Identifying Microbial Distribution Drivers of Archaeal Community in Sediments from a Black-Odorous Urban River—A Case Study of the Zhang River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Methods
2.2. Physicochemical Parameter and Heavy Metal Analysis
2.3. DNA Extraction and Sequence Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters and Metal Concentrations
3.2. Alpha Diversity of Archaeal Community
3.3. Archaeal Community Composition and Beta Diversity
3.3.1. Archaeal Community Composition
3.3.2. Beta Diversity
3.4. Influences of Environmental Factors on the Archaeal Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Yuan, S.; Tang, L.; Pan, X.; Pu, X.; Li, R.; Shen, C. Contribution of heavy metal in driving microbial distribution in a eutrophic river. Sci. Total Environ. 2020, 712, 136295. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Huang, C. Current status and future tendency of lake eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar]
- Hoellein, T.J.; McCormick, A.R.; Hittie, J.; London, M.G.; Scott, J.W.; Kelly, J.J. Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Freshw. Sci. 2017, 36, 491–507. [Google Scholar] [CrossRef]
- Rathour, R.; Gupta, J.; Kumar, M.; Hiloidhari, M.; Mehrotra, A.K.; Thakur, I.S. Metagenomic Sequencing of Microbial Communities from Brackish Water of Pangong Lake of the Northwest Indian Himalayas. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2017, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pascazio, S.; Crecchio, C.; Scagliola, M.; Mininni, A.N.; Dichio, B.; Xiloyannis, C.; Sofo, A. Microbial-based soil quality indicators in irrigated and rainfed soil portions of Mediterranean olive and peach orchards under sustainable management. Agric. Water Manag. 2018, 195, 172–179. [Google Scholar] [CrossRef]
- Goshu, G.; Koelmans, A.A.; de Klein, J.J.M. Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in tropical water. Environ. Pollut. 2021, 276, 116693. [Google Scholar] [CrossRef]
- Nasser, A.; sasi, S.; Nitzan, Y. Coliphages as Indicators for the Microbial Quality of Treated Wastewater Effluents. Food Environ. Virol. 2021. [Google Scholar] [CrossRef]
- Xia, F.; Zeleke, J.; Sheng, Q.; Wu, J.-H.; Quan, Z.-X. Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary. J. Microbiol. 2015, 53, 311–320. [Google Scholar] [CrossRef]
- Yin, X.; Chen, L.; Tang, D.; Zhang, Y.; Liu, G.; Hua, Y.; Wan, X.; Zhou, W.; Zhao, J.; Zhu, D. Seasonal and vertical variations in the characteristics of the nitrogen-related functional genes in sediments from urban eutrophic lakes. Appl. Soil Ecol. 2019, 143, 80–88. [Google Scholar] [CrossRef]
- Li, Z.; Jin, W.; Liang, Z.; Yue, Y.; Lv, J. Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone. J. Environ. Sci. 2013, 25, 1195–1205. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Yin, H.; Jin, W.; Li, H.; He, Z. Urban river pollution control in developing countries. Nat. Sustain. 2019, 2, 158–160. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Zhang, W.; Wang, C.; Wang, P.; Niu, L.; Du, J.; Gao, Y. Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river. J. Environ. Manag. 2019, 237, 433–441. [Google Scholar] [CrossRef]
- Liu, Z.; Iqbal, M.; Zeng, Z.; Lian, Y.; Zheng, A.; Zhao, M.; Li, Z.; Wang, G.; Li, Z.; Xie, J. Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microb. Pathog. 2020, 142, 104101. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, X.; Zhao, H.; Tang, J.; Jiang, G.; Li, Z.; Li, X.; Chen, S.; Zou, S.; Dong, K.; et al. Spatial distribution and functional profile of the bacterial community in response to eutrophication in the subtropical Beibu Gulf, China. Mar. Pollut. Bull. 2020, 161, 111742. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, X.; Xi, R.; Long, Y.; Kou, J.; Liu, X. Characteristics of Nutrients and Eutrophication Assessment of Shenzhen Offshore Waters. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 062038. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, Y.; Xu, Y.; Duan, G.; Huang, M.; Peng, J. Adaptive Variations of Sediment Microbial Communities and Indication of Fecal-Associated Bacteria to Nutrients in a Regulated Urban River. Water 2020, 12, 1344. [Google Scholar] [CrossRef]
