Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources and Preprocessing
3.2. Research Methods
3.2.1. Theil-Sen Median Trend Analysis and Mann–Kendall Test
3.2.2. Stationarity Analysis and Co-Integration Analysis
Stationarity Analysis
Co-Integration Analysis
3.2.3. Correlation Analysis
3.2.4. Relationship between NDVI and Driving Factors
4. Results
4.1. Temporal and Spatial Variation in NDVI
4.1.1. Temporal Variation in NDVI
4.1.2. Spatial Variation in NDVI
4.1.3. Patterns of NDVI Change from 1999 to 2015
4.2. Relationship between NDVI and Climate Change
4.3. Relationship between NDVI and Topographic Factors
4.4. Relationship between NDVI and the Socio-Economy
4.4.1. Relationship of NDVI with Population and Economic Factors
4.4.2. Relationship between NDVI and Policy Factors
5. Discussion
5.1. Variation in NDVI and Its Relationship with Climatic Factors
5.2. Relationship between Dynamic Change in NDVI and Terrain Factors
5.3. Relationship between Dynamic Change in NDVI and Socio-Economic Factors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Test Type (C, T, K) | DW | ADF | 1% Critical Value | 5% Critical Value | Weather Stationarity | |
---|---|---|---|---|---|---|---|
Interannual scale | (C, T, 1) | 1.796 | −2.361 | −4.668 | −3.733 | No | |
(C, T, 1) | 2.107 | −4.174 | −4.728 | −3.760 | Yes | ||
(C, T, 1) | 1.951 | −3.571 | −4.668 | −3.733 | No | ||
(C, T, 1) | 2.284 | −5.992 | −4.728 | −3.760 | Yes | ||
(0, 0, 1) | 2.000 | −6.89 | −4.668 | −3.733 | No | ||
(C, T, 1) | 2.552 | −4.035 | −4.886 | −3.829 | Yes | ||
(C, T, 1) | 2.006 | −1.748 | −4.668 | −3.733 | No | ||
(C, T, 1) | 2.286 | −6.178 | −4.728 | −3.760 | Yes | ||
(0, 0, 1) | 1.833 | −3.953 | −4.728 | −3.760 | No | ||
(C, T, 1) | 2.299 | −5.326 | −4.800 | −3.791 | Yes | ||
Intermonth scale | (C, T, 1) | 1.723 | −2.289 | −4.632 | −3.715 | No | |
(C, T, 1) | 2.255 | −4.195 | −4.689 | −3.725 | Yes | ||
(C, T, 1) | 1.985 | −3.584 | −4.625 | −3.726 | No | ||
(C, T, 1) | 2.154 | −5.851 | −4.712 | −3.795 | Yes | ||
(0, 0, 1) | 2.121 | −5.963 | −4.635 | −3.785 | No | ||
(C, T, 1) | 2.622 | −4.251 | −4.721 | −3.802 | Yes | ||
H | (C, T, 1) | 1.981 | −1.685 | −4.735 | −3.703 | No | |
(C, T, 1) | 2.125 | −5.962 | −4.741 | −3.753 | Yes | ||
(0, 0, 1) | 1.781 | −3.652 | −4.712 | −3.758 | No | ||
(C, T, 1) | 2.354 | −4.855 | −4.785 | −3.788 | Yes |
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Dou, A.; Zhao, W.J.; Qu, X.Y.; Jiang, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar]
- Sheng, R.; Wan, L.H. Vegetation cover evolution and its response to climate change in Wuyiling Nation Nature Reserve. Acta Ecol. Sin. 2019, 39, 3243–3256. [Google Scholar]
- Zhu, L.J.; Meng, J.J.; Zhu, L.K. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Lindsey, A.J.; Craft, J.C.; Barker, D.J. Modeling canopy senescence to calculate soybean maturity date using NDVI. Crop Sci. 2020, 60, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Jonsson, P.; Eklundh, L.; Ardo, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, J.; Jiao, W.; Yao, F. A comparative analysis of the NDVI and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere. Geocarto Int. 2016, 33, 1–20. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 2002, 35, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Morawitz, D.F.; Blewett, T.M.; Cohen, A.; Alberti, M. Using NDVI to Assess Vegetative Land Cover Change in Central Puget Sound. Environ. Monit. Assess. 2006, 114, 85–106. [Google Scholar] [CrossRef]
- Ma, M.; Wang, J.; Wang, X.M. Research progress of vegetation interannual change and its relationship with climate based on remote sensing. Acta Remotica Sin. 2006, 3, 421–431. [Google Scholar]
