Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade
Abstract
:1. Planned Vistula Dam Cascade
2. Methods
2.1. Computation Methods
2.2. Boundary Conditions
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szydlowski, M.; Szymkiewicz, R.; Gasiorowski, D.; Hakiel, J.; Zima, P. Hydraulic potential of the Lower Vistula (Poland). In E3S Web of Conferences; EDP Science: Les Ulis, France, 2018; Volume 40, p. 3011. [Google Scholar] [CrossRef] [Green Version]
- Kubrak, J. Model of the Vistula bed deformations below the Wloclawek dam [in Polish: Model procesu deformacji dna koryta Wisły poniżej stopnia wodnego we Włocławku]. Gospod. Wodna 1991, 5, 98–101. [Google Scholar]
- Babiński, Z.; Habel, M.; Chalov, S. Prediction of the vistula channel development between Wloclawek and Torun: Evaluation with regard to the new geological survey. Quaest. Geogr. 2014, 33, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Babiński, Z.; Habel, M. A comparison of research approaches in estimation of volume changes of a bed load transport along a river course on the example of a large lowland river. AIP Conf. Proc. 2017, 1906, 170009. [Google Scholar] [CrossRef]
- ARUP. Ensuring Public Safety in the Area of the Włocławek Dam with Water Energy and Improving the Potential of Aquatic and Dependent Water Ecosystems [in Polish: Zapewnienie Bezpieczeństwa Publicznego w Rejonie Stopnia Włocławek (...)]; Technical Report; National Water Management Authority (KZGW): Warsaw, Poland, 2012.
- Babiński, Z.; Habel, M. Impact of a single dam on sediment transport continuity in large lowland rivers. In River Sedimentation–Proceedings of the 13th International Symposium on River Sedimentation; CRC Press: Boca Raton, FL, USA, 2017; Volume 2016, pp. 975–982. [Google Scholar]
- Kubrak, J.; Kiczko, A. Study on the Adaptation of the Vistula River in the Reach from Włocławek to the Gdańsk Gulf to the Large and Small Dam Cascade—Modeling. [in Polish: Analiza Przystosowania Rzeki Wisły na Odcinku od Włocławka do Ujścia do Zatoki Gdańskiej (...)]; Technical Report; DHV Hydroprojekt: Warsaw, Poland, 2018. [Google Scholar]
- DHI. MIKE 11; Technical Report; Danish Hydraulic Institute (DHI): Hørsholm, Denmark, 2009. [Google Scholar]
- Azarang, F.; Telvari, A.; Sedghi, H.; Bajestan, M.S. Numerical Simulation of Flow and Sediment Transport of Karkheh River before the Reservoir Dam Construction Using MIKE 11 [A Case Study in Iran]. Adv. Environ. Biol. 2014, 8, 979–988. [Google Scholar]
- Azarang, F.; Sedghi, T.A.R.H.; Bejestan, M.S. Mathematical model for evaluating of sediment transport (Case study: Karkheh River in Iran). Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Neary, V.S.; Wright, S.A.; Bereciartua, P. Case Study: Sediment Transport in Proposed Geomorphic Channel for Napa River. J. Hydraul. Eng. 2001, 127, 901–910. [Google Scholar] [CrossRef]
- Grozav, A.; Beilicci, R.; Beilicci, E. Modelling of Sediment Transport of the Mehadica River, Caras Severin County, Romania. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 245, p. 32030. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, G.R.; DeVantier, B.A. Sediment Modeling to Develop a Deposition Prediction Model at the Olmsted Locks and Dam Area. In World Environmental and Water Resources Congress 2016: Hydraulics and Waterways and Hydro-Climate/Climate Change; ASCE Publishing: Reston, VA, USA, 2016; pp. 410–420. [Google Scholar] [CrossRef]
- DHV Hydroprojekt. Reconstruction of Regulatory Structures on the Lower Vistula River at 718–993 km. Project Documentation. Stage I—Physical Model. Model Design with the Development of the Output Data for Modeling. [in Polish: Odbudowa Budowli Regulacyjnych (...)]; Technical Report; National Water Management Authority (KZGW): Warsaw, Poland, 2015.
No. | Location | River Station [km] | Normal Water Level [m asl] | Head Height [m] | Commissioning Year |
---|---|---|---|---|---|
1 | Siarzewo | 706.380 | 46.00 | 8.50 | 2024 |
2 | Solec Kujawski | 758.000 | 37.50 | 8.50 | 2030 |
3 | Chełmno | 801.550 | 29.00 | 7.00 | 2036 |
4 | Grudziądz | 829.500 | 22.00 | 7.00 | 2042 |
5 | Gniew | 876.300 | 15.00 | 7.20 | 2048 |
River Reach | Channel Volume in 2016 without Cascade [mln m] | Predicted Channel Volume in 2055 without Cascade [mln m] | Predicted Channel Volume in 2055 with Cascade [mln m] | Change of the Predicted Channel Volume in 2055 with the Cascade Comparing to the Scenario without Planned Dams * [mln m] |
---|---|---|---|---|
Włocławek dam (674.74 km)— Siarzewo (706.38 km) | 76.3971 | 78.2353 | 76.7088 | 1.5265 |
Siarzewo (706.38 km)—Solec Kujawski (758.0 km) | 62.6194 | 64.1469 | 62.8529 | 1.294 |
Solec Kujawski (758.0 km)— Chełmno (801.55 km) | 47.9065 | 49.897 | 50.285 | −0.388 |
Chełmno (801.55 km)— Grudziądz (829.5 km) | 32.8651 | 32.4892 | 33.2869 | −0.7977 |
Grudziądz (829.5 km)— Gniew (876.3 km) | 53.8647 | 53.3471 | 53.7068 | −0.3597 |
Gniew (876.3 km)— Tczew (909.14 km) | 34.9645 | 34.5536 | 34.7278 | −0.1742 |
Whole reach | 308.6173 | 312.6691 | 311.5683 | 1.1008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubrak, J.; Kiczko, A.; Kubrak, E. Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade. Water 2021, 13, 2142. https://doi.org/10.3390/w13162142
Kubrak J, Kiczko A, Kubrak E. Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade. Water. 2021; 13(16):2142. https://doi.org/10.3390/w13162142
Chicago/Turabian StyleKubrak, Janusz, Adam Kiczko, and Elżbieta Kubrak. 2021. "Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade" Water 13, no. 16: 2142. https://doi.org/10.3390/w13162142
APA StyleKubrak, J., Kiczko, A., & Kubrak, E. (2021). Case Study: Forecasting the Lower Vistula Bed Deformation without and with Development of Dam Cascade. Water, 13(16), 2142. https://doi.org/10.3390/w13162142