinde, S.; Guha, S.; Majumder, M. Identification of drought in Dhalai river watershed using MCDM and ANN models. J. Earth Syst. Sci. 2017, 126, 21. [Google Scholar] [CrossRef]
- Pandey, V.; Srivastava, P.K. Integration of Microwave and Optical/Infrared Derived Datasets for a Drought Hazard Inventory in a Sub-Tropical Region of India. Remote Sens. 2019, 11, 439. [Google Scholar] [CrossRef] [Green Version]
- Rajput, P.; Sinha, M.K. Geospatial evaluation of drought resilience in sub-basins of Mahanadi river in India. Water Supply 2020, 20, 2826–2844. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Akter, T. Participatory floodplain management in the Red River Basin, Canada. Annu. Rev. Control. 2006, 30, 183–192. [Google Scholar] [CrossRef]
- Levy, J.K.; Hartmann, J.; Li, K.W.; An, Y.; Asgary, A. Multi-Criteria Decision Support Systems for Flood Hazard Mitigation and Emergency Response in Urban Watersheds. J. Am. Water Resour. Assoc. 2007, 43, 346–358. [Google Scholar] [CrossRef]
- Chung, E.-S.; Lee, K.S. Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea. Water Resour. Manag. 2009, 23, 2395–2416. [Google Scholar] [CrossRef]
- Jun, K.-S.; Chung, E.-S.; Kim, Y.-G.; Kim, Y. A fuzzy multi-criteria approach to flood risk vulnerability in South Korea by considering climate change impacts. Expert Syst. Appl. 2013, 40, 1003–1013. [Google Scholar] [CrossRef]
- Madhuri, B.; Aniruddha, G.; Rahul, R. Identification and classification of flood prone areas using AHP, GIS and GPS. Disaster Adv. 2013, 6, 120–131. [Google Scholar]
- Lee, G.; Jun, K.S.; Chung, E.-S. Robust spatial flood vulnerability assessment for Han River using fuzzy TOPSIS with α-cut level set. Expert Syst. Appl. 2014, 41, 644–654. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.-S. Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method. Nat. Hazards Earth Syst. Sci. 2015, 15, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Sabzi, H.Z.; King, J.P. Numerical Comparison of Multi-Criteria Decision-Making Techniques: A Simulation of Flood Management Multi-Criteria Systems. In Proceedings of the 2015 World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 359–373. [Google Scholar]
- Ahmadisharaf, E.; Tajrishy, M.; Alamdari, N. Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making. J. Environ. Plan. Manag. 2016, 59, 1397–1417. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Zeyaeyan, S.; Fattahi, E.; Ranjbar, A.; Vazifedoust, M. Classification of Rainfall Warnings Based on the TOPSIS Method. Climate 2017, 5, 33. [Google Scholar] [CrossRef]
- Birgani, Y.T.; Yazdandoost, F. An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique. Water Resour. Manag. 2018, 32, 2817–2835. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Xu, K.; Lian, J.; Ma, C.; Bin, L. Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecol. Indic. 2018, 89, 269–280. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Goharian, E. Comparing Machine Learning and Decision Making Approaches to Forecast Long Lead Monthly Rainfall: The City of Vancouver, Canada. Hydrology 2018, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Afifi, Z.; Chu, H.-J.; Kuo, Y.-L.; Hsu, Y.-C.; Wong, H.-K.; Ali, M.Z. Residential Flood Loss Assessment and Risk Mapping from High-Resolution Simulation. Water 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci. Total. Environ. 2019, 660, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Azareh, A.; Sardooi, E.R.; Choubin, B.; Barkhori, S.; Shahdadi, A.; Adamowski, J.; Shamshirband, S. Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int. 2019, 1–21. [Google Scholar] [CrossRef]
- Kanani-Sadat, Y.; Arabsheibani, R.; Karimipour, F.; Nasseri, M. A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J. Hydrol. 2019, 572, 17–31. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Abu El-Magd, S.A.; Amer, R.A.; Embaby, A. Multi-criteria decision-making for the analysis of flash floods: A case study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J. Afr. Earth Sci. 2020, 162, 103709. [Google Scholar] [CrossRef]
