Coastal Adaptation to Climate Change and Sea-Level Rise
Abstract
:1. Introduction
2. Sea-Level Rise
2.1. Historic Changes in Sea Level
2.2. Future Sea Levels
3. Effects of Climate Change and Sea-Level Rise in Coastal Areas
3.1. How Future Sea-Level Rise Will Affect Coastal Areas
3.2. Nuisance Flooding
4. Short-Term Coastal Hazards versus Long-Term Sea-Level Rise
4.1. Interannual Changes
4.2. Hurricanes, Cyclones and Typhoons
4.3. Wave Action
4.4. Other Effects of Climate Change in Coastal Areas
5. Responses to the Inevitable and Accelerating Rise in Sea Level and Coastal Hazards
- Do nothing (or wait and see);
- Beach nourishment or adding sand to beaches;
- Preventive actions in order to maintain the shoreline (i.e., hold the line) through either soft or hard solutions that may include armoring or hardening the shoreline;
- Managed or unmanaged retreat or realignment;
- Regulatory and restriction options on new development.
5.1. Do Nothing (or Wait and See)
5.2. Beach Nourishment
5.3. Armoring or Hardening the Shoreline
5.4. Soft Protection Approaches and Working with Natural Processes Rather Than against Them
5.5. Managed Retreat, Realignment and Setbacks
6. Deciding the Strategy and Planning Long-Term Responses
7. Challenges to Adaptation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Allan, J.C.; Komar, P.D. Climate Controls on US West Coast Erosion Processes. J. Coast. Res. 2006, 22, 511–529. [Google Scholar] [CrossRef]
- Barnard, P.L.; Short, A.D.; Harley, M.D.; Splinter, K.D.; Vitousek, S.; Turner, I.L.; Allan, J.; Banno, M.; Bryan, K.R.; Doria, A.; et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 2015, 8, 801–807. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel, L.; et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 2017, 8, 14365. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Reguero, B.G.; Méndez, F.J.; Losada, I.J. Variability of multivariate wave climate in Latin America and the Caribbean. Glob. Planet. Chang. 2013, 100, 70–84. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Morim, J.; Vitousek, S.; Hemer, M.; Reguero, B.; Erikson, L.; Casas-Prat, M.; Wang, X.L.; Semedo, A.; Mori, N.; Shimura, T.; et al. Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 2021, 16, 74056. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Morim, J.; Trenham, C.; Hemer, M.; Wang, X.L.; Mori, N.; Casas-Prat, M.; Semedo, A.; Shimura, T.; Timmermans, B.; Camus, P.; et al. A global ensemble of ocean wave climate projections from CMIP5-driven models. Sci. Data 2020, 7, 105. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.A.G. Others Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Murdiyarso, D.; Friess, D.A.; Kurnianto, S. Can mangroves keep pace with contemporary sea level rise? A global data review. Wetl. Ecol. Manag. 2015, 24, 263–278. [Google Scholar] [CrossRef]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef]
- zu Ermgassen, P.S.E.; Mukherjee, N.; Worthington, T.A.; Acosta, A.; Rocha Araujo, A.R.D.; Beitl, C.M.; Castellanos-Galindo, G.A.; Cunha-Lignon, M.; Dahdouh-Guebas, F.; Diele, K.; et al. Fishers who rely on mangroves: Modelling and mapping the global intensity of mangrove-associated fisheries. Estuar. Coast. Shelf Sci. 2020, 248, 107159. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Fulweiler, R.W.; Hughes, T.P.; Knowlton, N.; Lovelock, C.E.; et al. Rebuilding marine life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- Reguero, B.G.; Storlazzi, C.D.; Gibbs, A.E.; Shope, J.B.; Cole, A.D.; Cumming, K.A.; Beck, M.W. The value of US coral reefs for flood risk reduction. Nat. Sustain. 2021, 1–11. [Google Scholar] [CrossRef]
- Hinkel, J.; Aerts, J.C.J.H.; Brown, S.; Jiménez, J.A.; Lincke, D.; Nicholls, R.J.; Scussolini, P.; Sanchez-Arcilla, A.; Vafeidis, A.; Addo, K.A. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Chang. 2018, 8, 570–578. [Google Scholar] [CrossRef]
- Leo, K.L.; Gillies, C.L.; Fitzsimons, J.A.; Hale, L.Z.; Beck, M.W. Coastal habitat squeeze: A review of adaptation solutions for saltmarsh, mangrove and beach habitats. Ocean Coast. Manag. 2019, 175, 180–190. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar]