- Li, S.S.; Yang, S.N.; Liu, X.F.; Liu, Y.X.; Shi, M.M. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region, central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Huang, Y.; Yu, B.F.; Wang, G.Q. Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecol. Eng. 2015, 76, 14–26. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yao, S.B.; Hou, M.Y.; Zhang, T.Y. Spatiotemporal variation of NDVI and its topographic differentiation effect in the middle and upper reaches of the Yangtze River Basin. Resour. Environ. Yangtze River Basin 2020, 29, 66–78. [Google Scholar]
- Rasmussen, S.O.; Andersen, K.K.; Svensson, A.M.; Steffensen, J.P.; Vinther, B.M.; Clausen, H.B.; Siggaard-Andersen, M.L.; Johnsen, S.L.; Larsen, L.B.; Dahl-Jensen, D.; et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Space Phys. 2006, 111, 907–923. [Google Scholar] [CrossRef] [Green Version]
- Bower, J.R.; Ichii, T. The red flying squid (Ommastrephes bartramii): A review of recent research and the fishery in Japan. Fish. Res. 2005, 76, 39–55. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Stisen, S.; Tucker, C. Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens. Environ. 2006, 101, 212–229. [Google Scholar] [CrossRef]
- Coban, H.O.; Koc, A.; Eker, M. Investigation on changes in complex vegetation coverage using multi-temporal Landsat data of Western Black Sea region-a case study. J. Environ. Biol. 2010, 31, 169–178. [Google Scholar]
- Tong, X.W.; Wang, K.L.; Brandt, M.; Yue, Y.M.; Liao, C.J.; Fensholt, R. Assessing future vegetation trends and restoration prospects in the karst regions of Southwest China. Remote Sens. 2016, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.H.; Wu, Z.F.; Chen, Y.B.; Yang, Z.W.; Francesco, M. Analysis on ecological environment change and urbanization characteristics of Yangtze River delta urban agglomeration based on Google Earth engine. Acta Ecol. Sin. 2021, 41, 717–729. [Google Scholar]
- Yuan, Z.; Yu, Z.Q.; Feng, Z.Y.; Xu, J.J.; Yin, J.; Yan, B.; Lei, H. Spatiotemporal characteristics of NDVI and its response to hydrothermal conditions in the Yangtze River Basin. Proc. Yangtze River Acad. Sci. 2019, 36, 7–15. [Google Scholar]
- Tao, S.; Kuang, T.T.; Peng, W.F.; Wang, G.J. Spatiotemporal changes and driving forces of NDVI in the upper reaches of the Yangtze river from 2000 to 2015: A case study of Yibin City. Acta Ecol. Sin. 2020, 40, 5029–5043. [Google Scholar]
- Yi, Y.; Hu, X.L.; Shi, M.C.; Kang, H.Z.; Wang, B.; Zhang, C.; Liu, C.J. Vegetation dynamics and its relationship with climate factors in the middle reaches of the Yangtze River Based on MODIS NDVI. Acta Ecol. Sin. 2021. [Google Scholar] [CrossRef]
- Hu, X.L.; Yi, Y.; Kang, H.Z.; Wang, B.; Shi, M.C.; Liu, C.J. Spatial and temporal change pattern and driving factors of land use in the middle reaches of the Yangtze River in recent 25 years. J. Ecol. 2019, 39, 1877–1886. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Hubei Provincial Bureau of Statistics. Statistical Bulletin of National Economic and Social Development of Hubei Province in 2015 [R/OL]. 2016. Available online: www.hubei.gov.cn/tzhb/touzi/lxhbtzzn/tzzn/lxhbzc/201602/t20160226794608.shtml (accessed on 10 April 2021).
- Hunan Provincial Bureau of Statistics. Statistical Bulletin of National Economic and Social Development of Hunan Province in 2015 [R/OL]. 2016. Available online: www.hunan.gov.cn/zfsj/tjgb/201604/t20160422_4832916.html (accessed on 10 April 2021).
- Jiangxi Provincial Bureau of Statistics. Statistical Bulletin of National Economic and Social Development of Jiangxi Province in 2015 [R/OL]. 2016. Available online: http://tjj.jiangxi.gov.cn/art/2016/11/24/art_38773_2343871.html (accessed on 10 April 2021).