- Ali, S.A.; Parvin, F.; Pham, Q.B.; Vojtek, M.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Nguyen, H.Q.; Ahmad, A.; Ghorbani, M.A. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: A case of Topla basin, Slovakia. Ecol. Indic. 2020, 117, 106620. [Google Scholar] [CrossRef]
- Bouamrane, A.; Derdous, O.; Dahri, N.; Tachi, S.-E.; Boutebba, K.; Bouziane, M.T. A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria). Int. J. River Basin Manag. 2020, 1–11. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2019, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Kovačević, M.S.; Librić, L.; Ivoš, G.; Cerić, A. Application of Reliability Analysis for Risk Ranking in a Levee Reconstruction Project. Sustainability 2020, 12, 1404. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Sinha, R. Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Sekovski, I.; Del Río, L.; Armaroli, C. Development of a coastal vulnerability index using analytical hierarchy process and application to Ravenna province (Italy). Ocean Coast. Manag. 2020, 183, 104982. [Google Scholar] [CrossRef]
- Rahman, R.; Saha, S.K. Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchy process (AHP) in optimal cropping pattern planning for a flood prone area. J. Spat. Sci. 2008, 53, 161–177. [Google Scholar] [CrossRef]
- Lim, K.-S.; Lee, D.-R. The spatial MCDA approach for evaluating flood damage reduction alternatives. KSCE J. Civ. Eng. 2009, 13, 359–369. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Tang, Z.; Zeng, G. A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resour. Manag. 2011, 25, 3465–3484. [Google Scholar] [CrossRef]
- Lee, G.; Jun, K.S.; Chung, E.-S. Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique. Nat. Hazards Earth Syst. Sci. 2013, 13, 1293–1312. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, S.; Roodposhti, M.S.; Abbaspour, R.A. Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ. Earth Sci. 2014, 72, 1979–1992. [Google Scholar] [CrossRef]
- Su, H.-T.; Tung, Y.-K. Multi-criteria decision making under uncertainty for flood mitigation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1657–1670. [Google Scholar] [CrossRef]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.-S. Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making. Water Resour. Manag. 2015, 29, 2543–2561. [Google Scholar] [CrossRef]
- Boulomytis, V.T.G.; Zuffo, A.C.; Gireli, T.Z. Multi-Criteria Decision Making for the Assessment of Coastal Flood Vulnerability. In Proceedings of the 2015 World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 1248–1255. [Google Scholar]
- Chen, Y.; Liu, R.; Barrett, D.; Gao, L.; Zhou, M.; Renzullo, L.; Emelyanova, I. A spatial assessment framework for evaluating flood risk under extreme climates. Sci. Total. Environ. 2015, 538, 512–523. [Google Scholar] [CrossRef]
- Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives. Water Resour. Manag. 2015, 29, 2503–2525. [Google Scholar] [CrossRef]
- Dassanayake, D.R.; Burzel, A.; Oumeraci, H. Methods for the Evaluation of Intangible Flood Losses and Their Integration in Flood Risk Analysis. Coast. Eng. J. 2015, 57, 1540007-1–1540007-35. [Google Scholar] [CrossRef]
- Giannakidou, C.; Diakoulaki, D.; Memos, C.D. Coastal Flooding as Parameters in Mukti-Criteria Analysus for Industrial Site Selection. In Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015; pp. 5026–5035. [Google Scholar]
- Kar, A.K.; Lohani, A.; Goel, N.; Roy, G. Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. J. Hydrol. Reg. Stud. 2015, 4, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Kozubik, J.; Drab, A. Multicriteria analysis method for flood risk assessment. In Proceedings of the 14th International Symposium—Water Management and Hydraulic Engineering 2015, Brno, Czech Republic, 8–10 September 2015; pp. 348–356. [Google Scholar]
