Treated Wastewater Irrigation—A Review
Abstract
:1. Introduction
- (1)
- Preliminary: Remove the large solid materials from the crude wastewater that are conveyed by sewers that could hinder the discharge or cause damage to equipment, such as wood, rags, fecal material, and heavier grit particles.
- (2)
- Primary: Remove the suspended solids (SS) and floating substances.
- (3)
- Secondary: The secondary treatment process aims to diminish the biochemical oxygen demand (BOD), chemical oxygen demand (COD), and SS, and the set of other harm parameters by removal or reduction in residual settleable solids and floating materials from primary treatment. BOD is the amount of dissolved oxygen needed by aerobic biological organisms in water to break down organic material existing in a water sample at a certain temperature over a specific period [52,53]. The COD represents the quality of oxygen required to stabilize the carbonaceous organic matter chemically [54].
- (4)
- Tertiary and/or advanced: Removal of nutrients and heavy metals (HM), which are not removed by the previous treatment. Additionally, decreasing the microbiological constituents by using some options such as chlorination, ultraviolet rays, and ozonation in disinfection operation.
2. Characteristics of Wastewater
3. Reuse of Treated Wastewater
4. Guidelines and Quality Criteria for Treated Wastewater Reuse in Agriculture
4.1. Salinity
4.2. Alkalinity
4.3. Crop Nutrients in Treated Wastewater
4.4. Heavy Metals and Specific Ion Toxicity
5. Soil Properties as Affected by Irrigation Water Quality
5.1. Physical Properties
5.2. Chemical Properties
5.3. Biological Properties
5.3.1. Soil Enzymes
5.3.2. Microbial Biomass
5.4. Fertility Status
5.4.1. Macronutrients
5.4.2. Micronutrients and Heavy Metals
6. Effect of Wastewater Irrigation on Plant
7. Effect of Wastewater Irrigation on Public Health
8. Treated Wastewater Irrigation Systems
8.1. Surface or Gravity Irrigation Systems
8.2. Pressurized Irrigation Systems
8.2.1. Sprinkler Irrigation System
8.2.2. Drip Irrigation System
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, A.T. Water and human security. J. Contemp. Water Res. Educ. 2001, 118, 5. [Google Scholar]
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Guterres, A. The Sustainable Development Goals Report 2017; United Nations: New York, NY, USA, 2017. [Google Scholar]
- World Bank. Water Resources Management. 2017. Available online: https//www.worldbank.org/en/topic/ (accessed on 3 January 2021).
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.; Perez, J.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef] [PubMed]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Ghernaout, D. Water Reuse (WR): The Ultimate and Vital Solution for Water Supply Issues. Int. J. Sustain. Dev. Res. 2017, 3, 36–46. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N.; Al Arni, S. Water Reuse (WR): Dares, restrictions, and trends. Appl. Eng. 2019, 3, 159–170. [Google Scholar]
- Florida Department of Environmental Protection (FDEP). Reuse Facts; FDEP: Temple Terrace, FL, USA, 2010; Volume 20. [Google Scholar]
- Ajibade, F.O.; Adewumi, J.R.; Oguntuase, A.M. Sustainable approach to wastewater management in the Federal University of Technology, Akure, Nigeria. Niger. J. Technol. Res. 2014, 9, 27–36. [Google Scholar] [CrossRef]
- Braga, J.K.; Varesche, M.B.A. Commercial laundry water characterisation. Am. J. Anal. Chem. 2014, 2014, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Ilori, B.A.; Adewumi, J.R.; Lasisi, K.H.; Ajibade, F.O. Qualitative assessment of some available water resources in Efon-Alaaye, Ekiti State Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 35–40. [Google Scholar] [CrossRef]
- Ghernaout, D.; Elboughdiri, N. On the Treatment Trains for Municipal Wastewater Reuse for Irrigation. Open Access Libr. J. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Hussain, M.I.; Qureshi, A.S. Health risks of heavy metal exposure and microbial contamination through consumption of vegetables irrigated with treated wastewater at Dubai, UAE. Environ. Sci. Pollut. Res. 2020, 27, 11213–11226. [Google Scholar] [CrossRef]
- Connor, R.; Renata, A.; Ortigara, C.; Koncagül, E.; Uhlenbrook, S.; Lamizana-Diallo, B.; Zadeh, S.; Qadir, M.; Kjellén, M.; Sjödin, J. The united nations world water development report 2017. In Wastewater: The Untapped Resource; UN: New York, NY, USA, 2017. [Google Scholar]
- Chang, D.; Ma, Z. Wastewater reclamation and reuse in Beijing: Influence factors and policy implications. Desalination 2012, 297, 72–78. [Google Scholar] [CrossRef]
- Feng, H.; Tan, D.; Lazareva, I. 8 Facts on China’s Wastewater. 2018. Available online: http//chinawaterrisk.org/Resour (accessed on 30 April 2018).
- NPSCB. 1st National Pollutant Source Census Bulletin; China Press: Kuala Lumpur, Malaysia, 2010. [Google Scholar]
- CAPMAS (Central Agency for Public Mobilization and Statistics). Statistical Yearbook 2016; CAPMAS: Cairo, Egypt, 2016. [Google Scholar]
- Pedrero, F.; Maestre-Valero, J.F.; Mounzer, O.; Alarcon, J.J.; Nicolás, E. Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agric. Water Manag. 2014, 146, 228–237. [Google Scholar] [CrossRef]
- Johannessen, G.S.; Wennberg, A.C.; Nesheim, I.; Tryland, I. Diverse land use and the impact on (irrigation) water quality and need for measures—A case study of a Norwegian river. Int. J. Environ. Res. Public Health. 2015, 12, 6979–7001. [Google Scholar] [CrossRef] [Green Version]
- Lazarova, V. Global milestones in water reuse: Keys to success and trends in development. Water 2013, 15, 12–22. [Google Scholar]
- Haberkamp, J.; Cornel, P.; Drewes, J.; Firmenich, E.; Fuhrmann, T.; Gramel, S.; Hartmann, A.; Jendrischewski, W.; Karl, V.; Krause, S. DWA Topics: Non-Potable Water Reuse-Development, Technologies and International Framework for Agricultural, Urban and Industrial Uses; DWA: San Francisco, CA, USA, 2019. [Google Scholar]
- Ghernaout, D. The best available technology of water/wastewater treatment and seawater desalination: Simulation of the open sky seawater distillation. Green Sustain. Chem. 2013, 3, 68–88. [Google Scholar] [CrossRef] [Green Version]
- Ghernaout, D. Increasing trends towards drinking water reclamation from treated wastewater. World J. Appl. Chem. 2018, 3, 1–9. [Google Scholar] [CrossRef]
- Frascari, D.; Zanaroli, G.; Motaleb, M.A.; Annen, G.; Belguith, K.; Borin, S.; Choukr-Allah, R.; Gibert, C.; Jaouani, A.; Kalogerakis, N.; et al. Integrated technological and management solutions for wastewater treatment and efficient agricultural reuse in Egypt, Morocco, and Tunisia. Integr. Environ. Assess. Manag. 2018, 14, 447–462. [Google Scholar] [CrossRef]
- Villamar, C.-A.; Vera-Puerto, I.; Rivera, D.; De La Hoz, F. Reuse and recycling of livestock and municipal wastewater in Chilean agriculture: A preliminary assessment. Water 2018, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- El Moussaoui, T.; Wahbi, S.; Mandi, L.; Masi, S.; Ouazzani, N. Reuse study of sustainable wastewater in agroforestry domain of Marrakesh city. J. Saudi Soc. Agric. Sci. 2019, 18, 288–293. [Google Scholar] [CrossRef]
- Khan, Z.M.; Kanwar, R.M.A.; Farid, H.U.; Sultan, M.; Arsalan, M.; Ahmad, M.; Shakoor, A.; Aslam, M.M.A. Wastewater Evaluation for Multan, Pakistan: Characterization and Agricultural Reuse. Pol. J. Environ. Stud. 2019, 28, 2159–2174. [Google Scholar] [CrossRef]
- Maheshwari, B.; Singh, V.P.; Thoradeniya, B. Balanced Urban Development: Options and Strategies for Liveable Cities; Springer Nature: London, UK, 2016. [Google Scholar]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degrad. Dev. 2018, 29, 80–90. [Google Scholar] [CrossRef]
- Devitt, D.; Jarrell, W.M.; Stevens, K.L. Sodium-Potassium Ratios in Soil Solution and Plant Response under Saline Conditions. Soil Sci. Soc. Am. J. 1981, 45, 80–86. [Google Scholar] [CrossRef]
- Stevens, D.; Unkovich, M.; Kelly, J.; Ying, G. Impacts on soil, groundwater and surface water from continued irrigation of food and turf crops with water reclaimed from sewage. In Austalian Water Conservervation and Reuse Research Program; Australian Water Association: St. Leonards, Australia, 2004; 52p. [Google Scholar]
- De Carlo, L.; Battilani, A.; Solimando, D.; Caputo, M.C. Application of time-lapse ERT to determine the impact of using brackish wastewater for maize irrigation. J. Hydrol. 2020, 582, 124465. [Google Scholar] [CrossRef]
- Khan, M.G.; Daniel, G.; Konjit, M.; Thomas, A.; Eyasu, S.S.; Awoke, G. Impact of textile waste water on seed germination and some physiological parameters in pea (Pisum sativum L.), Lentil (Lens esculentum L.) and gram (Cicer arietinum L.). Asian J. Plant Sci. 2011, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.P.; Lu, S.D.; Zhang, W.L.; Yi, L.; Jiao, W. Ecological risks and sustainable utilization of reclaimed water and wastewater irrigation. Acta Ecol. Sin. 2014, 34, 163–172. [Google Scholar]
- Jeong, H.; Jang, T.; Seong, C.; Park, S. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric. Water Manag. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Shakir, E.; Zahraw, Z.; Al-Obaidy, A. Environmental and health risks associated with reuse of wastewater for irrigation. Egypt. J. Pet. 2017, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Guidelines for the Safe Use of Wasterwater Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Bahri, A.; Drechsel, P.; Raschid-Sally, L.; Redwood, M. Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; Routledge: London, UK, 2009. [Google Scholar]
- Hajjami, K.; Ennaji, M.M.; Fouad, S.; Oubrim, N.; Khallayoune, K.; Cohen, N. Assessment of helminths health risk associated with reuse of raw and treated wastewater of the Settat City (Morocco). Resour. Environ. 2012, 2, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Chefetz, B.; Ilani, T.; Schulz, E.; Chorover, J. Wastewater dissolved organic matter: Characteristics and sorptive capabilities. Water Sci. Technol. 2006, 53, 51–57. [Google Scholar] [CrossRef]
- Feachem, R.G.; Bradley, D.J.; Garelick, H.; Mara, D.D. Sanitation and Disease: Health Aspects of Excreta and Wastewater Management; John Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Adewumi, J.; Ilemobade, A.; Van Zyl, J. Treated wastewater reuse in South Africa: Overview, potential and challenges. Resour. Conserv. Recycl. 2010, 55, 221–231. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Al Arni, S.; Amous, J.; Ghernaout, D. On the perspective of applying of a new method for wastewater treatment technology: Modification of the third traditional stage with two units, one by cultivating microalgae and another by solar vaporization. Int. J. Environ. Sci. Nat. Resour. 2019, 16, 1–4. [Google Scholar] [CrossRef]
- FAO. User’s Manual for Irrigation with Treated Wastewater; FAO Regional Office for the Near East: Cairo, Egypt, 2003.
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Ombwayo, N.L. Factors Influencing Management of Slaughterhouse Waste in Nairobi, Kiambu, Kajiado and Machakos Counties. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2019. [Google Scholar]
- Dionisi, D. Biological Wastewater Treatment Processes: Mass and Heat Balances; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Von Sperling, M. Wastewater Characteristics, Treatment and Disposal; IWA Publishing: London, UK, 2007. [Google Scholar]
- Metcalf, E. Physical Unit Process. In Waste Water Engineering: Treatment, Disposal, Reuse, 4th ed.; Tat-McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- FAO. Waste-Water Treatment and Use in Agriculture; Soils Bull. No. 47; FAO: Rome, Italy, 1992.