- Sun, J.; Wang, X.; Chen, A.; Ma, Y.; Cui, M.; Piao, S. NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environ. Monit. Assess. 2011, 179, 1–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Xiao, J.F.; Williams, C.A.; Vikovskaya, I.; Bao, A. Spatiotemporal transition of institutional and socioeconomic impacts on vegetation productivity in Central Asia over last three decades. Sci. Total Environ. 2019, 658, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Zhang, Y.Q.; Zhang, X.Z.; Tian, J.; Abbas, S.; Luo, L.L.; Meresa, H.K. Both climate and socioeconomic drivers contribute in vegetation greening of the Loess Plateau. Sci. Bull. 2021, 66, 1160–1163. [Google Scholar] [CrossRef]
- State Forestry and Grassland Administration. China Forestry Statistical Yearbook 1999–2016; China Forestry Press: Beijing, China, 2016. [Google Scholar]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Wang, S.J.; Bai, X.Y.; Tan, Q. Factors affecting long-term trends in global NDVI. Forests 2019, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimates for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Granger, C.W.J. Some properties of time series data and their use in econometric model specification. J. Econom. 1981, 16, 121–130. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Weiss, A.A. Time Series Analysis of Error-Correcting Models. In Studies in Econometrics, Time Series, and Multivariate Statistics; Academic Press: New York, NY, USA, 1983; pp. 255–278. [Google Scholar]
- Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, D.C. Interannual growth dynamics of vegetation in the Kuparuk River watershed, Alaska based on the Normalized Difference Vegetation Index. Int. J. Remote Sens. 2003, 24, 3413–3425. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, G.; Ren, G.Y.; Liao, Y.M. Spatiotemporal variation characteristics of precipitation over the past 40 years in ten major river basins of China. J. Nat. Resour. 2005, 20, 637–643. [Google Scholar]
- Liu, Z.C.; Qu, Y.Y. Vegetation change and its response to climate change in Hunan Province based on SPOT-VGT data. J. Beijing For. Univ. 2019, 41, 84–91. [Google Scholar]
- Zhang, H.; Gong, Y.B.; Fu, W.Q.; Chen, Y.J.; Xu, Y.Y.; Cui, Y.X. Rainfall and runoff in low efficiency Pinus massoniana forests with different silvicultural prescriptions. J. Zhejiang A F Univ. 2018, 35, 29–34. (In Chinese) [Google Scholar]
- Yutong, X.; Baolei, J.; Xianwei, L.; Weiguo, H.; Zhigao, Z.; Guoliang, X. Fine root decomposition and nutrient release in Toona sinensis plantation under the reconstruction mode of low-efficiency cypress forest gaps. Chin. J. Appl. Environ. Biol. 2018, 24, 525–532. [Google Scholar]
- Yin, S.J.; Chen, X.L.; Wu, C.Q.; Yao, Y.J.; Wang, X.L. Temporal and spatial variation of vegetation cover in Jiangxi Province based on NDVI. J. Cent. China Norm. Univ. 2013, 47, 129–135. [Google Scholar]
- Li, Y. Vegetation Cover and National Agricultural Biomass Change in the Yangtze River Basin in Recent 20 Years Based on NDVI. Ph.D Thesis, Peking University, Beijing, China, 2004. [Google Scholar]
- Liu, X.; Wang, Z.; Zhang, L.; Fan, W.Y.; Yang, C.; Li, E.H.; Du, Y.; Wang, X.L. Inconsistent seasonal variation of antibiotics between surface water and groundwater in the Jianghan Plain: Risks and linkage to land uses. J. Environ. Sci. 2021, 109, 102–113. [Google Scholar] [CrossRef]