- Papaioannou, G.; Vasiliades, L.; Loukas, A. Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resour. Manag. 2015, 29, 399–418. [Google Scholar] [CrossRef]
- Radmehr, A.; Araghinejad, S. Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making. Water Resour. Manag. 2015, 29, 4427–4445. [Google Scholar] [CrossRef]
- Seo, J.P.; Cho, W.; Cheong, T.S. Development of priority setting process for the small stream restoration projects using multi criteria decision analysis. J. Hydroinformatics 2014, 17, 211–225. [Google Scholar] [CrossRef]
- Walczykiewicz, T. Multi-criteria analysis for selection of activity options limiting flood risk. Water Resour. 2015, 42, 124–132. [Google Scholar] [CrossRef]
- Adamson, M.; O’Sullivan, J.; Bedri, Z. Reflecting Societal Values in Designing Flood Risk Management Strategies. In Proceedings of the 3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016. [Google Scholar]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.-S. Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives. J. Hydrol. 2016, 533, 365–378. [Google Scholar] [CrossRef]
- Azarnivand, A.; Malekian, A. Analysis of Flood Risk Management Strategies Based on a Group Decision Making Process via Interval-Valued Intuitionistic Fuzzy Numbers. Water Resour. Manag. 2016, 30, 1903–1921. [Google Scholar] [CrossRef]
- Carladous, S.; Tacnet, J.M.; Dezert, J.; Han, D.Q.; Batton-Hubert, M. Applying ER-MCDA and BF-TOPSIS to Decide on Effectiveness of Torrent Protection. In Belief Functions: Theory and Applications; Vejnarova, J., Kratochvil, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 56–65. [Google Scholar]
- Franci, F.; Bitelli, G.; Mandanici, E.; Hadjimitsis, D.; Agapiou, A. Satellite remote sensing and GIS-based multi-criteria analysis for flood hazard mapping. Nat. Hazards 2016, 83, 31–51. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2015, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Samanta, S.; Koloa, C.; Pal, D.K.; Palsamanta, B. Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA). Hydrology 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Chung, E.-S. Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: A Case Study of Flood Damage. Water Resour. Manag. 2016, 30, 4751–4771. [Google Scholar] [CrossRef]
- Sukcharoen, T.; Weng, J.N.; Charoenkalunyuta, T. GIS-Based Flood Risk Model Evaluated by Fuzzy Analytic Hierarchy Process (FAHP). In Proceedings of the SPIE Remote Sensing 2016, Edinburgh, UK, 26–29 September 2016. [Google Scholar]
- Vogel, R. Methodology and software solutions for multicriteria evaluation of floodplain retention suitability. Cartogr. Geogr. Inf. Sci. 2016, 43, 301–320. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, S.; Tang, Z. GIS-Based Multi-Criteria Analysis Method for Flood Risk Assessment Under Urbanization. In Proceedings of the 24th International Conference on Geoinformatics, Galway, Ireland, 14–20 August 2016; pp. 1–5. [Google Scholar]
- Zhu, F.; Zhong, P.-A.; Xu, B.; Wu, Y.-N.; Zhang, Y. A multi-criteria decision-making model dealing with correlation among criteria for reservoir flood control operation. J. Hydroinformatics 2015, 18, 531–543. [Google Scholar] [CrossRef]
- Daksiya, V.; Su, H.T.; Chang, Y.H.; Lo, E.Y.M. Incorporating socio-economic effects and uncertain rainfall in flood mitigation decision using MCDA. Nat. Hazards 2017, 87, 515–531. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kienberger, S. Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. J. Environ. Plan. Manag. 2017, 60, 2013–2035. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Eisenberg, D.A.; Bondank, E.N.; Chester, M.V.; Mascaro, G.; Underwood, B.S. Fail-safe and safe-to-fail adaptation: Decision-making for urban flooding under climate change. Clim. Change 2017, 145, 397–412. [Google Scholar] [CrossRef]