- Onesios, K.M.; Yu, J.T.; Bouwer, E.J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: A review. Biodegradation 2009, 20, 441–466. [Google Scholar] [CrossRef] [PubMed]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Muñoz, I.; Gómez-Ramos, M.J.; Agüera, A.; Fernández-Alba, A.R.; García-Reyes, J.F.; Molina-Díaz, A. Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture. TrAC Trends Anal. Chem. 2009, 28, 676–694. [Google Scholar] [CrossRef]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.; Zoeller, T.R.; WHO. State of the Science of Endocrine Disrupting Chemicals 2012; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Santos, J.; Aparicio, I.; Callejón, M.; Alonso, E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater. 2009, 164, 1509–1516. [Google Scholar] [CrossRef]
- Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of pharmaceuticals in sewage treatment plants in Italy. Environ. Sci. Technol. 2006, 40, 357–363. [Google Scholar] [CrossRef]
- Golovko, O.; Kumar, V.; Fedorova, G.; Randak, T.; Grabic, R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere 2014, 111, 418–426. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater. Environ. Pollut. 2018, 235, 312–321. [Google Scholar] [CrossRef]
- Leal, C.S.; Mesquita, D.P.; Amaral, A.L.; Amaral, A.M.; Ferreira, E.C. Environmental impact and biological removal processes of pharmaceutically active compounds: The particular case of sulfonamides, anticonvulsants and steroid estrogens. Crit. Rev. Environ. Sci. Technol. 2019, 50, 698–742. [Google Scholar] [CrossRef] [Green Version]
- Montemurro, N.; Postigo, C.; Chirón, S.; Barcelò, D.; Pérez, S. Analysis and fate of 14 relevant wastewater-derived organic pollutants in long-term exposed soil. Anal. Bioanal. Chem. 2019, 411, 2687–2696. [Google Scholar] [CrossRef] [PubMed]
- Metcalf and Eddy. Wastewater Engineering Treatment Disposal, Reuse; McGraw-Hill Inc.: New York, NY, USA, 1991; Volume 4. [Google Scholar]
- Qadir, M.; Scott, C.A. Non-pathogenic trade-offs of wastewater irrigation. In Wastewater Irrigation and Health; Routledge: London, UK, 2009; pp. 101–126. [Google Scholar] [CrossRef]
- Qadir, M.; Mateo-Sagasta, J.; Jiménez, B.; Siebe, C.; Siemens, J.; Hanjra, M.A. Environmental risks and cost-effective risk management in wastewater use systems. Wastewater 2015, 55–72. [Google Scholar] [CrossRef]
- Horan, N.J. Biological Wastewater Treatment Systems: Theory and Operation; John Wiley & Sons: New York, NY, USA, 1990; 310p. [Google Scholar]
- Lim, S.-L.; Chu, W.-L.; Phang, S.-M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 2010, 101, 7314–7322. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.L.; Mecham, B. Long-term effects of recycled wastewater irrigation on soil chemical properties on golf course fairways. Agron. J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Kesalkar, V.P.; Khedikar, I.P.; Sudame, A.M. Physico-chemical characteristics of wastewater from paper industry. Int. J. Eng. Res. Appl. 2012, 2, 137–143. [Google Scholar]
- Muttamara, S. Wastewater characteristics. Resour. Conserv. Recycl. 1996, 16, 145–159. [Google Scholar] [CrossRef]
- U.S. Department of Health, Education, and Welfare. Annual Summary of Center of Diseases Control (1973–1975), Foodborne and Waterborne Disease Outbreaks. U.S. Department of Health, Education, and Welfare: Washington, DC, USA, 1975. [Google Scholar]
- Casabianca, S.; Capellacci, S.; Giacobbe, M.G.; Dell’Aversano, C.; Tartaglione, L.; Varriale, F.; Narizzano, R.; Risso, F.; Moretto, P.; Dagnino, A.; et al. Plastic-associated harmful microalgal assemblages in marine environment. Environ. Pollut. 2019, 244, 617–626. [Google Scholar] [CrossRef]
- Uyttendaele, M.; Jaykus, L.-A.; Amoah, P.; Chiodini, A.; Cunliffe, D.; Jacxsens, L.; Holvoet, K.; Korsten, L.; Lau, M.; McClure, P.; et al. Microbial hazards in irrigation water: Standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 2015, 14, 336–356. [Google Scholar] [CrossRef]
- Glynn Henery, J. Water pollution. Environmental Science and Engineering; Prentice-Hall Inc.: Engelwood Cliffs, NJ, USA, 1989; pp. 297–329. [Google Scholar]
- Shaaban, A.M.; Haroun, B.M.; Ibraheem, I.B.M. Assessment of impact of Microcystis aeruginosa and Chlorella vulgaris in the uptake of some heavy metals from culture media. In Proceedings of the 3rd International Conference on Biological Sciences, Faculty of Science, Tanta University, Tanta, Egypt, 28–29 April 2004; pp. 28–29. [Google Scholar]
- Gray, N.F. Biology of Waste Water Treatment; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Havelaar, A.H. Bacteriophages as model viruses in water quality control. Water Res. 1991, 25, 529–541. [Google Scholar]
- Miao, Z.; Huang, Z.; Hou, L.; Cai, S.; He, C.; Wang, W.; Yuan, Z.; Xu, J. The Effect of Irrigation with Reclaimed Water on Soil Peculiarity and Microoaganism Quantity of Maize Root Zone. J. Agro Environ. Sci. 2008, 1. [Google Scholar]
- Sun, Y.; Chen, Z.; Wu, G.; Wu, Q.; Zhang, F.; Niu, Z.; Hu, H.-Y. Characteristics of water quality of municipal wastewater treatment plants in China: Implications for resources utilization and management. J. Clean. Prod. 2016, 131, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Kabir, K.B. Wastewater treatment options for paper mills using recycled paper/imported pulps as raw materials: Bangladesh perspective. Chem. Eng. Res. Bull. 2010, 14, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Malaviya, P.; Rathore, V.S. Seasonal variations in different physico-chemical parameters of the effluents of Century Pulp and Paper Mill, Lal Kuan, Uttarakhand. J. Environ. Biol. 2007, 28, 219–224. [Google Scholar]
- Uğurlu, M.; Karaoğlu, M.H.; Kula, I. Experimental Investigation of Chemical Oxygen Demand, Lignin and Phenol Removal from Paper Mill Effluents Using Three-Phase Three-Dimensional Electrode Reactor. Pol. J. Environ. Stud. 2006, 15, 647–654. [Google Scholar]
- Muthuraman, L.; Ramaswamy, S. Solid Waste Management; MJP Publisher: Tamil Nadu, India, 2019. [Google Scholar]
- Amoo, O.T.; Aremu, A.S. Treatability of Institutional Wastewater Using Waste Stabilization Pond System. J. Appl. Technol. Environ. Sanit. 2012, 2, 217–222. [Google Scholar]
- Abdalla, K.Z.; Hammam, G. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. Int. J. Sci. Basic Appl. Res. 2014, 13, 42–48. [Google Scholar]
- Crook, J. Regulatory Aspects of Direct Potable Reuse in California; National Water Research Institute: Fountain Valley, CA, USA, 2010. [Google Scholar]
- Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. Wiley Interdiscip. Rev. Water. 2019, 6, e1234. [Google Scholar] [CrossRef]
- Assouline, S.; Narkis, K. Effect of long-term irrigation with treated wastewater on the root zone environment. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Deepa, K.; Krishnaven, M. Reuse Options of Reclaimed Waste Water in Chennai City. Int. J. Comp. Eng. Res. 2015, 5, 2250–3005. [Google Scholar]
- Wang, Z.; Li, J.; Li, Y. Using reclaimed water for agricultural and landscape irrigation in China: A review. Irrig. Drain. 2017, 66, 672–686. [Google Scholar] [CrossRef]
- Aziz, F.; Farissi, M. Reuse of treated wastewater in agriculture: Solving water deficit problems in arid areas. Ann. West Univ. Timisoara Ser. Biol. 2014, 17, 95. [Google Scholar]
- FAO. AquaStat, Food and Agriculture Organization of the United Nations. 2017. Available online: http://www.fao.org/nr/water/aquastat/data/query/results.html (accessed on 14 February 2021).
- Seow, T.; Lim, C.; Nor, M.; Mubarak, M.; Lam, C.; Yahya, A.; Ibrahim, Z. Review on wastewater treatment technologies. Int. J. Appl. Environ. Sci. 2016, 11, 111–126. [Google Scholar]
- Egyptian Code Principles (ECP). Reuse of Treated Wastewater in Agriculture; Iss. Decision No. 501, in Feb. 2005; Housing and Building National Research Center, Ministry of Housing and Urban Communities: Giza, Rgypt, 2005. (In Arabic)
- Winpenny, J.; Heinz, I.; Koo-Oshima, S.; Salgot, M.; Collado, J.; Hernandez, F.; Torricelli, R. The Wealth of Waste; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- Drechsel, P.; Evans, A.E.V. Wastewater use in irrigated agriculture. Irrig. Drain. Syst. 2010, 24, 1–3. [Google Scholar] [CrossRef]
- Arunakumara, K.; Walpola, B.C.; Yoon, M.-H. Current status of heavy metal contamination in Asia’s rice lands. Rev. Environ. Sci. Bio/Technol. 2013, 12, 355–377. [Google Scholar] [CrossRef]
- Liang, Q.; Gao, R.; Xi, B.; Zhang, Y.; Zhang, H. Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities. Agric. Water Manag. 2014, 135, 100–108. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, W.; Zhang, W.; Fan, Y.; Jiao, W. Wastewater reclamation and reuse in China: Opportunities and challenges. J. Environ. Sci. 2016, 39, 86–96. [Google Scholar] [CrossRef]
- Drechsel, P.; Bahri, A.; McCornick, P.; Abaidoo, R.; Attia, F.; El-Guindy, S. Agricultural Use of Marginal-Quality Water: Opportunities and Challenges; IWMI: Colombro, Sri Lanka, 2007; pp. 425–457. [Google Scholar]
- Ensink, J.H.J.; Blumenthal, U.J.; Brooker, S. Wastewater quality and the risk of intestinal nematode infection in sewage farming families in Hyderabad, India. Am. J. Trop. Med. Hyg. 2008, 79, 561–567. [Google Scholar] [CrossRef]
- Helmecke, M.; Fries, E.; Schulte, C. Regulating water reuse for agricultural irrigation: Risks related to organic micro-contaminants. Environ. Sci. Eur. 2020, 32, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shock, C.C. Subsurface drip irrigation for seed production of intermountain forbs. In Proceedings of the Native Wildflower Seed Production Symposium, Orlando, FL, USA, 19–20 July 2007. [Google Scholar]
- Asano, T.; Pettygrove, G.S. Irrigation with Reclaimed Municipal Wastewater: A Guidance Manual; NTIS: Springfield, VA, USA, 1984. [Google Scholar]
- USEPA. Guidelines for Water Reuse; US Environmental Protection Agency: Washington, DC, USA, 2004.
- General Administration of Quality Supervision, Inspection and Quarantine. Chinese-Standard, Chinese National Standard GB25499–2010: The Reuse of Urban Recycling Water–Water Quality Standard for Green Space Irrigation; General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2010. (in Chinese) [Google Scholar]
- NRMMC-EPHC. National Water Quality Management Strategy, Document 21: Australian Guidelines for Water Recycling: Managing Health and Environmental Risks; NRMMC-EPHC: Canberra, Australia, 2006. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine. Chinese-Standard, Chinese National Standard GB20922–2007: The Reuse of Urban Recycling Water—Quality of Farmland Irrigation Water; General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2007. (In Chinese) [Google Scholar]
- CMD (Common Ministerial Decision). Measures, Limits and Procedures for Reuse of Treated Wastewater; No. 145116; Ministry of Environment, Energy and Climate Change: Athens, Greece, 2011. (In Greek)
- CDPH. Regulations Related to Recycled Water (Revisions Effective on 6/18/14); CDPH (California Department of Public Health): Sacramento, CA, USA, 2014. [Google Scholar]
- OJFR. Decree n°0153 du 4 of July 2014 Page 11059 Text No. 29. (Official J. French). Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000029186641?r=YL4iQxYcIQ,2014 (accessed on 27 February 2021).