- Long, X.T.; Liu, F.; Zhou, X.; Pi, J.; Yin, W.; Li, F.; Huang, S.P.; Ma, F. Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake plain using GIS mapping. Chemosphere 2021, 369, 28698. [Google Scholar] [CrossRef]
- Han, Y.; Guo, X.; Jiang, Y.F.; Xu, Z.; Li, Z.L. Environmental factors influencing spatial variability of soil total phosphorus content in a small watershed in Poyang Lake Plain under different levels of soil erosion. CATENA 2020, 187, 104357. [Google Scholar] [CrossRef]
- Bao, G.; Bao, Y.; Sanjjava, A.; Qin, Z.; Zhou, Y.; Xu, G. NDVI-indicated long-term vegetation dynamics in Mongolia and their response to climate change at biome scale. Int. J. Climatol. 2016, 35, 4293–4306. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Mitchell, J.; Glenn, N.F.; Flores, A.N. Assessing a multi-platform data fusion technique in capturing spatiotemporal dynamics of heterogeneous dryland ecosystems in topographically complex terrain. Remote Sens. 2017, 9, 981. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread Climate Change in the Himalayas and Associated Changes in Local Ecosystems. PLoS ONE 2012, 7, 36741. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, S.R.; Dressler, K.A.; Hultstrand, D.M.; Bales, R.C.; Patterson, G. Temporal inconsistencies in coarse-scale snow water equivalent patterns: Colorado River Basin snow telemetry-topography regressions. Pirin. Rev. Ecol. Mont. 2012, 167, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, R.K.; Zhou, L.; Myneni, R.; Tucker, C.J.; Slayback, D.; Shabanov, N.V.; Pinzon, J. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett. 2003, 30, 2147. [Google Scholar] [CrossRef] [Green Version]
- José, J.M.; William, K.L. Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. J. Biogeogr. 2003, 25, 721–733. [Google Scholar]
- Yan, M.; He, L.; Wang, S.J.; Zheng, M.G.; Sun, L.Y.; Xu, J.X. Multi time scale vegetation cover change in the Yellow River Basin from 1982 to 2012 based on NDVI. Chin. J. Soil Water Conserv. 2018, 3, 86–94. [Google Scholar]
- Lu, H. Vegetation Cover Change and Its Driving Factors in the Yangtze River Basin. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2012. [Google Scholar]
- Wang, S.R.; Jin, X.C.; Zhao, H.C.; Wu, F.C. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China. Colloids Surf. A Physicochem. Eng. Asp. 2006, 273, 109–116. [Google Scholar] [CrossRef]
- Ping, K.; Granger, D.E.; Wu, F.Y.; Caffee, M.W.; Wang, Y.J.; Zhao, Y.J.; Zhao, X.T.; Zheng, Y. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth Planet. Sci. Lett. 2009, 278, 131–141. [Google Scholar]
- Fan, K.; Wang, H.J.; Choi, Y.-J. A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Chin. Sci. Bull. 2008, 53, 602–609. [Google Scholar] [CrossRef]
- Yamani, M.; Jaberi, M. The impact of vegetation cover and land use changes on the hillside morphodynamic in ahaar basin. ACM SIGSOFT Softw. Eng. Notes 2011, 36, 28–30. [Google Scholar]
- Zhang, A.J.; Chi, Z.; Fu, G.B.; Wang, B.D.; Bao, Z.X.; Zheng, H.X. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Huang, S.Z.; Zheng, X.D.; Ma, L.; Wang, H.; Huang, Q.; Leng, G.Y.; Meng, E.; Guo, Y. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. J. Hydrol. 2020, 584, 124687. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Y.; Wu, X. Advances of ecological engineering in China. Ecol. Eng. 1993, 2, 193–215. [Google Scholar] [CrossRef]