- Lopes, C.L.; Alves, F.L.; Dias, J.M. Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case study. Nat. Hazards 2017, 89, 1307–1325. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, S.; Tang, Z. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total. Environ. 2017, 599–600, 1034–1046. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Karamouz, M. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: Case study of New York City. Environ. Monit. Assess. 2017, 189, 567. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Sanchez, A.; Vojinovic, Z.; Kapelan, Z. Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits. Water Resour. Manag. 2018, 32, 2505–2522. [Google Scholar] [CrossRef]
- Alves, P.B.R.; Filho, H.D.M.; Tsuyuguchi, B.B.; Rufino, I.A.A.; Feitosa, P.H.C. Mapping of Flood Susceptibility in Campina Grande County—Pb: A Spatial Multicriteria Approach. Boletim Ciências Geodésicas 2018, 24, 28–43. [Google Scholar] [CrossRef]
- Andrade, C.; Rodrigues, S.; Corte-Real, J.A. Preliminary Assessment of Flood Hazard in Nabao River Basin Using an Analytical Hierarchy Process. In Proceedings of the 16th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 13–18 September 2018. [Google Scholar]
- Caldas, A.M.; Pissarra, T.C.T.; Costa, R.C.A.; Neto, F.C.R.; Zanata, M.; Parahyba, R.D.B.V.; Fernandes, L.F.S.; Pacheco, F.A.L. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, S.H.; Gan, T.Y. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J. Clean. Prod. 2018, 196, 216–229. [Google Scholar] [CrossRef]
- Mirzaei, G.; Soltani, A.; Soltani, M.; Darabi, M. An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environ. Earth Sci. 2018, 77, 581. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P. Interval-Valued Intuitionistic Fuzzy WASPAS Method: Application in Reservoir Flood Control Management Policy. Group Decis. Negot. 2018, 27, 1047–1078. [Google Scholar] [CrossRef]
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geoscience 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Yi, S.; Wang, C.; Xiao, Y. Incorporating probabilistic approach into local multi-criteria decision analysis for flood susceptibility assessment. Stoch. Environ. Res. Risk Assess. 2018, 32, 701–714. [Google Scholar] [CrossRef]
- Xiao, Y.; Yi, S.; Tang, Z. A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment. Water Resour. Manag. 2018, 32, 3317–3335. [Google Scholar] [CrossRef]
- Zhu, F.; Zhong, P.-A.; Sun, Y. Multi-criteria group decision making under uncertainty: Application in reservoir flood control operation. Environ. Model. Softw. 2018, 100, 236–251. [Google Scholar] [CrossRef]
- Cabrera, J.S.; Lee, H.S. Flood-Prone Area Assessment Using GIS-Based Multi-Criteria Analysis: A Case Study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef] [Green Version]
- De Brito, M.M.; Almoradie, A.; Evers, M. Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. Int. J. Geogr. Inf. Sci. 2019, 33, 1788–1806. [Google Scholar] [CrossRef]
- Feloni, E.; Mousadis, I.; Baltas, E. Flood vulnerability assessment using a GIS-based multi-criteria approach—The case of Attica region. J. Flood Risk Manag. 2019. [Google Scholar] [CrossRef] [Green Version]
- Hammami, S.; Zouhri, L.; Souissi, D.; Souei, A.; Zghibi, A.; Marzougui, A.; Dlala, M. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab. J. Geosci. 2019, 12, 653. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Shen, S.-L.; Zhou, A.; Yang, J. Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Space Technol. 2019, 84, 31–44. [Google Scholar] [CrossRef]
- Nigusse, A.G.; Adhanom, O.G. Flood Hazard and Flood Risk Vulnerability Mapping Using Geo-Spatial and MCDA around Adigrat, Tigray Region, Northern Ethiopia. Momona Ethiop. J. Sci. 2019, 11, 90. [Google Scholar] [CrossRef]
- Sepehri, M.; Ildoromi, A.R.; Malekinezhad, H.; Ghahramani, A.; Ekhtesasi, M.R.; Cao, C.; Kiani-Harchegani, M. Assessment of check dams’ role in flood hazard mapping in a semi-arid environment. Geomat. Nat. Hazards Risk 2019, 10, 2239–2256. [Google Scholar] [CrossRef] [Green Version]