- ISO. Guidelines for Treated Wastewater Use for Irrigation Projects—Part 1–3; ISO 16075-1-32015; Beuth Verlag: Berlin, Germany, 2015. [Google Scholar]
- Alcalde-Sanz, L.; Gawlik, B.M. Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge. Towards a water reuse regulatory instrument at EU level. 2017. Available online: https://committee.iso.org/files/live/users/aj/bc/fe/tc282contributor%40iso.org/files/EU%20JRC%20report%20Water%20Reuse%20Minimum%20Quality%20Requirements%202017.pdf (accessed on 27 February 2021).
- USEPA. Guidelines for Water Reuse; United States Environmental Protection Agency: Washington, DC, USA, 2012.
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water reuse: From ancient to modern times and the future. Front. Environ. Sci. 2018, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef] [Green Version]
- WHO. Reuse of Effluents-Methods of Wastewater Treatment and Health Safeguards, Report of a WHO Meeting of Experts; World Health Organization: Geneva, Switzerland, 1973. [Google Scholar]
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture, Report of a WHO Scientific Group [Meeting Held in Geneva from 18 to 23 November 1987]; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Carr, R. WHO guidelines for safe wastewater use—More than just numbers. Irrig. Drain. 2005, 54, S103–S111. [Google Scholar] [CrossRef]
- Mara, D.; Kramer, A. The 2006 WHO guidelines for wastewater and greywater use in agriculture: A practical interpretation. In Efficient Management of Wastewater; Springer: Berling, Germany, 2008; pp. 1–17. [Google Scholar]
- Mara, D.D.; Sleigh, P.A.; Blumenthal, U.J.; Carr, R.M. Health risks in wastewater irrigation: Comparing estimates from quantitative microbial risk analyses and epidemiological studies. J. Water Health 2007, 5, 39–50. [Google Scholar] [CrossRef] [Green Version]
- FAO. Water Quality for Agriculture; FAO Irrigation and Drainage Volume 29, Paper 29 (Rev. 1); Ayers, R.S., Westcot, D.W., Eds.; The Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1985.
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- Alobaidy, A.H.M.J.; Al-Sameraiy, M.A.; Kadhem, A.J.; Majeed, A.A. Evaluation of treated municipal wastewater quality for irrigation. J. Environ. Prot. 2010, 1, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Muyen, Z.; Moore, G.A.; Wrigley, R.J. Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agric. Water Manag. 2011, 99, 33–41. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; Chang, A.C. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- FAO/RNEA. Wastewater Management for Agricultural Production and Environmental Protection in the Near East Region; FAO Regional Office: Cairo, Egypt, 1995. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop yields as affected by salinity. In Agricultural Drainage; American Society of Agronomy, Inc.: Madison, WI, USA, 1999; Volume 38, pp. 55–108. [Google Scholar]
- Hillel, D. Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics; The World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Grattan, S.R.; Grieve, C.M.; Poss, J.A.; Robinson, P.H.; Suarez, D.L.; Benes, S.E. Evaluation of salt-tolerant forages for sequential water reuse systems: I. Biomass production. Agric. Water Manag. 2004, 70, 109–120. [Google Scholar] [CrossRef]
- Malash, N.; Flowers, T.; Ragab, R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production. Agric. Water Manag. 2005, 78, 25–38. [Google Scholar] [CrossRef]
- Da Fonseca, A.F.; Herpin, U.; De Paula, A.M.; Victoria, R.L.; Melfi, A.J. Agricultural use of treated sewage effluents: Agronomic and environmental implications and perspectives for Brazil. Sci. Agricola 2007, 64, 194–209. [Google Scholar] [CrossRef]
- Carr, G. Water reuse for irrigated agriculture in Jordan: Soil sustainability, perceptions and management. In Water, Life and Civilisation: Climate, Environment and Society in the Jordan Valley; Cambridge University Press: Cambridge, UK, 2011; pp. 415–428. [Google Scholar]
- Letey, J.; Hoffman, G.; Hopmans, J.; Grattan, S.; Suarez, D.; Corwin, D.; Oster, J.; Wu, L.; Amrhein, C. Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wen, B.; Yang, Y.; Lu, Z.H. The effects of treated wastewater irrigation on soil health. Adv. Mater. Res. 2011, 393, 1545–1549. [Google Scholar] [CrossRef]
- Jermar, M.K. Water Resources and Water Management; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Mutengu, S.; Hoko, Z.; Makoni, F.S. An assessment of the public health hazard potential of wastewater reuse for crop production. A case of Bulawayo city, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2007, 32, 1195–1203. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; García-Orenes, F.; Mataix-Solera, J.; Arcenegui, V.; Mataix-Beneyto, J. Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil Tillage Res. 2011, 112, 18–26. [Google Scholar] [CrossRef]
- Pan, N.; Chen, W.-P.; Jiao, W.-T.; Zhao, Z.-M.; Hou, Z.-A. Soil salinity in greenland irrigated with reclaimed water and risk assessment. Huan Jing Ke Xue Huanjing Kexue 2012, 33, 4088. [Google Scholar]
- Papadopoulos, I.; Stylianou, Y. Treated effluent as a source of N for trickle irrigated sudax. Plant Soil 1988, 110, 145–148. [Google Scholar] [CrossRef]
- Sánchez–González, A.; Chapela–Lara, M.; Germán–Venegas, E.; Fuentes-García, R.; del Río-Portilla, F.; Siebe, C. Changes in quality and quantity of soil organic matter stocks resulting from wastewater irrigation in formerly forested land. Geoderma 2017, 306, 99–107. [Google Scholar] [CrossRef]
- Gori, R.; Ferrini, F.; Nicese, F.; Lubello, C. Effect of reclaimed wastewater on the growth and nutrient content of three landscape shrubs. J. Environ. Hortic. 2000, 18, 108–114. [Google Scholar] [CrossRef]
- Carrow, R.; Duncan, R.R.; Huck, M.T. Turfgrass and Landscape Irrigation Water Quality: Assessment and Management; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Pereira, B.; He, Z.; Silva, M.; Herpin, U.; Nogueira, S.; Montes, C.; Melfi, A. Reclaimed wastewater: Impact on soil-plant system under tropical conditions. J. Hazard. Mater. 2011, 192, 54–61. [Google Scholar] [CrossRef]
- Chen, Y.; Dosoretz, C.; Katz, I.; Jüeschke, E.; Marschner, B.; Tarchitzky, J. Organic matter in wastewater and treated wastewater-irrigated soils: Properties and effects. In Treated Wastewater in Agriculture, Use and Impacts on the Soil Environment and Crops; Wiley Online Library: Hoboken, NJ, USA, 2011; pp. 400–414. [Google Scholar]
- Mok, H.-F.; Barker, S.F.; Hamilton, A.J. A probabilistic quantitative microbial risk assessment model of norovirus disease burden from wastewater irrigation of vegetables in Shepparton, Australia. Water Res. 2014, 54, 347–362. [Google Scholar] [CrossRef]
- Chiou, R.-J. Risk assessment and loading capacity of reclaimed wastewater to be reused for agricultural irrigation. Environ. Monit. Assess. 2008, 142, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 2004, 164, 105–110. [Google Scholar] [CrossRef]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Klay, S.; Charef, A.; Ayed, L.; Houman, B.; Rezgui, F. Effect of irrigation with treated wastewater on geochemical properties (saltiness, C, N and heavy metals) of isohumic soils (Zaouit Sousse perimeter, Oriental Tunisia). Desalination 2010, 253, 180–187. [Google Scholar] [CrossRef]
- Al Omron, A.M.; El-Maghraby, S.E.; Nadeem, M.E.A.; El-Eter, A.M.; Al-Mohani, H. Long term effect of irrigation with the treated sewage effluent on some soil properties of Al-Hassa Governorate, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2012, 11, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Toze, S. Reuse of effluent water—Benefits and risks. Agric. Water Manag. 2006, 80, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Chen, C.; Song, X.; Han, Y.; Liang, Z. Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. Int. J. Electrochem. Sci. 2011, 6, 5314–5324. [Google Scholar]
- Martínez-Cortijo, J.; Ruiz-Canales, A. Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils: The particular case of the Valencia area in Spain. Agric. Water Manag. 2018, 210, 108–123. [Google Scholar] [CrossRef]
- Tunc, T.; Sahin, U. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation. Environ. Sci. Pollut. Res. 2016, 23, 6264–6276. [Google Scholar] [CrossRef]
- Lazarova, V.; Bahri, A. Water Reuse for Irrigation: Agriculture, Landscapes, and Turf Grass; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Abdu, N.; Abdulkadir, A.; Agbenin, J.O.; Buerkert, A. Vertical distribution of heavy metals in wastewater-irrigated vegetable garden soils of three West African cities. Nutr. Cycl. Agroecosyst. 2011, 89, 387–397. [Google Scholar]
- Shweti, A.K.; Verma, J.S. Effects of nickel chloride on germination and seedling growth of different wheat (Triticum aestivum L. em Thell.) cultivars. J. Pharmacogn. Phytochem. 2018, 7, 2227–2234. [Google Scholar]
- Fipps, G. Irrigation water quality standards and salinity management strategies. Texas FARMER Collect. 2003. Available online: https://oaktrust.library.tamu.edu/handle/1969.1/87829 (accessed on 8 March 2021).
- Mohamed, H.O. Use of Treated Sewage Effluent in Irrigation: Aspects of Nutrient and Salt Balances. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2005. [Google Scholar]
- Salgot, M.; Folch, M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 2018, 63, 191–199. [Google Scholar] [CrossRef]
- Halliwell, D.J.; Barlow, K.M.; Nash, D.M. A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Soil Res. 2001, 39, 1259. [Google Scholar] [CrossRef]
- Viviani, G.; Iovino, M. Wastewater reuse effects on soil hydraulic conductivity. J. Irrig. Drain. Eng. 2004, 130, 476–484. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Goldstein, D.; Azenkot, A.; Levy, G. Irrigation with treated wastewater under two different irrigation methods: Effects on hydraulic conductivity of a clay soil. Geoderma 2007, 140, 199–206. [Google Scholar] [CrossRef]
- Gharaibeh, M.A.; Eltaif, N.I.; Al-Abdullah, B. Impact of field application of treated wastewater on hydraulic properties of vertisols. Water. Air. Soil Pollut. 2007, 184, 347–353. [Google Scholar] [CrossRef]
- Schacht, K.; Marschner, B. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 2015, 63, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Chenini, F.; Trad, M.; Réjeb, S.; Châabouni, Z.; Xanthoulis, D. Optimisation et Durabilité du Traitement et de L’utilisation des Eaux Usées en Agriculture; Institut National de Recherche en Génie Rural, Eaux et Forêts: Ariana, Tunisia, 2002. [Google Scholar]
- Minhas, P.S.; Samra, J.S. Wastewater Use in Peri-Urban Agriculture: Impacts and Opportunities; Central Soil Salinity Research Institute: Karnal, India, 2004. [Google Scholar]
- Ababsa, N.; Kribaa, M.; Tamrabet, L.; Addad, D.; Hallaire, V.; Ouldjaoui, A. Long-term effects of wastewater reuse on hydro physicals characteristics of grassland grown soil in semi-arid Algeria. J. King Saud Univ. Sci. 2020, 32, 1004–1013. [Google Scholar] [CrossRef]
- Agassi, M.; Tarchitzky, J.; Keren, R.; Chen, Y.; Goldstein, D.; Fizik, E. Effects of prolonged irrigation with treated municipal effluent on runoff rate. J. Environ. Qual. 2003, 32, 1053–1057. [Google Scholar] [CrossRef]
- Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G. Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater. J. Hydrol. 2004, 292, 114–134. [Google Scholar] [CrossRef]
- Zartman, R.E.; Gichuru, M. Saline irrigation water: Effects on soil chemical and physical properties1. Soil Sci. 1984, 138, 417–422. [Google Scholar] [CrossRef]
- Abd-El-Nour, A.S. The Interaction Effects of Salty Water and Fertilization on Soil Physical and Chemical Properties, Yields and Water Consumptive Use of Plants Grown in Different Egyptian Soils. Ph.D. Thesis, Faculty of Agriculture, Ain-Shams University, Cairo, Egypt, 1989; pp. 144–159. [Google Scholar]
- Suarez, D.L.; Gonzalez-Rubio, A. Effects of the dissolved organic carbon of treated municipal wastewater on soil infiltration as related to sodium adsorption ratio and pH. Soil Sci. Soc. Am. J. 2017, 81, 602–611. [Google Scholar] [CrossRef]
- Faltas, R.L.; El-Awady, R.M.; Selem, M.M.; Abd-El-Reheem, A. Changes in physical properties of sandy soil due to sewage water utilization in cultivation for five succesive years. 1.-particle size distribution, bulk density, total porosity and soil moisture cheracteristics curve [Egypt]. Ann. Agric. Sci. Moshtohor 1986, 24, 1601–1613. [Google Scholar]
- Guo, W.; Andersen, M.N.; Qi, X.-B.; Li, P.; Li, Z.-Y.; Fan, X.-Y.; Zhou, Y. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. J. Integr. Agric. 2017, 16, 679–690. [Google Scholar] [CrossRef]
- El-Kouny, H.M.A. Evaluation of Compost Production and Its Properties with Special Reference to Composts Extract. Ph.D. Thesis, Faculty of Agriculture, Alexandria University, Alexandria, Egypt, 1999. [Google Scholar]
- Khalil, M.E.A. Accumulation of some nutrients and heavy metals in Abu Rawash area, Giza Governorate [Egypt]. 1990. Available online: Agris.fao.org (accessed on 8 March 2021).