- Zhang, W.; Lei, M.; Li, Y.; Wang, P.; Wang, C.; Gao, Y.; Wu, H.; Xu, C.; Niu, L.; Wang, L.; et al. Determination of vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river. Water Res. 2019, 161, 98–107. [Google Scholar] [CrossRef]
- Lei, M.; Li, Y.; Zhang, W.; Niu, L.; Wang, L.; Zhang, H. Identifying ecological processes driving vertical and horizontal archaeal community assemblages in a contaminated urban river. Chemosphere 2020, 245, 125615. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.; Zhang, Z.; Chang, S.; Huang, D.; Chen, S.; Guo, Q.; Xie, S.; Bing, Y. Response of ammonia-oxidizing archaea to heavy metal contamination in freshwater sediment. J. Environ. Sci. China 2019, 77, 392–399. [Google Scholar] [CrossRef]
- Fu, L.; Lu, Y.; Tang, L.; Hu, Y.; Xie, Q.; Zhong, L.; Fan, C.; Liu, Q.; Zhang, S. Dynamics of methane emission and archaeal microbial community in paddy soil amended with different types of biochar. Appl. Soil Ecol. 2021, 162. [Google Scholar] [CrossRef]
- Kevorkian, R.T.; Callahan, S.; Winstead, R.; Lloyd, K.G. ANME-1 archaea may drive methane accumulation and removal in estuarine sediments. Environ. Microbiol. Rep. 2021, 13, 185–194. [Google Scholar] [CrossRef]
- Watanabe, T.; Kimura, M.; Asakawa, S. Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biol. Biochem. 2007, 39, 2877–2887. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Li, Q.; Han, T.; Xie, J.; Hu, Y.; Chai, L. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 2013, 70, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Kafaei, R.; Mahmoodi, M.; Sanati, A.M.; Vakilabadi, D.R.; Arfaeinia, H.; Dobaradaran, S.; Sorial, G.A.; Ramavandi, B.; Boffito, D.C. Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environ. Nanotechnol. Monit. Manag. 2021, 15. [Google Scholar] [CrossRef]
- Elsagh, A.; Jalilian, H.; Ghaderi Aslshabestari, M. Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: Mercury pollution and environmental geochemical indices. Mar. Pollut. Bull. 2021, 167, 112314. [Google Scholar] [CrossRef]
- Lv, J.; Hu, R.; Wang, N.; Zhu, L.; Zhang, X.; Yuan, X.; Liu, B. Distribution and movement of heavy metals in sediments around the coastal areas under the influence of multiple factors: A case study from the junction of the Bohai Sea and the Yellow Sea. Chemosphere 2021, 278, 130352. [Google Scholar] [CrossRef] [PubMed]
- Soon, Y.K.; Kalra, Y.P. SHORT COMMUNICATION: A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can. J. Soil Sci. 1995, 75, 243–245. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000; Volume 30, pp. 265–267. [Google Scholar]
- Miao, L.; Yu, Y.; Adyel, T.M.; Wang, C.; Liu, Z.; Liu, S.; Huang, L.; You, G.; Meng, M.; Qu, H.; et al. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J. Hazard. Mater. 2021, 403, 123577. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, P.; Zhang, J.; Chen, F.; Yang, Y. Characteristics of distribution patterns of microbial biomass and community structures in the sediments from urban river. Acta Sci. Circumstantiae 2020, 40, 585–596. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2012, 362, 389–417. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, Y.-G.; Cavagnaro, T.R.; Chen, M.; Sun, J.; Chen, X.; Qiao, M. Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria? Plant Soil 2009, 324, 209–217. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Zhu, L.; Wang, J. Individual and combined effects of enrofloxacin and cadmium on soil microbial biomass and the ammonia-oxidizing functional gene. Sci. Total Environ. 2018, 624, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Mosier, A.C.; Francis, C.A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 2008, 10, 3002–3016. [Google Scholar] [CrossRef]