- Sepehri, M.; Malekinezhad, H.; Hosseini, S.Z.; Ildoromi, A.R. Assessment of flood hazard mapping in urban areas using entropy weighting method: A case study in Hamadan city, Iran. Acta Geophys. 2019, 67, 1435–1449. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM—AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Toosi, A.S.; Calbimonte, G.H.; Nouri, H.; Alaghmand, S. River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. J. Hydrol. 2019, 574, 660–671. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J. Flood Susceptibility Mapping on a National Scale in Slovakia Using the Analytical Hierarchy Process. Water 2019, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, J.; Huang, K.; Dai, L.; Zha, G.; Chen, L.; Qin, H. Risk Assessment and Decision-Making Based on Mean-CVaR-Entropy for Flood Control Operation of Large Scale Reservoirs. Water 2019, 11, 649. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Bui, D.T.; Duan, H. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2018, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Yougbaré, J.W. The Ranking of Districts in Ouagadougou by the Risk of Flood and Runoff Using the PROMETHEE. Eur. J. Pure Appl. Math. 2019, 12, 1731–1743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hu, H.; Yin, D.; Kashem, S.; Li, R.; Cai, H.; Perkins, D.; Wang, S. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management. Int. J. Digit. Earth 2018, 12, 1364–1381. [Google Scholar] [CrossRef]
- Banihabib, M.E.; Chitsaz, N.; Randhir, T.O. Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans. SN Appl. Sci. 2019, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Hadipour, V.; Vafaie, F.; Deilami, K. Coastal Flooding Risk Assessment Using a GIS-Based Spatial Multi-Criteria Decision Analysis Approach. Water 2020, 12, 2379. [Google Scholar] [CrossRef]
- Hong, C.; Chang, H. Residents’ perception of flood risk and urban stream restoration using multi-criteria decision analysis. River Res. Appl. 2020, 36, 2078–2088. [Google Scholar] [CrossRef]
- Memon, N.; Patel, D.P.; Bhatt, N.; Patel, S.B. Integrated framework for flood relief package (FRP) allocation in semiarid region: A case of Rel River flood, Gujarat, India. Nat. Hazards 2020, 100, 279–311. [Google Scholar] [CrossRef] [Green Version]
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Flood | 184 | 156 | 136 | 148 | 137 | 161 | 159 | 126 | 128 | 196 | 201 |
Drought | 21 | 16 | 18 | 9 | 20 | 26 | 14 | 9 | 16 | 16 | 9 |
No. | Problem and Challenges | DMP Phase | Measure Type | Example of Activities |
---|---|---|---|---|
1 | Understanding disaster trends and patterns (past and future disasters) | Mitigation and Preparedness | Nonstructural | Research and assessment (development of inundation map and projection events) |
2 | Understanding and choosing base criteria, factors, and attributes for the DMP | Mitigation and Preparedness | Structural and Nonstructural |
|
3 | Development of indicators or index for disaster risk reduction | Mitigation | Structural and Nonstructural | Research and assessment (vulnerability, readiness, and adaptation index) |
4 | Factoring disaster risk management and setting priorities into policy development | Mitigation | Nonstructural | Research and assessment (identify, select, and rank the criteria) |
5 | Data management and integration (data collection, data accessibility, and data availability) limiting the capability and usability in supporting decision-making | Preparedness | Structural and Nonstructural |
|
MCDA Techniques | Strengths | Weaknesses |
---|---|---|
Analytic hierarchy process (AHP) [15,20,23,29] |
|
|
Analytic network process (ANP) [20] |
|
|
Data envelopment analysis (DEA) [15,20,22] |
|
|
Weighted sum model (WSM), or simple additive weighting (SAW) [15,20] |
|
|
Weighted product model (WPM) [20] |
|
|
Goal programing (GP) [15,20,26] |
|
|
Elimination and choice translating reality (ELECTRE) [15,20,23,26] |
|
|
Multi-attribute utility theory (MAUT) [15,26,29] |