- Gharaibeh, M.A.; Ghezzehei, T.A.; Albalasmeh, A.A.; Ma’in, Z.A. Alteration of physical and chemical characteristics of clayey soils by irrigation with treated waste water. Geoderma 2016, 276, 33–40. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- Petousi, I.; Daskalakis, G.; Fountoulakis, M.; Lydakis, D.; Fletcher, L.; Stentiford, E.; Manios, T. Effects of treated wastewater irrigation on the establishment of young grapevines. Sci. Total Environ. 2019, 658, 485–492. [Google Scholar] [CrossRef]
- Gloaguen, T.V.; Forti, M.-C.; Lucas, Y.; Montes, C.R.; Gonçalves, R.A.; Herpin, U.; Melfi, A.J. Soil solution chemistry of a Brazilian Oxisol irrigated with treated sewage effluent. Agric. Water Manag. 2007, 88, 119–131. [Google Scholar] [CrossRef]
- Pan, N.; Hou, Z.-A.; Chen, W.-P.; Jiao, W.-T.; Peng, C.; Liu, W. Study on soil enzyme activities and microbial biomass carbon in greenland irrigated with reclaimed water. Huan Jing Ke Xue Huanjing Kexue. 2012, 33, 4081–4087. [Google Scholar]
- Al-Zu’Bi, Y. Effect of irrigation water on agricultural soil in Jordan valley: An example from arid area conditions. J. Arid Environ. 2007, 70, 63–79. [Google Scholar] [CrossRef]
- Dosoky, A.K. Effect of Saline Water on Some Physical and Chemical Soil Properties. Ph.D. Thesis, Faculty of Agriculture at Moshtohor, Zagazig University, Zagazig, Egypt, 1999. [Google Scholar]
- Al-Hamaiedeh, H.; Bino, M. Effect of treated grey water reuse in irrigation on soil and plants. Desalination 2010, 256, 115–119. [Google Scholar] [CrossRef]
- Yang, L.; Yang, P.; Ren, S.; Wang, C. Experimental Studies on Effects of Reclaimed Water Irrigation on Soil Physicochemical Properties. J. Soil Water Conserv. 2006, 2, 82–85. [Google Scholar]
- Shang, F.; Yang, P.; Ren, S. Effects of reclaimed water irrigation on soil salinity in deep vadose zone. Nongye Jixie Xuebao Trans. Chin. Soc. Agric. Mach. 2013, 44, 97–98. [Google Scholar]
- Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater irrigation: The state of play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef] [Green Version]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, A.; Wu, L.; Crowley, D. Assessing the soil quality of long-term reclaimed wastewater-irrigated cropland. Geoderma 2003, 114, 261–278. [Google Scholar] [CrossRef]
- Sadek, S.A.; Sawy, S. Effect of using sewage water in irrigation for different long period on some physical and chemical properties of sandy soils in El-Gabal-El-asfer from farm in Egypt. Fayoum J. Agric. Res. Dev. 1989, 3, 33. [Google Scholar]
- Yadav, R.; Goyal, B.; Sharma, R.; Dubey, S.; Minhas, P. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water—A case study. Environ. Int. 2002, 28, 481–486. [Google Scholar] [CrossRef]
- Fawzi, I.F.R. Accumulation and Distribution of Trace Elements in Soil Profiles of El-Gabal El-Asfar through Long-Term Irrigation with Wastewater [Egypt]. Ph.D. Thesis, Faculty of Agriculture, Mansoura University, Mansoura, Egypt, 1986. [Google Scholar]
- Santos, S.R.; Ribeiro, D.P.; Matos, A.T.; Kondo, M.K.; Araújo, E.D. Changes in soil chemical properties promoted by fertigation with treated sanitary wastewater. Eng. Agrícola 2017, 37, 343–352. [Google Scholar] [CrossRef]
- Lado, M.; Bartal, A.; Azenkot, A.; Assouline, S.; Ravina, I.; Erner, Y.; Fine, P.; Dasberg, S.; Ben-Hur, M. Changes in chemical properties of semiarid soils under long-term secondary treated wastewater irrigation. Soil Sci. Soc. Am. J. 2012, 76, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Salgado-Méndez, S.; Gilabert-Alarcón, C.; Daesslé, L.W.; Mendoza-Espinosa, L.; Avilés-Marín, S.; Stumpp, C. Short-Term Effects on Agricultural Soils Irrigated with Reclaimed Water in Baja California, México. Bull. Environ. Contam. Toxicol. 2019, 102, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, S.; Pan, N.; Wang, Y.; Wu, L. Impact of reclaimed water irrigation on soil health in urban green areas. Chemosphere 2015, 119, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.; Datta, S.; Chhonkar, P.; Suribabu, K.; Singh, A. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Meena, R.; Datta, S.P.; Golui, D.; Dwivedi, B.S.; Meena, M. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Environ. Sci. Pollut. Res. 2016, 23, 14269–14283. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Liu, H.; Men, B.; Hao, Z.; Qian, P.; Yan, H.; Hao, Q.; Niu, Y.; et al. Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. Int. J. Environ. Res. Public Health 2019, 16, 649. [Google Scholar] [CrossRef] [Green Version]
- Amira, M.S.E. Effect of long-term irrigation with polluted water on micro-morphological, morphological and chemical properties of some soils of the Nile Delta. Menofiya J. Agric. Res. 1997, 22, 1749–1765. [Google Scholar]
- El Motaium, R.A.; Badawy, S.H. Effect of irrigation using sewage water on the distribution of some heavy metals in bulk and rhizosphere soils and different plant species: Cabbage plants (Brassia oleracea L.) and orange trees (Citrus sinesis L.). Egypt. J. Soil Sci. 2000, 40, 285–303. [Google Scholar]
- Elgala, A.M.; Elsharawy, M.A.O.; Elbordiny, M.M. Impact of sewage water used for irrigation on soil characteristics and heavy metals composition of some grown crops. Egypt. J. Soil Sci. 2003, 43, 405–420. [Google Scholar]
- Chrost, R.J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Microbial Enzymes in Aquatic Environments; Springer: Berlin, Germany, 1991; pp. 29–59. [Google Scholar]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Qu, Y.; Tang, J.; Li, Z.; Zhou, Z.; Wang, J.; Wang, S.; Cao, Y. Soil Enzyme Activity and Microbial Metabolic Function Diversity in Soda Saline–Alkali Rice Paddy Fields of Northeast China. Sustainability 2020, 12, 10095. [Google Scholar] [CrossRef]
- Christopher, J. Living Soils: The Role of Microorganisms in Soil Health. In Strategic Analysis Paper; Future Directions International: Nedlands, Australia, 2017. [Google Scholar]
- DeLuca, T.H.; Pingree, M.R.A.; Gao, S. Assessing soil biological health in forest soils. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 397–426. [Google Scholar]
- Chen, W.; Wu, L.; Frankenberger, W.T.; Chang, A.C. Soil enzyme activities of long-term reclaimed wastewater-irrigated soils. J. Environ. Qual. 2008, 37, S36–S42. [Google Scholar] [CrossRef]
- Gianfreda, L.; Ruggiero, P. Enzyme activities in soil. In Nucleic Acids and Proteins in Soil; Springer: Berlin, Germany, 2006; pp. 257–311. [Google Scholar]
- Mkhinini, M.; Boughattas, I.; Alphonse, V.; Livet, A.; Gıustı-Mıller, S.; Bannı, M.; Bousserrhıne, N. Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate). Agric. Water Manag. 2020, 235, 106150. [Google Scholar] [CrossRef]
- Baum, C.; Leinweber, P.; Schlichting, A. Effects of chemical conditions in re-wetted peats on temporal variation in microbial biomass and acid phosphatase activity within the growing season. Appl. Soil Ecol. 2003, 22, 167–174. [Google Scholar] [CrossRef]
- Aon, M.; Colaneri, A., II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 2001, 18, 255–270. [Google Scholar] [CrossRef]
- Chen, S.-K.; Edwards, C.A.; Subler, S. The influence of two agricultural biostimulants on nitrogen transformations, microbial activity, and plant growth in soil microcosms. Soil Biol. Biochem. 2003, 35, 9–19. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, M.A.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef]
- Li, B.; Cao, Y.; Guan, X.; Li, Y.; Hao, Z.; Hu, W.; Chen, L. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation. Sci. Total Environ. 2019, 651, 696–705. [Google Scholar] [CrossRef]
- Adrover, M.; Farrús, E.; Moyà, G.; Vadell, J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manag. 2012, 95, S188–S192. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Bingham, F.T. Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J. 1982, 46, 1173–1177. [Google Scholar] [CrossRef]
- Kuperman, R.G.; Carreiro, M.M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 1997, 29, 179–190. [Google Scholar] [CrossRef]
- Kotzerke, A.; Sharma, S.; Schauss, K.; Heuer, H.; Thiele-Bruhn, S.; Smalla, K.; Wilke, B.-M.; Schloter, M. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ. Pollut. 2008, 153, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Andersen, M.N.; Jensen, C.R. Capability of the ‘Ball-Berry’model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes. Sci. Hortic. 2009, 122, 346–354. [Google Scholar] [CrossRef]
- Machulla, G. Soil microbial indicators and their environmental significance. J. Soils Sediments 2003, 3, 229. [Google Scholar] [CrossRef]
- Insam, H. Developments in soil microbiology since the mid 1960s. Geoderma 2001, 100, 389–402. [Google Scholar] [CrossRef]
- Nkem, J.; Lobry De Bruyn, L.; King, K.; Grant, C. Soil microbial and chemical indicators of soil heath response to agricultural intensification practices on cracking black clay soils. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; The World Congress of Soil Science: Bangkok, Thailand, 2002. [Google Scholar]
- Patra, A.K.; Abbadie, L.; Clays-Josserand, A.; Degrange, V.; Grayston, S.J.; Loiseau, P.; Louault, F.; Mahmood, S.; Nazaret, S.; Philippot, L.; et al. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecol. Monogr. 2005, 75, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Sardar, K.; Qing, C.A.O.; Hesham, A.E.-L.; Yue, X.I.A.; He, J. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci. 2007, 19, 834–840. [Google Scholar]
- Fernandes, S.A.P.; Bettiol, W.; Cerri, C.C. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Appl. Soil Ecol. 2005, 30, 65–77. [Google Scholar] [CrossRef]