- Zhang, R.W.; Jia, W.Y.; Lu, B.Y. Emergence and development of agro-ecological engineering in China. Ecol. Eng. 1998, 11, 17–26. [Google Scholar] [CrossRef]
- Lu, H.F.; Zhang, H.S.; Qin, P.; Li, X.Z.; Campbell, D.E. Integrated emergy and economic evaluation of an ecological engineering system for the utilization of Spartina alterniflora. J. Clean. Prod. 2019, 247, 119592. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, X.; Liu, H.; Liu, G.D. Energy and eco-exergy evaluation of wetland reconstruction based on ecological engineering approaches in the three Gorges Reservoir, China. Ecol. Indic. 2021, 122, 107278. [Google Scholar] [CrossRef]
- Guan, X.H.; Ca, O.W.X. Study on the hatch date and growth of juvenile grass carp from middle reaches of the Yangtze River using daily increment technology. Acta Hydrobiol. Sin. 2007, 31, 18–23. [Google Scholar]
- Yan, G.; Jian-Ping, L.I.; Yun, L.I. Statistically downscaled summer rainfall over the middle-lower reaches of the Yangtze river. Atmos. Ocean. Sci. Lett. 2011, 4, 191–198. [Google Scholar] [CrossRef] [Green Version]
Variable | Test Type (C, T, K) | DW | ADF | 1% Critical Value | 5% Critical Value | Residual State |
---|---|---|---|---|---|---|
NDVI | (0, 0, 1) | / | −4.518 | −2.728 | −1.966 | stationarity |
T | (0, 0, 1) | / | −6.401 | −2.728 | −1.966 | stationarity |
P | (C, T, 1) | 2 | −6.89 | −4.668 | −3.733 | stationarity |
H | (0, 0, 1) | / | −3.917 | −2.728 | −1.966 | stationarity |
S | (0, 0, 1) | / | −5.262 | −2.728 | −1.964 | stationarity |
NDVI Trend Change | β Value | Z Value | Area Percentage % |
---|---|---|---|
Significant improvement | >0.0005 | <1.96 | 67.39 |
Slight improvement | >0.0005 | −1.96–1.96 | 22.59 |
No change | −0.0005–0.0005 | −1.96–1.96 | 3.20 |
Slight degradation | <−0.0005 | −1.96–1.96 | 5.27 |
Serious degradation | <−0.0005 | <−1.96 | 1.55 |
H0 | Inter-Monthly Scale | Inter-Annual Scale | ||||||
---|---|---|---|---|---|---|---|---|
NDVI-T | NDVI-P | NDVI-H | NDVI-S | NDVI-T | NDVI-P | NDVI-H | NDVI-S | |
Reject | 89.02 | 88.78 | 85.12 | 89.12 | 55.96 | 52.45 | 40.23 | 53.52 |
Accept | 10.98 | 10.22 | 14.88 | 10.88 | 44.04 | 47.55 | 59.77 | 46.48 |
NDVI-T | NDVI-P | NDVI-H | NDVI-S | ||||
---|---|---|---|---|---|---|---|
0.286 | 0.488 | 0.070 | 0.277 | −0.348 | −0.646 | −0.060 | −0.532 |
Climate Factors | Coefficient of Correlation with NDVI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
T0 | 0.437 | 0.127 | 0.385 | 0.327 | 0.056 | 0.335 | −0.060 | 0.561 * | −0.093 | −0.062 | −0.099 | 0.003 |
P0 | −0.730 ** | −0.111 | 0.391 | −0.265 | 0.221 | −0.375 | 0.140 | −0.294 | 0.587 * | 0.025 | 0.144 | −0.140 |
H0 | −0.447 | 0.212 | −0.033 | −0.344 | 0.023 | −0.533 * | 0.006 | −0.757 ** | 0.653 ** | −0.251 | −0.032 | −0.517 * |
S0 | 0.717 ** | −0.009 | 0.125 | 0.086 | −0.286 | 0.406 | −0.061 | 0.748 ** | −0.474 | 0.451 | −0.134 | 0.588 * |
T1 | 0.254 | 0.419 | −0.064 | −0.226 | −0.218 | 0.263 | −0.494 | −0.142 | 0.115 | 0.003 | 0.465 | 0.345 |
P1 | −0.048 | −0.638 ** | −0.037 | 0.288 | −0.045 | 0.181 | 0.483 | 0.182 | 0.114 | 0.567 * | −0.129 | 0.417 |
H1 | −0.219 | −0.438 | 0.306 | 0.312 | −0.202 | 0.064 | 0.055 | −0.130 | −0.210 | 0.536 * | −0.268 | 0.396 |