|
|
Simple multi-attribute rating technique (SMART) [15,29] |
|
|
PROMETHEE [15,26,27] |
|
|
Technique for order preferences by similarity to ideal solutions (TOPSIS) [15,23] |
|
|
Simulated uncertainty range evaluations (SURE) [28] |
|
|
No. | Keyword | Keyword Code |
---|---|---|
1 | “MCDM” AND “flood” | KW1 |
2 | “MCDA” AND “flood” | KW2 |
3 | “MCDM” AND “drought” | KW3 |
4 | “MCDA” AND “drought” | KW4 |
5 | “Multi-criteria decision making” AND “drought” | KW5 |
6 | “Multi-criteria decision analysis” AND “drought” | KW6 |
7 | “MCDA” AND “natural disaster” | KW7 |
8 | “MCDM” AND “natural disaster” | KW8 |
9 | “Multi-criteria decision making” AND “flood” | KW9 |
10 | “Multi-criteria decision analysis” AND “flood” | KW10 |
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KW1 | [32] | [33] | [34,35] | [36,37] | [38,39,40] | [41,42,43,44,45,46,47,48,49,50,51,52] | |||||||||||
KW2 | [53] | [54] | [55] | [56] | [57,58,59,60,61,62,63,64,65] | ||||||||||||
KW3 | [66] | [67] | [68] | [69] | |||||||||||||
KW4 | [70] | [71] | [72] | ||||||||||||||
KW5 | [73] | [74] | [75] | [76,77] | [78] | [79] | [80] | ||||||||||
KW6 | [81] | [82] | [83] | [84] | [85] | ||||||||||||
KW7 | |||||||||||||||||
KW8 | |||||||||||||||||
KW9 | [86] | [87] | [88] | [89,90] | [91] | [92,93] | [94,95] | [96] | [97,98,99,100] | [101,102,103,104,105] | [106,107,108,109,110,111,112] | ||||||
KW10 | [113] | [114] | [115] | [116] | [117,118] | [119,120,121,122,123,124,125,126,127,128,129,130] | [131,132,133,134,135,136,137,138,139,140,141,142] | [143,144,145,146,147,148,149] | [150,151,152,153,154,155,156,157,158,159,160] | [161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176] | [177,178,179,180] |
WRD | No. of Articles | Articles |
---|---|---|
Flood | 129 | [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180] |
Drought | 17 | [66,67,68,69,70,73,74,76,77,78,79,80,81,82,83,84,85] |
Drought and Flood | 3 | [71,72,75] |
DMP Phase | No. of Articles | Articles |
---|---|---|
Mitigation | 104 | [33,34,35,40,41,45,49,50,51,52,54,55,56,57,58,60,61,62,63,64,65,70,71,73,74,76,77,78,80,82,83,84,85,86,87,88,89,90,91,94,95,97,98,99,100,102,103,108,109,111,112,113,114,116,117,118,119,120,121,122,123,124,125,126,127,128,130,133,136,137,138,141,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,162,163,165,166,167,168,169,171,172,174,175,177,178,179] |
Preparedness | 30 | [36,38,39,43,44,46,47,48,53,61,66,67,69,79,81,104,105,106,107,110,129,131,132,134,135,139,140,142,164,170] |
Response | 13 | [32,37,72,75,92,93,96,101,115,158,173,176,180] |
Recovery | 2 | [68,153] |
MCDA Technique | No. of Relevant Articles | Flood | Drought | Drought and Flood |
---|---|---|---|---|
Analytic hierarchy process (AHP) | Flood: 57 Drought: 9 Drought and Flood: 2 | [40,47,48,51,52,55,57,58,59,61,62,90,95,101,106,108,109,111,112,113,115,117,121,124,125,127,131,133,135,136,139,141,144,145,146,147,148,149,151,152,153,154,157,158,159,161,162,163,164,166,167,170,171,172,178,179,180] | [66,76,77,78,79,80,81,84,85] | [71,75] |
Mixed-methods | Flood: 33 Drought: 6 Drought and Flood: 0 | [34,36,38,42,43,44,45,46,49,50,53,63,64,65,88,89,93,97,98,102,105,107,122,123,128,129,130,140,156,160,165,176,177] | [67,68,69,73,74,83] | - |
Technique for the order of prioritization by similarity to ideal solution (TOPSIS) | Flood: 13 Drought: 0 Drought and Flood: 0 | [39,41,91,94,96,99,100,116,134,138,142,155,173] | - | - |
Analytic network process (ANP) | Flood: 7 Drought: 0 Drought and Flood: 0 | [33,37,87,103,104,110,174] | - | - |
Preference ranking organization method for enrichment of evaluations (PROMETHEE) | Flood: 6 Drought: 0 Drought and Flood: 1 | [35,60,118,126,143,175] | - | [72] |
Compromise programming (CP) | Flood: 5 Drought: 0 Drought and Flood: 0 | [56,86,114,119,120,132] | - | - |
Simple additive weighting (SAW), or weighted sum model (WSM) | Flood: 4 Drought: 0 Drought and Flood: 0 | [32,54,137,150] | - | - |