- Griggs, G.; Cayan, D.; Tebaldi, C.; Fricker, H.A.; Arvai, J.; DeConto, R.; Kopp, R.E.; Whiteman, E.A. Rising Seas in California: An Update on Sea-Level Rise Science; California Ocean Sciences Trust: Oakland, CA, USA, 2017. [Google Scholar]
- Cazenave, A. Sea Level Rise. In World Scientific Encyclopedia of Climate Change; World Scientific: Singapore, 2021; pp. 113–122. ISBN 978-981-12-0932-1. [Google Scholar]
- Boon, J.D.; Mitchell, M.; Loftis, J.D.; Malmquist, D.L. Anthropocene Sea Level Change: A History of Recent Trends Observed in the U.S. East, Gulf, and West Coast Regions; Special Report in Applied Marine Science and Ocean Engineering (SRAMSOE) No. 467; Institute of Marine Science, College of William and Mary: Williamsburg, VA, USA, 2018. [Google Scholar]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ablain, M.; Meyssignac, B.; Zawadzki, L.; Jugier, R.; Ribes, A.; Spada, G.; Benveniste, J.; Cazenave, A.; Picot, N. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth Syst. Sci. Data 2019, 11, 1189–1202. [Google Scholar] [CrossRef] [Green Version]
- Veng, T.; Andersen, O.B. Consolidating sea level acceleration estimates from satellite altimetry. Adv. Space Res. 2021, 68, 496–503. [Google Scholar] [CrossRef]
- USGCRP. Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Horton, R.M.; Thieler, E.R.; Zervas, C. Global and Regional Sea Level Rise Scenarios for the United States. 2017. Available online: https://repository.library.noaa.gov/view/noaa/18399 (accessed on 1 August 2021).
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.E.; Oppenheimer, M.; Buchanan, M.K. Amplification of flood frequencies with local sea level rise and emerging flood regimes. Environ. Res. Lett. 2017, 12, 64009. [Google Scholar]
- Vitousek, S.; Barnard, P.L.; Limber, P. Can beaches survive climate change? J. Geophys. Res. Earth Surf. 2017, 122, 1060–1067. [Google Scholar] [CrossRef]
- Griggs, G. The impacts of coastal armoring. Shore Beach 2005, 73, 13–22. [Google Scholar]
- Griggs, G.; Patsch, K. The Protection/Hardening of California’s Coast: Times Are Changing. J. Coast. Res. 2019, 35, 1051–1061. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Díaz-Simal, P.; Méndez, F.J.; Beck, M.W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 2015, 10, 95060. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losada, I.J.; Reguero, B.G.; Mendez, F.J.; Castanedo, S.; Abascal, A.J.; Minguez, R. Long-term changes in sea-level components in Latin America and the Caribbean. Glob. Planet. Chang. 2012, 104, 34–50. [Google Scholar] [CrossRef]
- Union of Concerned Scientists. Underwater-Rising Seas, Chronic Floods and the Implications for U.S. Coastal Real Estate; Union of Concerned Scientists: Cambridge, MA, USA, 2018; p. 28. [Google Scholar]
- Union of Concerned Scientists. When Rising Seas Hit Home Hard Choices Ahead for Hundreds of US Coastal Communities; Union of Concerned Scientists: Cambridge, MA, USA, 2017; p. 64. [Google Scholar]
- Li, S.; Wahl, T.; Talke, S.A.; Jay, D.A.; Orton, P.M.; Liang, X.; Wang, G.; Liu, L. Evolving tides aggravate nuisance flooding along the U.S. coastline. Sci. Adv. 2021, 7, eabe2412. [Google Scholar] [CrossRef] [PubMed]
- Hino, M.; Belanger, S.T.; Field, C.B.; Davies, A.R.; Mach, K.J. High-tide flooding disrupts local economic activity. Sci. Adv. 2019, 5, eaau2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storlazzi, C.D.; Griggs, G.B. Influence of El Niño–Southern Oscillation (ENSO) events on the evolution of central California’s shoreline. GSA Bull. 2000, 112, 236–249. [Google Scholar] [CrossRef]
- Barnard, P.L.; Allan, J.; Hansen, J.E.; Kaminsky, G.M.; Ruggiero, P.; Doria, A. The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophys. Res. Lett. 2011, 38, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Horton, B.P.; DeConto, R.M.; Donnelly, J.P.; Pollard, D. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA 2017, 114, 11861–11866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguero, B.G.; Beck, M.W.; Schmid, D.; Stadtmueller, D.; Raepple, J.; Schüssele, S.; Pfliegner, K. Financing Coastal Resilience by Combining the Natural Defenses of Coral Reefs and Insurance. Ecol. Econ. 2020, 169, 106487. [Google Scholar] [CrossRef]