S1 | 0.096 | 0.624 ** | −0.133 | −0.695 ** | −0.142 | 0.004 | −0.141 | −0.035 | 0.143 | −0.535 * | 0.297 | −0.387 |
T2 | 0.060 | 0.175 | 0.299 | 0.188 | −0.039 | 0.255 | 0.103 | −0.091 | −0.217 | 0.080 | −0.063 | 0.103 |
P2 | 0.182 | 0.357 | −0.621 * | 0.334 | 0.343 | 0.025 | 0.534 * | 0.334 | 0.244 | 0.000 | 0.240 | −0.100 |
H2 | 0.090 | 0.000 | −0.431 | −0.301 | −0.041 | −0.259 | 0.329 | −0.074 | 0.079 | −0.289 | 0.225 | −0.200 |
S2 | −0.234 | 0.055 | 0.548 * | 0.085 | −0.045 | 0.238 | −0.335 | −0.025 | −0.060 | 0.355 | −0.387 | 0.338 |
T3 | 0.397 | −0.100 | 0.091 | −0.003 | 0.184 | 0.048 | 0.178 | 0.034 | −0.051 | −0.341 | 0.310 | 0.070 |
P3 | −0.360 | −0.090 | 0.180 | −0.532 * | 0.001 | −0.038 | −0.036 | 0.327 | −0.054 | 0.196 | −0.101 | 0.378 |
H3 | −0.519 * | −0.059 | −0.285 | −0.376 | 0.043 | −0.063 | 0.046 | −0.011 | 0.119 | 0.169 | −0.331 | 0.344 |
S3 | 0.419 | 0.139 | 0.238 | 0.122 | −0.137 | −0.002 | −0.040 | −0.095 | −0.220 | 0.106 | 0.375 | −0.365 |
Contents | Classification | Area (km2) | Proportion (%) | NDVI |
---|---|---|---|---|
Altitude | −142–200 | 264,591 | 47.51% | 0.7274 |
200–500 | 156,457 | 28.09% | 0.7757 | |
500–1000 | 96,182 | 17.27% | 0.8062 | |
1000–1500 | 30,906 | 5.55% | 0.8218 | |
1500–2000 | 7644 | 1.37% | 0.8375 | |
2000–2500 | 973 | 0.17% | 0.8615 | |
2500–3090 | 137 | 0.02% | 0.8512 | |
Slope | 0°–5° | 243,230 | 43.68% | 0.7236 |
5°–15° | 163,047 | 29.28% | 0.7776 | |
15°–25° | 99,538 | 17.87% | 0.8012 | |
25°–35° | 39,670 | 7.12% | 0.8122 | |
35°–77.42° | 11,405 | 2.05% | 0.8196 | |
Aspect | 337.5°–22.5° | 78,016 | 14.01% | 0.7437 |
22.5°–67.5° | 62,929 | 11.30% | 0.7641 | |
67.5°–112.5° | 67,439 | 12.11% | 0.7646 | |
112.5°–157.5° | 74,568 | 13.39% | 0.7670 | |
157.5°–202.5° | 74,679 | 13.41% | 0.7669 | |
202.5°–247.5° | 65,100 | 11.69% | 0.7635 | |
247.5°–292.5° | 65,156 | 11.70% | 0.7627 | |
292.5°–337.5° | 68,999 | 12.39% | 0.7644 |
Contents | Classification | Area (km2) | Proportion (%) | NDVI | Decrease Range of NDVI Average (%) |
---|---|---|---|---|---|
Population density level (persons/km2) | ≤500 | 505,409 | 90.26% | 0.8115 | — |
500–1000 | 43,377 | 7.75% | 0.7449 | 8.21% | |
1000–2000 | 4708 | 0.84% | 0.6399 | 14.10% | |
2000–5000 | 5206 | 0.93% | 0.5399 | 15.62% | |
≥5000 | 1256 | 0.22% | 0.4071 | 39.24% | |
GDP (CNY) | ≤500 | 231,593 | 41.36% | 0.8422 | — |
500–1000 | 145,014 | 25.90% | 0.7946 | 5.65% | |
1000–2000 | 112,975 | 20.18% | 0.7782 | 2.06% | |
2000–5000 | 56,544 | 10.10% | 0.7531 | 3.23% | |
≥5000 | 13,830 | 2.47% | 0.6281 | 16.60% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.; Wang, B.; Shi, M.; Meng, Z.; Zhang, C. Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China. Water 2021, 13, 2036. https://doi.org/10.3390/w13152036
Yi Y, Wang B, Shi M, Meng Z, Zhang C. Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China. Water. 2021; 13(15):2036. https://doi.org/10.3390/w13152036
Chicago/Turabian StyleYi, Yang, Bin Wang, Mingchang Shi, Zekun Meng, and Chen Zhang. 2021. "Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China" Water 13, no. 15: 2036. https://doi.org/10.3390/w13152036
APA StyleYi, Y., Wang, B., Shi, M., Meng, Z., & Zhang, C. (2021). Variation in Vegetation and Its Driving Force in the Middle Reaches of the Yangtze River in China. Water, 13(15), 2036. https://doi.org/10.3390/w13152036