- Nahar, K.; Ali, M.M.; Khanom, A.; Alam, M.K.; Azad, M.A.K.; Rahman, M.M. Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh. Appl. Soil Ecol. 2020, 156. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Zheng, Y.-M.; Shen, J.-P.; Zhang, L.-M.; He, J.-Z. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ. Sci. Pollut. Res. 2010, 17, 1237–1244. [Google Scholar] [CrossRef] [Green Version]
- Ruyters, S.; Mertens, J.; Springael, D.; Smolders, E. Stimulated activity of the soil nitrifying community accelerates community adaptation to Zn stress. Soil Biol. Biochem. 2010, 42, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.F.; Liu, Y.R.; Sun, G.X.; Zheng, Y.M. Responses of soil ammonia oxidizers to a short-term severe mercury stress. J. Environ. Sci. China 2015, 38, 8–13. [Google Scholar] [CrossRef] [PubMed]
Sample | A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|---|
TN | 4997 ± 153 | 2013 ± 98.5 | 2115 ± 235 | 2693 ± 120 | 2228 ± 24.9 | 3294 ± 134 | 2974 ± 20.3 | 3077 ± 235 |
TP | 1681 ± 114 | 368 ± 27.0 | 728 ± 90.3 | 724 ± 7.41 | 501 ± 34.1 | 891 ± 72.4 | 947 ± 3.13 | 817 ± 11.0 |
NO3−-N | 104.0 ± 3.46 | 31.0 ± 1.40 | 47.0 ± 4.57 | 55.0 ± 4.64 | 37.0 ± 1.30 | 63.0 ± 0.82 | 57.0 ± 0.29 | 49.0 ± 4.75 |
NH4+-N | 388 ± 38.5 | 67.0 ± 19.0 | 168 ± 8.63 | 148 ± 59.4 | 87 ± 18.1 | 193 ± 7.46 | 132 ± 11.3 | 105 ± 10.6 |
pH | 7.36 ± 0.030 | 7.54 ± 0.000 | 7.42 ± 0.040 | 7.55 ± 0.020 | 7.57 ± 0.060 | 7.60 ± 0.060 | 7.56 ± 0.050 | 7.55 ± 0.030 |
TOC | 23.15 ± 0.400 | 14.82 ± 0.280 | 15.36 ± 0.020 | 17.76 ± 0.140 | 17.86 ± 0.620 | 18.81 ± 0.170 | 16.42 ± 0.110 | 18.04 ± 0.040 |
ORP | −23.0 ± 2.36 | −19.0 ± 1.89 | −38.0 ± 1.41 | −27.0 ± 6.13 | −26.0 ± 2.36 | −19.0 ± 3.77 | −29.0 ± 1.89 | −2.00 ± 0.00 |
Cr | 60.0 ± 0.24 | 100 ± 13.91 | 72.0 ± 6.85 | 69.0 ± 2.47 | 90.0 ± 8.88 | 47.0 ± 0.09 | 61.0 ± 9.27 | 55.0 ± 2.26 |
Ni | 35.0 ± 6.22 | 46.0 ± 3.94 | 36.0 ± 6.41 | 40.0 ± 10.8 | 49.0 ± 12.2 | 17.0 ± 1.29 | 23.0 ± 10.4 | 24.0 ± 1.25 |
Cu | 145 ± 85.85 | 52.0 ± 1.94 | 30.0 ± 7.15 | 44.0 ± 27.4 | 73.0 ± 35.6 | 18.0 ± 2.36 | 18.0 ± 7.12 | 21.0 ± 1.19 |
Zn | 240 ± 72.0 | 176 ± 33.7 | 153 ± 37.6 | 419 ± 114 | 538 ± 196 | 120 ± 23.3 | 194 ± 3.15 | 409 ± 135 |
As | 10.0 ± 1.02 | 10.0 ± 0.660 | 10.0 ± 0.340 | 12.0 ± 0.620 | 14.0 ± 5.01 | 13.0 ± 6.41 | 10.0 ± 3.23 | 11.0 ± 3.17 |
Cd | 0.480 ± 0.190 | 0.390 ± 0.100 | 0.120 ± 0.020 | 0.340 ± 0.240 | 1.10 ± 0.020 | 0.120 ± 0.020 | 0.160 ± 0.030 | 0.380 ± 0.160 |
Pb | 29.0 ± 5.45 | 28.0 ± 0.000 | 24.0 ± 3.12 | 29.0 ± 12.7 | 37.0 ± 2.43 | 20.0 ± 0.860 | 26.0 ± 2.37 | 27.0 ± 3.45 |
Hg | 0.158 ± 0.070 | 0.088 ± 0.020 | 0.046 ± 0.010 | 0.044 ± 0.020 | 0.101 ± 0.000 | 0.036 ± 0.010 | 0.035 ± 0.000 | 0.066 ± 0.020 |
Factors | RDA1 | RDA2 | R2 | p Values |
---|---|---|---|---|
Eh | 0.940 | 0.342 | 0.310 | 0.021 |
As | 0.050 | −0.999 | 0.266 | 0.024 |
TP | −0.795 | −0.606 | 0.240 | 0.058 |
Cr | 0.115 | 0.993 | 0.232 | 0.073 |
Cu | −0.979 | 0.206 | 0.195 | 0.100 |
Zn | 0.9560 | −0.282 | 0.090 | 0.400 |
Pb | 0.199 | 0.980 | 0.073 | 0.448 |
Cd | 0.112 | 0.994 | 0.068 | 0.490 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Zhao, J.; Xie, G.; Wang, Y.; Chen, Q.; Yao, Y. Identifying Microbial Distribution Drivers of Archaeal Community in Sediments from a Black-Odorous Urban River—A Case Study of the Zhang River Basin. Water 2021, 13, 1545. https://doi.org/10.3390/w13111545
Shen C, Zhao J, Xie G, Wang Y, Chen Q, Yao Y. Identifying Microbial Distribution Drivers of Archaeal Community in Sediments from a Black-Odorous Urban River—A Case Study of the Zhang River Basin. Water. 2021; 13(11):1545. https://doi.org/10.3390/w13111545
Chicago/Turabian StyleShen, Chao, Jiaqi Zhao, Guangwu Xie, Yulai Wang, Qiang Chen, and Yu Yao. 2021. "Identifying Microbial Distribution Drivers of Archaeal Community in Sediments from a Black-Odorous Urban River—A Case Study of the Zhang River Basin" Water 13, no. 11: 1545. https://doi.org/10.3390/w13111545
APA StyleShen, C., Zhao, J., Xie, G., Wang, Y., Chen, Q., & Yao, Y. (2021). Identifying Microbial Distribution Drivers of Archaeal Community in Sediments from a Black-Odorous Urban River—A Case Study of the Zhang River Basin. Water, 13(11), 1545. https://doi.org/10.3390/w13111545