- Mandal, A.; Patra, A.K.; Singh, D.; Swarup, A.; Masto, R.E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 2007, 98, 3585–3592. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Zobeck, T.M.; Allen, V. Soil microbial, chemical and physical properties in continuous cotton and integrated crop–livestock systems. Soil Sci. Soc. Am. J. 2004, 68, 1875–1884. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Ibekwe, A.; Gonzalez-Rubio, A.; Suarez, D. Impact of treated wastewater for irrigation on soil microbial communities. Sci. Total Environ. 2018, 622, 1603–1610. [Google Scholar] [CrossRef]
- Trang, D.T.; van der Hoek, W.; Cam, P.D.; Vinh, K.T.; Van Hoa, N.; Dalsgaard, A. Low risk for helminth infection in wastewater-fed rice cultivation in Vietnam. J. Water Health 2006, 4, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Botella, S.; Jiménez, A.; Boukharouba, A.; Ferrús, M.A. Reduction of Salmonella enterica in ready to eat lettuce leaves: Effectiveness of sodium hypochlorite washing. In Exploring Microorganisms: Recent Advances in Applied Microbiology; Méndez-Vilas, A., Ed.; BrownWalker Press: Irvine, CA, USA, 2018; pp. 105–109. [Google Scholar]
- Ssemanda, J.N.; Joosten, H.; Bagabe, M.C.; Zwietering, M.H.; Reij, M.W. Reduction of microbial counts during kitchen scale washing and sanitization of salad vegetables. Food Control 2018, 85, 495–503. [Google Scholar] [CrossRef]
- Nicolás, E.; Alarcón, J.; Mounzer, O.; Pedrero, F.; Nortes, P.; Alcobendas, R.; Romero-Trigueros, C.; Bayona, J.; Maestre-Valero, J. Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water. Agric. Water Manag. 2016, 166, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Xu, B.; Zheng, W.; Zhang, X.; Wang, J. Influence of reclaimed water irrigation on soil quality on lawn soil. J. Soil Water Conserv. 2011, 25, 245–249. [Google Scholar]
- Li, Y.-F.; Li, J.-S.; Zhang, H. Effects of chlorination on soil chemical properties and nitrogen uptake for tomato drip irrigated with secondary sewage effluent. J. Integr. Agric. 2014, 13, 2049–2060. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wu, L.; Chang, A.C.; Zhang, Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, P.; Wang, Y.; Ren, S. Effects of Irrigation with Reclaimed Water on Available Nutrient and Salinize-alkalization. J. Soil Water Conserv. 2006, 6, 58–61. [Google Scholar]
- El-Tokhy, M.M. Studies on the Status of Some Nutrient Elements in the Soils Adjacent to Idko Lake. Master’s Thesis, Faculty of Agriculture, Cairo University, Cairo, Egypt, 1987. [Google Scholar]
- Hafiz, W.A. Effect of Drainage Water on Some Egyptian Soils and Plant. Master’s Thesis, Faculty of Agriculture at Moshtohor, Zagazig University, Zagazig, Egypt, 2001. [Google Scholar]
- Yong, N.; Shiyang, Y.; Honglu, L.; Wenyong, W.; Binghua, L. Use of Geostatistics to Determine the Spatial Variation of Groundwater Quality: A Case Study in Beijing’s Reclaimed Water Irrigation Area. Pol. J. Environ. Stud. 2015, 24, 611–618. [Google Scholar]
- Lyu, S.; Chen, W.; Wen, X.; Chang, A.C. Integration of HYDRUS-1D and MODFLOW for evaluating the dynamics of salts and nitrogen in groundwater under long-term reclaimed water irrigation. Irrig. Sci. 2019, 37, 35–47. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yao, H.; Lu, Y.; Shan, D.; Yu, X. Reclaimed water irrigation effect on agricultural soil and maize (Zea mays L.) in northern China. CLEAN Soil Air Water 2018, 46, 1800037. [Google Scholar] [CrossRef]
- Gwenzi, W.; Munondo, R. Long-term impacts of pasture irrigation with treated sewage effluent on nutrient status of a sandy soil in Zimbabwe. Nutr. Cycl. Agroecosyst. 2008, 82, 197–207. [Google Scholar] [CrossRef]
- Khaskhoussy, K.; Kahlaoui, B.; Nefzi, B.M.; Jozdan, O.; Dakheel, A.; Hachicha, M. Effect of treated wastewater irrigation on heavy metals distribution in a Tunisian soil. Eng. Technol. Appl. Sci. Res. 2015, 5, 805–810. [Google Scholar] [CrossRef]
- Fang, W.; DeLapp, R.C.; Kosson, D.S.; Van Der Sloot, H.A.; Liu, J. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost. Chemosphere 2017, 169, 271–280. [Google Scholar] [CrossRef]
- Yang, J.; Chen, T.; Lei, M.; Liu, H.; Wu, W.; Zhou, J. Assessing the effect of irrigation with reclaimed water: The soil and crop pollution risk of heavy metals. J. Nat. Resour. 2011, 26, 209–217. [Google Scholar]
- Zhang, H.S.; Zhang, K.; Han, L.; Su, D.; Wang, N.; Li, Y. Effects of reclaimed water irrigation on soil environment of greenbelt. J. Beijing Univ. 2006, 28, 78–84. [Google Scholar]
- Wu, C.; Huang, G.; Liu, H.; Wu, W.; Xu, C. Experimental investigation on heavy metal distribution in soil-crop system with irrigation of treated sewage effluent. Nongye Gongcheng Xuebao (Trans. Chin. Soc. Agric. Eng.) 2006, 22, 91–96. [Google Scholar]
- Abd-El-Aal, R.S.; Abbas, H.H.; Rabie, M.H.; Khabil, M.E.A. Accumulation of micronutrients and heavy metals in sandy soils irrigated with sewage water. Ann. Agric. Sci. Moshtohor 1991, 29, 1811–1823. [Google Scholar]
- El Naim, M.A.; El Awady, R.M. Studies on Heavy Metal Removal from Sewage Water Used in Sandy Soils. 1989. Available online: Agris.fao.org (accessed on 11 March 2021).
- Hegazi, I.M.A. Factors Affecting Utilization and Development in Lands and Water Resources of the Northern Area of El Fayoum, Egypt. Ph.D. Thesis, Faculty of Agriculture, Cairo University, El-Fayoum, Egypt, 1999. [Google Scholar]
- Dotaniya, M.L.; Rajendiran, S.; Meena, V.D.; Coumar, M.V.; Saha, J.K.; Kundu, S.; Patra, A.K. Impact of long-term application of sewage on soil and crop quality in Vertisols of Central India. Bull. Environ. Contam. Toxicol. 2018, 101, 779–786. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Pei, L. Study on the effects of irrigation with reclaimed water on the content and distribution of heavy metals in soil. Int. J. Environ. Res. Public Health 2016, 13, 298. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Sabour, M.E.; Mohamed, A.A.; Abdel-Nabi, A.O. Heavy metals accumulation in rice and sorghum crops grown on contaminated soils in Egypt. Minufiya J. Agric. Res. 2000, 25, 1157–1167. [Google Scholar]
- Teklehaimanot, G.Z.; Kamika, I.; Coetzee, M.A.A.; Momba, M.N.B. Seasonal variation of nutrient loads in treated wastewater effluents and receiving water bodies in Sedibeng and Soshanguve, South Africa. Environ. Monit. Assess. 2015, 187, 595. [Google Scholar] [CrossRef]
- El-Arabi N and El-Bordiny A., M. Impact of Reused Wastewater for Irrigation on Availability of Heavy Metals in Sandy Soil and Their Uptake by Plant. J. Appl. Sci. Res. 2006, 12, 106–111. [Google Scholar]
- Khawla, K.; Besma, K.; Enrique, M.; Mohamed, H. Accumulation of trace elements by corn (Zea mays) under irrigation with treated wastewater using different irrigation methods. Ecotoxicol. Environ. Saf. 2019, 170, 530–537. [Google Scholar] [CrossRef]
- Pedrero, F.; Camposeo, S.; Pace, B.; Cefola, M.; Vivaldi, G.A. Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy. Agric. Water Manag. 2018, 203, 186–192. [Google Scholar] [CrossRef]
- Wang, J.-F.; Wang, G.-X.; Wanyan, H. Treated wastewater irrigation effect on soil, crop and environment: Wastewater recycling in the loess area of China. J. Environ. Sci. 2007, 19, 1093–1099. [Google Scholar] [CrossRef]
- Tabassum, D.; Azad, S.; Inam, A. Utility of city wastewater as a source of irrigation water for mustard. J. Ind. Pollut. Control 2007, 23, 391–396. [Google Scholar]
- Akhtar, A.; Inam, A.; Inam, A. Response of mustard and linseed to thermal power plant wastewater supplemented with nitrogen and phosphorus. Afr. J. Plant Sci. 2008, 2, 67–71. [Google Scholar]
- Akhtar, N.; Inam, A.; Inam, A.; Khan, N.A. Effects of city wastewater on the characteristics of wheat with varying doses of nitrogen, phosphorus, and potassium. Recent Res. Sci. Technol. 2012, 4, 18–29. [Google Scholar]
- Ahmad, A.; Inam, A.; Ahmad, I.; Hayat, S.; Azam, Z.M. Response of sugarcane to treated wastewater of oil refinery. J. Environ. Biol. 2003, 24, 141–146. [Google Scholar]
- Huang, Z.; Miao, Z.; Hou, L.; Jiao, Z.; Ma, M. Effect of irrigation time and mode with reclaimed water on growth and quality of crops. J. Agro Environ. Sci. 2007, 26, 2257–2261. [Google Scholar]
- Guanhua, H.; Guifeng, C.; Shaoyuan, F.; Zhiming, Q. Water and nitrogen use efficiency for winter wheat under the condition of irrigation with treated sewage effluent. Trans. Chin. Soc. Agric. Eng. 2004, 1. [Google Scholar] [CrossRef]
- Jamjoum, K.I.; Khattari, S.K. Effect of wastewater and sludge application on soil, corn plant composition and production in Zizia Region. Dirasat 1986, 15, 29–44. [Google Scholar]
- Mahmoudi, M.; Khelil, M.N.; Ghrib, R.; Douh, B.; Boujelben, A. Assessement of growth and yield of okra (Abelmoschus esculentus) under surface and subsurface drip irrigation using treated waste water. Int. J. Recycl. Org. Waste Agric. 2020, 9, 349–356. [Google Scholar]
- Rusan, M.J.M.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Akponikpè, P.I.; Wima, K.; Yacouba, H.; Mermoud, A. Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: Benefits and risks. Agric. Water Manag. 2011, 98, 834–840. [Google Scholar] [CrossRef]
- Mohammed, M.H. Comparative Study for the Levels of Trace Elements in Water from Southern Part of Iraq during 1996–2010. Univ. Thi Qar J. Sci. 2012, 3, 94–100. [Google Scholar]
- Kiziloglu, F.; Turan, M.; Sahin, U.; Kuslu, Y.; Dursun, A. Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agric. Water Manag. 2008, 95, 716–724. [Google Scholar] [CrossRef]
- Wu, W.; Xu, C.; Liu, H.; Hao, Z.; Ma, F.; Ma, Z. Effect of reclaimed water irrigation on yield and quality of fruity vegetables. Trans. Chin. Soc. Agric. Eng. 2010, 26, 36–40. [Google Scholar]