Entropy | Flood: 2 Drought: 0 Drought and Flood: 0 | [168,169] | - | - |
Choose by disadvantages (CBD) | Flood: 1 Drought: 0 Drought and Flood: 0 | [56,86,114,119,120,132] | - | - |
VIKOR | Flood: 1 Drought: 0 Drought and Flood: 0 | [92] | - | - |
Elimination and choice translating reality (ELECTRE) | Flood: 0 Drought: 1 Drought and Flood: 0 | - | [82] | - |
Novel approach to imprecise assessment and decision environment (NAIADE) | Flood: 0 Drought: 1 Drought and Flood: 0 | - | [67,68,69,70,73,74,83] | - |
MCDA Technique | Flood | Drought | Drought and Flood | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIT. | PREP. | REC. | RESP. | MIT. | PREP. | REC. | RESP. | MIT. | PREP. | REC. | RESP. | |
AHP | [40,51,52,55,57,58,61,62,90,95,108,109,111,112,113,117,121,124,125,127,133,136,141,144,145,146,147,148,149,151,152,154,157,159,161,162,163,166,167,171,172,178,179] | [47,48,59,106,131,135,139,164,170] | [153] | [101,115,158,180] | [76,77,78,80,84,85] | [66,79,81] | - | - | [71] | - | - | [75] |
Mixed methods | [34,42,45,49,50,63,64,65,88,89,97,98,102,122,123,128,130,156,160,165,177] | [36,38,43,44,46,53,105,107,129,140] | - | [93,176] | [73,74,83] | [67,69] | [68] | - | - | - | - | - |
TOPSIS | [41,91,94,99,100,116,138,155] | [39,134,142] | - | [96,173] | - | - | - | - | - | - | - | - |
ANP | [33,87,103,174] | [104,110] | - | [37] | - | - | - | - | - | - | - | - |
CBD | [56] | - | - | - | - | - | - | - | - | - | - | - |
CP | [86,114,119,120] | [132] | - | - | - | - | - | - | - | - | - | - |
ELECTRE | - | - | - | - | [82] | - | - | - | - | - | - | - |
Entropy | [168,169] | - | - | - | - | - | - | - | - | - | - | - |
NAIADE | - | - | - | - | [70] | - | - | - | - | - | - | - |
PROMETHEE | [35,60,118,126,143,175] | - | - | - | - | - | - | - | - | - | - | [72] |
SAW/WSM | [54,137,150] | - | - | [32] | - | - | - | - | - | - | - | - |
VIKOR | - | - | - | [92] | - | - | - | - | - | - | - | - |
Year | 2000–2005 | 2006–2009 | 2010–2015 | 2016–2020 |
---|---|---|---|---|
No. of Articles | 0 | 1 | 10 | 28 |
No. | DMP Phase | WRD | Article | AHP | TOPSIS | SAW/WSM | VIKOR | ANP | ENTROPY | ELECTRE | CP | SWARA | WLC | PROMETHEE | MAUT | SMAA | WPM | REGIME | EVAMIX | Catastrophe | BWM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Mitigation | Flood | [160] | x | x | x | |||||||||||||||
2 | [88] | x | x | x | x | x | |||||||||||||||
3 | [89] | x | x | ||||||||||||||||||
4 | [97] | x | x | x | |||||||||||||||||
5 | [98] | x | x | ||||||||||||||||||
6 | [102] | x | x | x | |||||||||||||||||
7 | [165] | x | x | x | |||||||||||||||||
8 | [122] | x | x | x | x | x | x | ||||||||||||||
9 | [123] | x | x | ||||||||||||||||||
10 | [177] | x | x | x | x | x | |||||||||||||||
11 | [128] | x | x | ||||||||||||||||||
12 | [156] | x | x | ||||||||||||||||||
13 | [34] | x | x | ||||||||||||||||||
14 | [130] | x | x | ||||||||||||||||||
15 | [42] | x | x | ||||||||||||||||||
16 | [45] | x | x | ||||||||||||||||||
17 | [49] | x | x | ||||||||||||||||||
18 | [63] | x | x | ||||||||||||||||||
19 | [64] | x | x | ||||||||||||||||||
20 | [50] | x | x | x | |||||||||||||||||
21 | [65] | x | x | ||||||||||||||||||
22 | Drought | [73] | x | x | |||||||||||||||||
23 | [74] | x | x | ||||||||||||||||||
24 | [83] | x | x |
No. | DMP Phase | WRD | Article | AHP | TOPSIS | SAW/WSM | PROMETHEE | CP | ELECTRE | VIKOR | ANP | DEMANTEL | OWA | WPM | MAUT | CRITIC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Preparedness | Flood | [38] | x | x | |||||||||||
2 | [140] | x | x | |||||||||||||
3 | [53] | x | x | x | x | x | x | |||||||||
4 | [105] | x | x | |||||||||||||
5 | [129] | x | x | |||||||||||||
6 | [36] | x | x | |||||||||||||
7 | [107] | x | x | |||||||||||||
8 | [43] | x | x | |||||||||||||
9 | [44] | x | x | x | x | |||||||||||
10 | [46] | x | x | |||||||||||||
11 | Drought | [67] | x | x | ||||||||||||
12 | [69] | x | x | |||||||||||||
8 | Recovery | Drought | [68] | x | x | |||||||||||
9 | Response | Flood | [176] | x | x | |||||||||||