- Song, Z.; Bao, Y.; Zhang, D.; Shu, Q.; Song, Y.; Qiao, F. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 2020, 7, 226. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Zwiers, F.W.; Zhang, X.; Feng, Y. Detection of external influence on trends of atmospheric storminess and northern oceans wave heights. Clim. Dyn. 2009, 32, 189–203. [Google Scholar] [CrossRef]
- Izaguirre, C.; Méndez, F.J.; Menéndez, M.; Losada, I.J.; Mendez, F.J.; Menendez, M.; Losada, I.J. Global extreme wave height variability based on satellite data. Geophys. Res. Lett. 2011, 38, 1–6. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Elias, E.P.L.; Berkowitz, P. Many Atolls May be Uninhabitable Within Decades Due to Climate Change. Sci. Rep. 2015, 5, 14546. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.R.; Church, J.A.; White, N.J.; Zhang, X. Towards a global regionally varying allowance for sea-level rise. Ocean Eng. 2013, 71, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, S.N.; Hillen, M.M.; Nicholls, R.J.; Kanning, W.; van Ledden, M. Costs of Adapting Coastal Defences to Sea-Level Rise—New Estimates and Their Implications. J. Coast. Res. 2013, 1212–1226. [Google Scholar] [CrossRef]
- Burcharth, H.F.; Lykke Andersen, T.; Lara, J.L. Upgrade of coastal defence structures against increased loadings caused by climate change: A first methodological approach. Coast. Eng. 2014, 87, 112–121. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate change risk to global port operations. Nat. Clim. Chang. 2021, 11, 14–20. [Google Scholar] [CrossRef]
- Hanley, M.E.; Hoggart, S.P.G.; Simmonds, D.J.; Bichot, A.; Colangelo, M.A.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M.; et al. Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast. Eng. 2014, 87, 136–146. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaud, F.G.; Le, T.T.H.; Lindener, C.; Guong, V.T.; Sebesvari, Z. Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. Clim. Chang. 2015, 133, 69–84. [Google Scholar] [CrossRef]
- Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 2016, 130, 205–212. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Monioudi, I.Ν.; Asariotis, R.; Becker, A.; Bhat, C.; Dowding-Gooden, D.; Esteban, M.; Feyen, L.; Mentaschi, L.; Nikolaou, A.; Nurse, L.; et al. Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): The case of Jamaica and Saint Lucia. Reg. Environ. Chang. 2018, 18, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.S.N.; Walles, B.; Sharifuzzaman, S.M.; Shahadat Hossain, M.; Ysebaert, T.; Smaal, A.C. Oyster breakwater reefs promote adjacent mudflat stability and salt marsh growth in a monsoon dominated subtropical coast. Sci. Rep. 2019, 9, 8549. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J.; van Vuuren, D.P.; Nicholls, R.J.; Klein, R.J.T.; Vuuren, D.P.; Nicholls, R.J.; Klein, R.J.T. The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models. Clim. Chang. 2013, 117, 783–794. [Google Scholar] [CrossRef]
- Hoggart, S.P.G.; Hanley, M.E.; Parker, D.J.; Simmonds, D.J.; Bilton, D.T.; Filipova-Marinova, M.; Franklin, E.L.; Kotsev, I.; Penning-Rowsell, E.C.; Rundle, S.D.; et al. The consequences of doing nothing: The effects of seawater flooding on coastal zones. Coast. Eng. 2014, 87, 169–182. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. Eos Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Houston, J.R. The economic value of beaches—A 2008 update. Shore Beach 2008, 76, 22–26. [Google Scholar]
- Leatherman, S.P. Coastal Erosion and the United States National Flood Insurance Program. Ocean Coast. Manag. 2018, 156, 35–42. [Google Scholar] [CrossRef]
- Houston, J.R. The economic value of beaches—A 2013 update. Shore Beach 2013, 81, 3–11. [Google Scholar]
- Elko, N.; Briggs, T.R.; Benedet, L.; Robertson, Q.; Thomson, G.; Webb, B.M.; Garvey, K. A century of U.S. beach nourishment. Ocean Coast. Manag. 2021, 199, 105406. [Google Scholar] [CrossRef]
- US Commission on Ocean Policy. An Ocean Blueprint for the 21st Century; US Commission on Ocean Policy: Washington, DC, USA, 2004. [Google Scholar]
- Peterson, C.H.; Bishop, M.J. Assessing the Environmental Impacts of Beach Nourishment. Bioscience 2005, 55, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Staudt, F.; Gijsman, R.; Ganal, C.; Mielck, F.; Wolbring, J.; Hass, H.C.; Goseberg, N.; Schüttrumpf, H.; Schlurmann, T.; Schimmels, S. The sustainability of beach nourishments: A review of nourishment and environmental monitoring practice. J. Coast. Conserv. 2021, 25, 34. [Google Scholar] [CrossRef]