- Afzal, M.; Battilani, A.; Solimando, D.; Ragab, R. Improving water resources management using different irrigation strategies and water qualities: Field and modelling study. Agric. Water Manag. 2016, 176, 40–54. [Google Scholar] [CrossRef]
- Campi, P.; Navarro, A.; Palumbo, A.D.; Modugno, F.; Vitti, C.; Mastrorilli, M. Energy of biomass sorghum irrigated with reclaimed wastewaters. Eur. J. Agron. 2016, 76, 176–185. [Google Scholar] [CrossRef]
- Emongor, V.; Macheng, B.; Kefilwe, S. Effects of secondary sewage effluent on the growth, development, fruit yield and quality of tomatoes (Lycopersicon Lycopersicum (L.) Karten). In Proceedings of the International Symposium on Vegetable Production, Quality and Process Standardization in Chain: A Worldwide Perspective 944, Beijing, China, 14–17 October 2008; pp. 29–40. [Google Scholar]
- Chen, W.; Lu, S.; Peng, C.; Jiao, W.; Wang, M. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation. Environ. Pollut. 2013, 178, 294–299. [Google Scholar] [CrossRef]
- Gharbi, L.T.; Merdy, P.; Lucas, Y. Effects of long-term irrigation with treated wastewater. Part II: Role of organic carbon on Cu, Pb and Cr behaviour. Appl. Geochem. 2010, 25, 1711–1721. [Google Scholar] [CrossRef]
- Xu, Y.M.; Zhou, Q.W.; Sun, G.H.; Wei, Y.H.; Sun, Y.; Qin, X. Effects of reclaimed wastewater irrigation on the quality and heavy metal contents of cabbage. J. Irrig. Drain. 2009, 28, 13–16. [Google Scholar]
- Xue, Y.-D.; Yang, P.-L.; Ren, S.-M.; Liu, H.; Wu, W.-Y.; Fang, Y.-X. Effects of irrigation with treated wastewater on nutrient distribution in cucumber and tomato plants and their fruit quality. Ying Yong Sheng Tai Xue Bao J. 2011, 22, 395–401. [Google Scholar]
- Contreras, J.I.; López, J.G.; Lao, M.T.; Eymar, E.; Segura, M.L. Dry-matter allocation and nutrient uptake dynamic in pepper plant irrigated with recycled water by different nitrogen and potassium rate. Commun. Soil Sci. Plant Anal. 2013, 44, 758–766. [Google Scholar] [CrossRef]
- Egbuikwem, P.N.; Mierzwa, J.C.; Saroj, D.P. Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions. Agric. Water Manag. 2020, 231, 106034. [Google Scholar] [CrossRef]
- Li, B.; Ren, S.; Zhang, X.; Kong, Q. Study on quality of tomato and heavy metal in soil and fruit contribution with irrigation of rejuvenated water. J. Soil Water Conserv. 2007, 21, 163–165. [Google Scholar]
- Chinese National Standard. Chinese-Standard, Chinese National Standard GB18406.1–2001. Qualification for Agricultural Product-Safety Requirements for Non-Environmental Pollution Vegetable. Inspection and Quarantine; Chinese National Standard: Beijing, China. (In Chinese)
- Ju, H.; Li, K.; Jiang, S.; Wang, H.R. Heavy Metal Pb and Cd Distribution in Winter-wheat with Reclaimed Water Irrigation. J. Agro Environ. Sci. 2011, 30, 78–83. [Google Scholar]
- Babayan, M.; Javaheri, M.; Tavassoli, A.; Esmaeilian, Y. Effects of using wastewater in agricultural production. Afr. J. Microbiol. Res. 2012, 6, 1–9. [Google Scholar]
- Soliman, E.M.; El Leboudi, E.S. Abd Elmoniem, A.E. Wheat crop as biological monitor for evaluation of water pollution status. J. Environ. Sci. Inst. Environ. Stud. Res. Ain Shams Uni. 2007, 14, 91. [Google Scholar]
- Broos, K.; Beyens, H.; Smolders, E. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol. Biochem. 2005, 37, 573–579. [Google Scholar] [CrossRef]
- Dan, T.; Hale, B.; Johnson, D.; Conard, B.; Stiebel, B.; Veska, E. Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Can. J. Soil Sci. 2008, 88, 389–398. [Google Scholar] [CrossRef]
- Gebreyohannes, F.; Gebrekidan, A. Health risk assessment of heavy metals via consumption of spinach vegetable grown in Elalla river. Bull. Chem. Soc. Ethiop. 2018, 32, 65. [Google Scholar] [CrossRef]
- Akoto, O.; Bismark, E.F.; Darko, G.; Adei, E. Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int. J. Environ. Res. 2014, 8, 403–410. [Google Scholar]
- Kalavrouziotis, I.; Koukoulakis, P.; Papadopoulos, A.; Mehra, A. Heavy metal accumulation in Brussels sprouts after irrigation with treated municipal waste water. J. Plant Interact. 2009, 4, 41–48. [Google Scholar] [CrossRef]
- Bao, Z.; Wu, W.; Liu, H.; Chen, H.; Yin, S. Impact of Long-Term Irrigation with Sewage on Heavy Metals in Soils, Crops, and Groundwater--A Case Study in Beijing. Pol. J. Environ. Stud. 2014, 23, 309–318. [Google Scholar]
- Li, Z.; Fan, X.; Qi, X.; Du, Z.; Qiao, D.; Li, P. Effect of phosphorus levels on green vegetable Cd concentration and soil available Cd concentration under reclaimed wastewater irrigation. J. Irrig. Drain. 2012, 31, 114–116, (In Chinese with English Abstrat). [Google Scholar]
- Abdel-Sabour, M.F.; Rabie, F.H. Accumulation of heavy metals in vegetable plants grown in mostorod area. Egypt. J. Soil Sci. 2003, 43, 63–76. [Google Scholar]
- Vafabakhsh, K.; Kharghany, K. Effects of treated municipal wastewater on quality and yield of cucumber and carrot. In Agricultural Resource Recycling Symp, Isfahan; Khorasgan Azad University, Agricultural College: Rudehen, Iran, 2000. (In Persian) [Google Scholar]
- Gerber, M.D.; Lucia, T., Jr.; Correa, L.; Neto, J.E.P.; Correa, É.K. Phytotoxicity of effluents from swine slaughterhouses using lettuce and cucumber seeds as bioindicators. Sci. Total Environ. 2017, 592, 86–90. [Google Scholar] [CrossRef]
- Charles, J.; Sancey, B.; Morin-Crini, N.; Badot, P.; Degiorgi, F.; Trunfio, G.; Crini, G. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol. Environ. Saf. 2011, 74, 2057–2064. [Google Scholar] [CrossRef]
- Sbartai, H.; Djebar, M.R.; Sbartai, I.; Berrabbah, H. Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.). Plant Biol. Pathol. 2012, 335, 585–593. [Google Scholar]
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 2319–4847. [Google Scholar]
- Mishra, S.; Dubey, R.S. Heavy metal toxicity induced alterations in photosynthetic metabolism in plants. Handb. Photosynth. 2005, 2, 845–863. [Google Scholar]
- Wang, H.; Liu, F.; Andersen, M.N.; Jensen, C.R. Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.). Irrig. Sci. 2009, 27, 443–448. [Google Scholar] [CrossRef]
- Lou, Y.; Zhao, P.; Wang, D.; Amombo, E.; Sun, X.; Wang, H.; Zhuge, Y. Germination, physiological responses and gene expression of tall fescue (Festuca arundinacea Schreb.) growing under Pb and Cd. PLoS ONE 2017, 12, e0169495. [Google Scholar] [CrossRef]
- Yourtchi, M.S.; Bayat, H.R. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int. J. Agric. Crop Sci. 2013, 6, 1099–1103. [Google Scholar]
- He, J.; Ji, Z.-X.; Wang, Q.-Z.; Liu, C.-F.; Zhou, Y.-B. Effect of Cu and Pb pollution on the growth and antionxidant enzyme activity of Suaeda heteroptera. Ecol. Eng. 2016, 87, 102–109. [Google Scholar] [CrossRef]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.; Drechsel, P.; Bahri, A.; Minhas, P. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Zhong, T.; Xue, D.; Zhao, L.; Zhang, X. Concentration of heavy metals in vegetables and potential health risk assessment in China. Environ. Geochem. Health 2018, 40, 313–322. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Lokeshwari, H.; Chandrappa, G.T. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr. Sci. 2006, 91, 622–627. [Google Scholar]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Forslund, A.; Ensink, J.; Markussen, B.; Battilani, A.; Psarras, G.; Gola, S.; Sandei, L.; Fletcher, T.; Dalsgaard, A. Escherichia coli contamination and health aspects of soil and tomatoes (Solanum lycopersicum L.) subsurface drip irrigated with on-site treated domestic wastewater. Water Res. 2012, 46, 5917–5934. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Maratheftis, G.; Eliadou, E.; Michael, C.; Hapeshi, E.; Fatta-Kassinos, D. Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agric. Ecosyst. Environ. 2014, 192, 105–114. [Google Scholar] [CrossRef]
- Beneduce, L.; Gatta, G.; Bevilacqua, A.; Libutti, A.; Tarantino, E.; Bellucci, M.; Troiano, E.; Spano, G. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops. Int. J. Food Microbiol. 2017, 260, 51–58. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.G.; Cabello-Pasini, A.; Macias-Carranza, V.; Daessle-Heuser, W.; Orozco-Borbón, M.V.; Quintanilla-Montoya, A.L. The effect of reclaimed wastewater on the quality and growth of grapevines. Water Sci. Technol. 2008, 57, 1445–1450. [Google Scholar] [CrossRef]
- Alves, P.F.S.; Dos Santos, S.R.; Kondo, M.K.; Mizobutsi, G.P.; Caldeira, L.A.; Antunes, A.B.; De Oliveira, G.F. Banana fertigation with treated sanitary wastewater: Postharvest and microbiological quality. Semin. Ciênc. Agrár. 2017, 38, 1229–1240. [Google Scholar] [CrossRef]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Oliveira, M.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Presence and survival of Escherichia coli O157: H7 on lettuce leaves and in soil treated with contaminated compost and irrigation water. Int. J. Food Microbiol. 2012, 156, 133–140. [Google Scholar] [CrossRef]
- Orlofsky, E.; Bernstein, N.; Sacks, M.; Vonshak, A.; Benami, M.; Kundu, A.; Maki, M.; Smith, W.; Wuertz, S.; Shapiro, K.; et al. Comparable levels of microbial contamination in soil and on tomato crops after drip irrigation with treated wastewater or potable water. Agric. Ecosyst. Environ. 2016, 215, 140–150. [Google Scholar] [CrossRef]
- Sheikh, B. Recycled Water for Irrigation of Edible Crops. 2015, pp. 1–48. Available online: http://www.denverwater.org/docs/assets/D37B8FE5-155D-01CB-0C6B47FCC5B59221/recycled-water-edible-crop-white-paper.pdf (accessed on 18 March 2021).