10 | [93] | x | x | x | x | x | x |
AHP | ANP | DEA | WSM | WPM | GP | ELECTRE | Grey | MAUT | CBR | SMART | PROMETHEE | TOPSIS | SURE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Communicating to nontechnical people | ✓ | ✕ | ✕ | ✓ | . | ✕ | ✕ | . | ✓ | . | ✓ | ✕ | ✓ | ✓ |
Allows inconsistencies in human judgments | ✓ | ✓ | . | . | . | . | . | ✓ | . | ✓ | . | . | . | ✓ |
Robust against rank reversal | ✕ | . | . | ✕ | . | . | ✓ | . | . | . | ✕ | . | . | ✕ |
Criteria can have different units of measurement | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | . | ✓ | . | ✓ |
Takes uncertainty into account | . | . | . | . | . | . | . | ✓ | . | ✓ | . | . | . | ✓ |
Supports indifference and vetoes | ✕ | ✕ | . | ✕ | ✕ | . | ✓ | . | ✕ | ✕ | ✕ | ✓ | . | ✕ |
One criterion compensates for others | ✓ | ✓ | . | ✓ | ✓ | . | ✕ | . | ✓ | ✓ | ✕ | ✓ | ✓ | |
Robust against the trap of averages | ✕ | ✕ | . | ✕ | ✕ | ✓ | ✓ | . | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ |
Easier to compute | ✕ | ✕ | . | ✓ | ✓ | . | ✕ | . | ✓ | . | ✓ | ✕ | ✓ | . |
Can be applied to any size of problem | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✕ | ✓ | . | ✓ | ✓ |
Can adapt to slight changes | ✓ | ✓ | . | . | . | . | . | ✓ | . | ✓ | . | . | . | . |
Can be supported with visual aid | ✓ | . | ✓ | ✓ | ✓ | . | ✕ | . | . | ✕ | ✓ | ✓ | ✓ | ✓ |
No. | DMP Phase | Probable Flood and Drought Measures | Example of Type MCDA Problem |
---|---|---|---|
1 | Mitigation | Flood and drought hazard mapping |
|
Possible advanced and strategic planning (example: forecasting, projection, prediction, and real-time disaster information collection) |
| ||
Possible disaster risk and reduction assessment Examples:
| To choose, sort, rank, and describe criteria, factors, indicators, and parameters to be used in conducting the assessment | ||
Development of zoning map | To choose, sort, and rank the zoning maps for operational and strategic planning (short term and long-term plan) | ||
2 | Preparedness | Future-looking scenarios to plan | Choice of data to be used in developing the future-looking scenarios |
Natural disaster insurance—the incentives provided should be appealing and disseminated for homeowners and businesses |
| ||
Building awareness, education, and capacity-building culture around risk | Choice and selection of the high-risk area to conduct the program | ||
Setting up an evacuation place | Choice and selection of highly recommended areas to build evacuation place based on criteria sets | ||
3 | Response | Warning, evacuation, and search and rescue | To select and rank high-risk location earlier response plan |
Immediate assistance, loss, and damage assessment, | To choose, select, and rank most vulnerable areas or communities that need an immediate response from authority bodies | ||
4 | Recovery | Plan and policy adaptation (financial and nonfinancial) to increase the resilience to WRD |
|
Assessment for the reconstruction of repeat loss infrastructure and properties—buy-out or mitigate |
| ||
Up-front option and plan information | To choose, sort, and rank significant and relevant options and plans to be implemented based on WRD disasters’ impact |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, M.F.; Siraj, S.; Hodgett, R.E. An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events. Water 2021, 13, 1358. https://doi.org/10.3390/w13101358
Abdullah MF, Siraj S, Hodgett RE. An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events. Water. 2021; 13(10):1358. https://doi.org/10.3390/w13101358
Chicago/Turabian StyleAbdullah, Mohammad Fikry, Sajid Siraj, and Richard E. Hodgett. 2021. "An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events" Water 13, no. 10: 1358. https://doi.org/10.3390/w13101358
APA StyleAbdullah, M. F., Siraj, S., & Hodgett, R. E. (2021). An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events. Water, 13(10), 1358. https://doi.org/10.3390/w13101358