- Mechri, B.; Ben Mariem, F.; Baham, M.; Ben Elhadj, S.; Hammami, M. Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2008, 40, 152–161. [Google Scholar] [CrossRef]
- Asawa, G.L. Irrigation and Water Resources Engineering; New Age International: New Delhi, India, 2006. [Google Scholar]
- Levantesi, C.; La Mantia, R.; Masciopinto, C.; Böckelmann, U.; Ayuso-Gabella, M.N.; Salgot, M.; Tandoi, V.; Van Houtte, E.; Wintgens, T.; Grohmann, E. Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe. Sci. Total Environ. 2010, 408, 4923–4930. [Google Scholar] [CrossRef]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Balkhair, K.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef] [Green Version]
- Alghobar, M.A.; Suresha, S. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. J. Saudi Soc. Agric. Sci. 2017, 16, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Gatta, G.; Gagliardi, A.; Disciglio, G.; Lonigro, A.; Francavilla, M.; Tarantino, E.; Giuliani, M.M. Irrigation with treated municipal wastewater on artichoke crop: Assessment of soil and yield heavy metal content and human risk. Water 2018, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Chaoua, S.; Boussaa, S.; El Gharmali, A.; Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 429–436. [Google Scholar] [CrossRef]
- Oron, G.; Armon, R.; Mandelbaum, R.; Manor, Y.; Campos, C.; Gillerman, L.; Salgot, M.; Gerba, C.; Klein, I.; Enriquez, C. Secondary wastewater disposal for crop irrigation with minimal risks. Water Sci. Technol. 2001, 43, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Tsigoida, A.; Argyrokastritis, I. The effect of sub-irrigation with untreated and treated municipal wastewater on organic matter and nitrogen content in two different soils. Glob. NEST J. 2019, 21, 389–398. [Google Scholar]
- Breedveld, G.D.; Roseth, R.; Sparrevik, M.; Hartnik, T.; Hem, L.J. Persistence of the de-icing additive benzotriazole at an abandoned airport. Water Air Soil Pollut. Focus 2003, 3, 91–101. [Google Scholar] [CrossRef]
- Underwood, J.C.; Harvey, R.W.; Metge, D.W.; Repert, D.A.; Baumgartner, L.K.; Smith, R.; Roane, T.M.; Barber, L.B. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ. Sci. Technol. 2011, 45, 3096–3101. [Google Scholar] [CrossRef] [PubMed]
- Durán-Alvarez, J.C.; Becerril-Bravo, E.; Castro, V.S.; Jiménez, B.; Gibson, R. The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography-mass spectrometry. Talanta 2009, 78, 1159–1166. [Google Scholar] [CrossRef]
- Gibson, R.; Durán-Álvarez, J.C.; Estrada, K.L.; Chávez, A.; Cisneros, B.J. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 2010, 81, 1437–1445. [Google Scholar] [CrossRef]
- Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceuticals and personal care product ingredients. Environ. Sci. Technol. 2016, 50, 525–541. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hyland, K.C.; Stushnoff, C.; Dickenson, E.R.V.; Higgins, C.P. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ. Sci. Technol. 2014, 48, 14361–14368. [Google Scholar] [CrossRef]
- Goldstein, M.; Shenker, M.; Chefetz, B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ. Sci. Technol. 2014, 48, 5593–5600. [Google Scholar] [CrossRef]
- Christou, A.; Agüera, A.; Bayona, J.M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C.M.; Michael, C.; Revitt, M.; Schröder, P.; et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—A review. Water Res. 2017, 123, 448–467. [Google Scholar] [CrossRef] [Green Version]
- Grossberger, A.; Hadar, Y.; Borch, T.; Chefetz, B. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 2014, 185, 168–177. [Google Scholar] [CrossRef]
- Siemens, J.; Huschek, G.; Siebe, C.; Kaupenjohann, M. Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City—Mezquital Valley. Water Res. 2008, 42, 2124–2134. [Google Scholar] [CrossRef]
- Lesser, E.; Mora, A.; Moreau, C.; Mahlknecht, J.; Hernández-Antonio, A.; Ramírez, A.; Barrios-Piña, H. Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system: Mezquital Valley, Mexico. Chemosphere 2018, 198, 510–521. [Google Scholar] [CrossRef]
- Fries, E.; Mahjoub, O.; Mahjoub, B.; Berrehouc, A.; Lions, J.; Bahadir, M. Occurrence of contaminants of emerging concern (CEC) in conventional and non-conventional water resources in Tunisia. Fresenius Environ. Bull. 2016, 25, 3317–3339. [Google Scholar]
- Rodriguez-Manzano, J.; Alonso, J.; Ferrús, M.; Moreno, Y.; Amorós, I.; Calgua, B.; Hundesa, A.; Guerrero-Latorre, L.; Carratala, A.; Rusiñol, M. Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Sci. Technol. 2012, 66, 2517–2523. [Google Scholar] [CrossRef]
- Taran-Benshoshan, M.; Ofer, N.; Dalit, V.; Aharoni, A.; Revhun, M.; Nitzan, Y.; Nasser, A. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment. J. Environ. Sci. Health Part A 2015, 50, 1265–1273. [Google Scholar] [CrossRef]
- Nasser, A.M. Removal of Cryptosporidium by wastewater treatment processes: A review. J. Water Health 2016, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ramo, A.; Del Cacho, E.; Sánchez-Acedo, C.; Quílez, J. Occurrence and genetic diversity of Cryptosporidium and Giardia in urban wastewater treatment plants in north-eastern Spain. Sci. Total Environ. 2017, 598, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Feng, Y.; Hu, Y.; Villegas, E.N.; Xiao, L. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. J. Water Health 2016, 14, 411–423. [Google Scholar] [CrossRef]
- Plutzer, J.; Karanis, P. Neglected waterborne parasitic protozoa and their detection in water. Water Res. 2016, 101, 318–332. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Jiang, J.; Singh, A.; Xiao, L. Distribution of Giardia duodenalis genotypes and subgenotypes in raw urban wastewater in Milwaukee, Wisconsin. Appl. Environ. Microbiol. 2004, 70, 3776–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spanakos, G.; Biba, A.; Mavridou, A.; Karanis, P. Occurrence of Cryptosporidium and Giardia in recycled waters used for irrigation and first description of Cryptosporidium parvum and C. muris in Greece. Parasitol. Res. 2015, 114, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Domenech, E.; Amorós, I.; Moreno, Y.; Alonso, J.L. Cryptosporidium and Giardia safety margin increase in leafy green vegetables irrigated with treated wastewater. Int. J. Hyg. Environ. Health 2018, 221, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Bichai, F.; López, M.I.P.; Ibañez, P.F. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res. 2012, 46, 6040–6050. [Google Scholar] [CrossRef]
- Cirelli, G.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C.M. Treated municipal wastewater reuse in vegetable production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Jang, T.; Jung, M.; Lee, E.; Park, S.; Lee, J.; Jeong, H. Assessing environmental impacts of reclaimed wastewater irrigation in paddy fields using bioindicator. Irrig. Sci. 2013, 31, 1225–1236. [Google Scholar] [CrossRef]
- Christou, A.; Maratheftis, G.; Elia, M.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits. Agric. Water Manag. 2016, 173, 48–54. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Beneduce, L.; Gagliardi, A.; Disciglio, G.; Lonigro, A.; Tarantino, E. Reuse of treated municipal wastewater for globe artichoke irrigation: Assessment of effects on morpho-quantitative parameters and microbial safety of yield. Sci. Hortic. 2016, 213, 55–65. [Google Scholar] [CrossRef]
- Li, J.; Wen, J. Effects of water managements on transport of E. coli in soil-plant system for drip irrigation applying secondary sewage effluent. Agric. Water Manag. 2016, 178, 12–20. [Google Scholar] [CrossRef]
- Lonigro, A.; Rubino, P.; Lacasella, V.; Montemurro, N. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agric. Water Manag. 2016, 174, 66–73. [Google Scholar] [CrossRef]
- Shock, C.C.; Reitz, S.R.; Roncarati, R.A.; Kreeft, H.; Klauzer, J.C. Drip vs. furrow irrigation in the delivery of Escherichia coli to onions. Appl. Eng. Agric. 2016, 32, 235–244. [Google Scholar]
- World Health Organization (WHO). Guidelines for drinking-water quality: First addendum to the fourth edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Cornel, P.; Mohr, M.; Nocker, A.; Selinka, H.; Schramm, E.; Stange, C.; Drewes, J. Relevanz mikrobiologischer Parameter für die Wasserwiederverwendung. Fact Sheet zum WavE-Querschnittsthema „Risikomanagement in der Wasserwiederverwendung“; DECHEMA e.V.: Frankfurt, Germany, 2018. [Google Scholar]
- Goldberg, D.; Gornat, B.; Bar, Y. The distribution of roots, water and minerals as a result of trickle irrigation. 1974. Available online: Agris.fao.org (accessed on 25 March 2021).
- Papadopoulos, I.; Stylianou, Y. Trickle irrigation of sunflower with municipal wastewater. Agric. Water Manag. 1991, 19, 67–75. [Google Scholar] [CrossRef]
- Martijn, E.-J.; Kampf, R.; Claassen, T.; Mels, A. Use of the Waterharmonica for conversion of treated waste water into a natural resource in the developing world. Ecol. Eng. Integr. Water Manag. 2003. Available online: https://www.researchgate.net/profile/Ruud-Kampf/publication/301660249_Wabo0792_2003_Waterharmonica_developing_world_2003_Martijn_et_al/links/57208ea708aefa64889bfc0d/Wabo0792-2003-Waterharmonica-developing-world-2003-Martijn-et-al.pdf (accessed on 25 March 2021).
- Li, Y.; Zhou, B.; Liu, Y.; Jiang, Y.; Pei, Y.; Shi, Z. Preliminary surface topographical characteristics of biofilms attached on drip irrigation emitters using reclaimed water. Irrig. Sci. 2012, 31, 557–574. [Google Scholar] [CrossRef]
- Feigin, A.; Ravina, I.; Shalhevet, J. Irrigation with Treated Sewage Effluent: Management for Environmental Protection; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Adamala, S.; Raghuwanshi, N.; Mishra, A. Development of surface irrigation systems design and evaluation software (SIDES). Comput. Electron. Agric. 2014, 100, 100–109. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Paredes, P.; Gonçalves, J.M.; Alves, I.; Pereira, L.S. Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agric. Water Manag. 2013, 126, 85–96. [Google Scholar] [CrossRef]
- Sams, J.I.; Veloski, G.; Smith, B.D.; Minsley, B.J.; Engle, M.A.; Lipinski, B.A.; Hammack, R.; Zupancic, J.W. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming. Int. J. Coal Geol. 2014, 126, 128–139. [Google Scholar] [CrossRef]
- Badr, A.E.; Abuarab, M.E. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Irrig. Sci. 2013, 31, 317–332. [Google Scholar] [CrossRef]
- NRCS. National Engineering Handbook, Irrigation Guide; US Department of Agriculture: Washington, DC, USA, 1997; Volume 754. [Google Scholar]
- Schwankl, L.; Prichard, T.; Hanson, B.; Wellman, I. Costs of Pressurized Irrigation Systems for Tree Crops; University of California, Division of Agriculture and Natural Resources: St Davis, CA, USA, 2000. [Google Scholar]
- Sanchez, I.; Faci, J.; Zapata, N. The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers. Agric. Water Manag. 2011, 102, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-J.; Kang, Y. Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain. Agric. Water Manag. 2006, 84, 3–19. [Google Scholar] [CrossRef]
- Darouich, H.M.; Pedras, C.M.; Gonçalves, J.M.; Pereira, L.S. Drip vs. surface irrigation: A comparison focussing on water saving and economic returns using multicriteria analysis applied to cotton. Biosyst. Eng. 2014, 122, 74–90. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, S.; Liu, J. Effect of sprinkler head geometrical parameters on hydraulic performance of fluidic sprinkler. J. Irrig. Drain. Eng. 2012, 138, 1019–1026. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaushish, S.P.; Kumar, A.; Murthy, T.S.; Samuel, J.C. Micro-irrigation. In Proceedings of the International Conference on Micro and Sprikler Irrigation Systems, Jalgaon, India, 8–10 February 2000; pp. 8–10. [Google Scholar]
- Lamm, F.R. Advantages and disadvantages of subsurface drip irrigation. In Proceedings of the International Meeting on Advances in Drip/Micro Irrigation, Puerto de La Cruz, Tenerife, Canary Islands, 2–5 December 2002; p. 13. [Google Scholar]
- Hamilton, A.J.; Boland, A.-M.; Stevens, D.; Kelly, J.; Radcliffe, J.; Ziehrl, A.; Dillon, P.; Paulin, B. Position of the Australian horticultural industry with respect to the use of reclaimed water. Agric. Water Manag. 2005, 71, 181–209. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agric. Water Manag. 2010, 97, 2001–2008. [Google Scholar] [CrossRef]
- Qi, Z.; Zhang, T.; Zhou, L.; Feng, H.; Zhao, Y.; Si, B. Combined effects of mulch and tillage on soil hydrothermal conditions under drip irrigation in Hetao Irrigation District, China. Water 2016, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Oron, G.; Salgot, M.; Gillerman, L. Behaviour of the fecal pollution indicators in a soil irrigated with treated wastewater under onsurface and subsurface drip irrigation. Water Sci. Technol. 2000, 42, 75–79. [Google Scholar] [CrossRef]
- Kouznetsov, M.Y.; Pachepsky, Y.A.; Gillerman, L.; Gantzer, C.J.; Oron, G. Microbial transport in soil caused by surface and subsurface drip irrigation with treated wastewater. Int. Agrophys. 2004, 18, 239–247. [Google Scholar]
- Najafi, P. Effects of using subsurface drip irrigation and treated municipal waste water in irrigation of tomato. Pak. J. Biol. Sci. 2006, 9, 2672–2676. [Google Scholar] [CrossRef]
- Sacks, M.; Bernstein, N. Utilization of reclaimed wastewater for irrigation of field-grown melons by surface and subsurface drip irrigation. Isr. J. Plant Sci. 2011, 59, 159–169. [Google Scholar] [CrossRef]
- Singh, D.; Patel, N.; Gadedjisso-Tossou, A.; Patra, S.; Singh, N.; Singh, P.K. Incidence of Escherichia coli in Vegetable Crops and Soil Profile Drip Irrigated with Primarily Treated Municipal Wastewater in a Semi-Arid Peri Urban Area. Agriculture 2020, 10, 291. [Google Scholar] [CrossRef]
- Mendonça, R.B.; Villas Bôas, R.L.; de Godoy, L.J.G.; de Sousa, R.L. Lawn irrigation with domestic wastewater by subsurface drip or sprinkling. Ornam. Hortic. 2020, 26, 486–498. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N.; Nain, L. Impact of municipal wastewater reuse through micro-irrigation system on the incidence of coliforms in selected vegetable crops. J. Environ. Manag. 2019, 251, 109532. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Disciglio, G.; Tarantino, E.; Beneduce, L.; Giuliani, M.M. Wastewater Reuse in Agriculture: Effects on Soil-Plant System Properties. In The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2020; Volume 1–24. [Google Scholar]
Characteristic | Sources |
---|---|
Physical properties | |
Color | Domestic and industrial wastes, natural decay of organic materials |
Odor | Decomposing wastewater, industrial wastes |
Solids | Domestic water supply, domestic and industrial wastes, soil erosion, inflow infiltration |
Temperature | Domestic and industrial wastes |
Chemical constituents: | |
Organic | |
Carbohydrates | Domestic, commercial, and industrial wastes |
Fats, oils, and grease | Domestic, commercial, and industrial wastes |
Pesticides | Agricultural wastes |
Phenols | Industrial wastes |
Proteins | Domestic, commercial, and industrial wastes |
Priority pollutants | Domestic, commercial, and industrial wastes |
Surfactants | Domestic, commercial, and industrial wastes |
Volatile organic compounds | Domestic, commercial, and industrial wastes |
Other | The natural decay of organic materials |
Inorganic | |
Alkalinity | Domestic wastes, domestic water supply, groundwater infiltration |
Chlorides | Domestic wastes, domestic water supply, groundwater infiltration, water softeners |
Heavy metals | Industrial wastes |
Nitrogen | Domestic and agricultural wastes |
Acidity | Domestic, commercial, and industrial wastes |
Phosphorus | Domestic, commercial, and industrial wastes natural runoff |
Sulfur | Domestic water supply, domestic and industrial wastes |
Toxic compounds | Industrial wastes |
Gases | |
Hydrogen sulfide | Decomposition of domestic wastes |
Methane | Decomposition of domestic wastes |
Oxygen | Domestic water supply, surface-water infiltration |
Biological constituents: | |
Animals | Open watercourses and treatment plants |
Plants | Open watercourses and treatment plants |
Bacteria | Domestic wastes, surface water infiltration, treatment plants |
Archae | Domestic wastes, surface-water infiltration, treatment plants |
Protista | Domestic wastes, treatment plants |
Viruses | Domestic wastes |
Contaminants | Reason for Importance |
---|---|
Suspended solids | Suspended solids can lead to the development of sludge deposits and anaerobic conditions when untreated wastewater is discharged into the aquatic environment. |
Biodegradable organics | Composed principally of proteins, carbohydrates, and fats, biodegradable organics are measured most commonly in terms of BOD (biochemical oxygen demand) and COD (chemical oxygen demand). If discharged untreated to the environment, their biological stabilization can lead to the depletion of natural oxygen resources and the development of septic conditions. |
Pathogens | Infectious diseases can be transmitted by the pathogenic organisms in wastewater. |
Nutrients | Both nitrogen and phosphorus, along with carbon, are essential nutrients for growth. When discharged to the aquatic environment, these nutrients can lead to the growth of undesirable aquatic life. When discharged in excessive amounts on land, they can also lead to the pollution of groundwater. |
Refractory organics | These organics tend to resist conventional methods of wastewater treatment. Typical examples include surfactants, phenols, and agricultural pesticides. |
Heavy metals | Heavy metals are usually added to wastewater from commercial and industrial activities and may have to be removed if the wastewater is to be reused. |
Dissolved inorganic solids | Inorganic constituents such as calcium, sodium, and sulfate are added to the original domestic water supply as a result of water use and may have to be removed if the wastewater is to be reused. |
Country | Total Area (1000 ha) | Agricultural Area (1000 ha) | Total Agricultural Area (%) | Generated Municipal Wastewater (109 m3 year−1) | Collected Municipal Wastewater (109 m3 year−1) | Treated Municipal Wastewater (109 m3 year−1) | Treated Wastewater Used for Irrigation (109 m3 year−1) |
---|---|---|---|---|---|---|---|
Australia | 774,122 | 47,307 | 6.11 | - | - | 2 | 0.28 |
Brazil | 851,577 | 86,589 | 10.1 | - | - | 3.1 | 0.008 |
China | 960,001 | 122,524 | 12.7 | 48.51 | 31.14 | 42.37 | 1.26 |
Germany | 35,738 | 12,074 | 33.7 | - | 5.287 | 5.213 | 5.183 |
India | 328,726 | 169,360 | 51.5 | - | - | 4.416 | - |
Italy | 30,134 | 9121 | 30.2 | 3.926 | - | 3.902 | 0.087 |
Jordan | 8932 | 322 | 3.6 | - | 0.115 | 0.113 | 0.103 |
Pakistan | 79,610 | 31,252 | 39.2 | 3.06 | - | - | - |
South Africa | 121,909 | 12,913 | 10.5 | 3.542 | 2.769 | 1.919 | - |
Turkey | 78,535 | 23,944 | 30.4 | 4.297 | - | 3.483 | - |
UK | 24,361 | 6279 | 25.7 | 4.089 | 4.048 | 4.048 | - |
USA | 983,151 | 157,205 | 15.9 | 60.41 | 47.24 | 45.35 | - |
Canada | 998,467 | 50,846 | 5.09 | 6.613 | 5.819 | 5.632 | - |
Sweden | 44,742 | 2608 | 5.82 | 0.671 | - | 0.436 | - |
Possible Irrigation Problem | Units | Degree of Restriction on Use | |||
---|---|---|---|---|---|
None | Slight to Moderate | Severe | |||
Salinity (Affects Crop Water Availability) | |||||
ECw 1 | dS m−1 | <0.7 | 0.7–3 | >3 | |
(or) | |||||
Total dissolved solids (TDS) | mg L−1 | <450 | 450–2000 | >2000 | |
Infiltration (affects infiltration rate of water into the soil. Evaluate using ECw and SAR together) | |||||
SAR | =0–3 and EC | >0.7 | 0.7–0.2 | <0.2 | |
=3–6 | >1.2 | 1.2–0.3 | <0.3 | ||
=6–12 | >1.9 | 1.9–0.5 | <0.5 | ||
=12–20 | >2.9 | 2.9–1.3 | <1.3 | ||
=20–40 | >5 | 5–2.9 | <2.9 | ||
Specific Ion Toxicity (affects sensitive crops) | |||||
Sodium (Na) | |||||
surface irrigation | SAR | <3 | 3–9 | >9 | |
sprinkler irrigation | me L−1 | <3 | >3 | ||
Chloride (Cl) | |||||
surface irrigation | me L−1 | <4 | 4–10 | >10 | |
sprinkler irrigation | me L−1 | <3 | >3 | ||
Boron (B) | mg L−1 | <0.7 | 0.7–3 | >3 | |
Trace Elements | |||||
Miscellaneous Effects (affects susceptible crops) | |||||
Nitrogen (NO3-N) 2 | mg L−1 | <5 | 5–30 | >30 | |
Bicarbonate (HCO3) (overhead sprinkling only) | me L−1 | <1.5 | 1.5–8.5 | >8.5 | |
pH | Normal Range 6.5–8.4 |
Guideline | Units | Chinese standard for Agricultural Irrigation (2007) | Chinese Standard for Landscape Irrigation (2010) |
---|---|---|---|
Sodium adsorption ratio (SAR) | - | - | ≤9 |
Total dissolved solids (TDS) | mg L−1 | ≤1000; ≤2000 a | ≤1000 |
Suspended solids (SS) | mg L−1 | ≤60; ≤80; ≤90 b | |
pH | - | 5.5–8.5 | 6–9 |
BOD | mg L−1 | ≤40; ≤60; 80; ≤ 100 b | ≤20 |
COD | mg L−1 | ≤100; ≤150; ≤180; ≤200 b | |
Intestinal nematodes | Eggs L−1 | ≤2 | ≤1; ≤2 e |
Fecal coliforms (FC) | CFU 100 mL−1 | ≤2000; ≤4000 c | ≤20; ≤100 e |
Heavy metals (HM) and specific ion toxicity | |||
Chloride (Cl) | mg L−1 | ≤350 | ≤250 |
Sulfide (S) | mg L−1 | ≤1 | |
Chlorine residual | mg L−1 | ≤1; 1.5 d | 0.2–0.5 |
Petroleum | mg L−1 | ≤1; ≤10 | |
Hydrargyrum (Hg) | mg L−1 | ≤0.001 | ≤0.001 |
Cadmium (Cd) | mg L−1 | ≤0.01 | ≤0.01 |
Arsenic (As) | mg L−1 | ≤0.05; ≤0.1 d | ≤0.05 |
Chromium (Cr) | mg L−1 | ≤0.1 | ≤0.1 |
Lead (Pb) | mg L−1 | ≤0.2 | ≤0.2 |
Concentration in Water (µg L−1) | Concentration in Cropland Soils (mg L−1) | |||
---|---|---|---|---|
GW a | TW a | GW Irrigated | TW Irrigated | |
As | 1.92 | 1.5 | 9.51 | 8.09 |
Cd | 0.022 | 0.024 | 0.13 | 0.16 |
Cu | 2.66 | 4.47 | 29.17 | 20.55 |
Cr | 1.84 | 1.13 | 56.17 | 57.2 |
Pb | 0.75 | 1.02 | 15.9 | 17.7 |
Zn | 12.9 | 29.2 | 65.31 | 53.03 |
Constituent | Long-Term Use a (mg L−1) | Short-Term Use b (mg L−1) |
---|---|---|
Aluminum (Al) | 5 | 20 |
Arsenic (As) | 0.10 | 2 |
Beryllium (Be) | 0.10 | 0.50 |
Boron (B) | 0.75 | 2 |
Cadmium (Cd) | 0.01 | 0.05 |
Chromium (Cr) | 0.10 | 1 |
Cobalt (Co) | 0.05 | 5 |
Copper (Cu) | 0.20 | 5 |
Fluoride (F−) | 1 | 15 |
Iron (Fe) | 5 | 20 |
Lead (Pb) | 5 | 10 |
Lithium (Li) | 2.50 | 2.50 |
Manganese (Mg) | 0.20 | 10 |
Molybdenum (Mo) | 0.01 | 0.05 |
Nickel (Ni) | 0.20 | 2.00 |
Selenium (Se) | 0.02 | 0.02 |
Vanadium (V) | 0.10 | 1 |
Zinc (Zn) | 2 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. https://doi.org/10.3390/w13111527
Hashem MS, Qi X. Treated Wastewater Irrigation—A Review. Water. 2021; 13(11):1527. https://doi.org/10.3390/w13111527
Chicago/Turabian StyleHashem, Mahmoud S., and Xuebin Qi. 2021. "Treated Wastewater Irrigation—A Review" Water 13, no. 11: 1527. https://doi.org/10.3390/w13111527
APA StyleHashem, M. S., & Qi, X. (2021). Treated Wastewater Irrigation—A Review. Water, 13(11), 1527. https://doi.org/10.3390/w13111527