- Wooldridge, T.; Henter, H.J.; Kohn, J.R. Effects of beach replenishment on intertidal invertebrates: A 15-month, eight beach study. Estuar. Coast. Shelf Sci. 2016, 175, 24–33. [Google Scholar] [CrossRef]
- Pasch, K.; Griggs, G. Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline; Institute of Marine Sciences, University of California: Santa Cruz, CA, USA, 2006; p. 34. [Google Scholar]
- Griggs, G.; Patsch, K.; Lester, C.; Anderson, R. Groins, sand retention, and the future of Southern California’s beaches. Shore Beach 2020, 88, 14–36. [Google Scholar] [CrossRef]
- Capobianco, M.; Hanson, H.; Larson, M.; Steetzel, H.; Stive, M.J.F.; Chatelus, Y.; Aarninkhof, S.; Karambas, T. Nourishment design and evaluation: Applicability of model concepts. Coast. Eng. 2002, 47, 113–135. [Google Scholar] [CrossRef]
- Parkinson, R.W.; Ogurcak, D.E. Beach nourishment is not a sustainable strategy to mitigate climate change. Estuar. Coast. Shelf Sci. 2018, 212, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Judge, J.; Newkirk, S.; Leo, K.; Heady, W.; Hayden, M.; Veloz, S.; Cheng, T.; Battalio, B.; Ursell, T.; Small, M. Case Studies of Natural Shoreline Infrastructure in Coastal California: A Component of Identification of Natural Infrastructure Options for Adapting to Sea Level Rise (California’s Fourth Climate Change Assessment); The Nature Conservancy: Arlington, VA, USA, 2017. [Google Scholar]
- NOAA. Guidance for Considering the Use of Living Shorelines. 2015; pp. 1–36. Available online: https://www.habitatblueprint.noaa.gov/wp-content/uploads/2018/01/NOAA-Guidance-for-Considering-the-Use-of-Living-Shorelines_2015.pdf (accessed on 1 August 2021).
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Bridges, T.S.; Bourne, E.M.; King, J.K.; Kuzmitski, H.K.; Moynihan, E.B.; Suedel, B.C. Engineering with Nature: An Atlas; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2018. [Google Scholar]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- Scyphers, S.B.; Powers, S.P.; Heck, K.L.; Byron, D. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 2011, 6, e22396. [Google Scholar] [CrossRef]
- Quataert, E.; Storlazzi, C.; van Rooijen, A.; Cheriton, O.; van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 2015, 42, 6407–6415. [Google Scholar] [CrossRef]
- Harris, D.L.; Rovere, A.; Casella, E.; Power, H.; Canavesio, R.; Collin, A.; Pomeroy, A.; Webster, J.M.; Parravicini, V. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Sci. Adv. 2018, 4, eaao4350. [Google Scholar] [CrossRef] [Green Version]
- Ondiviela, B.; Losada, I.J.; Lara, J.L.; Maza, M.; Galván, C.; Bouma, T.J.; Van Belzen, J.; van Belzen, J. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 2014, 87, 158–168. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gracia, A.; Rangel-Buitrago, N.; Oakley, J.A.; Williams, A.T. Use of ecosystems in coastal erosion management. Ocean Coast. Manag. 2018, 156, 277–289. [Google Scholar] [CrossRef]
- Orton, M.P.; Talke, A.S.; Jay, A.D.; Yin, L.; Blumberg, F.A.; Georgas, N.; Zhao, H.; Roberts, J.H.; MacManus, K. Channel Shallowing as Mitigation of Coastal Flooding. J. Mar. Sci. Eng. 2015, 3, 654–673. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef]
- Whelchel, A.W.; Reguero, B.G.; van Wesenbeeck, B.; Renaud, F.G. Advancing disaster risk reduction through the integration of science, design, and policy into eco-engineering and several global resource management processes. Int. J. Disaster Risk Reduct. 2018, 32, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.B.; Fodrie, F.J.; Ridge, J.T.; Lindquist, N.L.; Theuerkauf, E.J.; Coleman, S.E.; Grabowski, J.H.; Brodeur, M.C.; Gittman, R.K.; Keller, D.A.; et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Chang. 2014, 4, 493–497. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.T.; Alvarez-Filip, L.; Graham, N.A.J.; Mumby, P.J.; Wilson, S.K.; Kench, P.S.; Manzello, D.P.; Morgan, K.M.; Slangen, A.B.A.; Thomson, D.P.; et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 2018, 558, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Patsch, K.; Lester, C.; Griggs, G. Adapting to shoreline retreat: Finding a path forward. Shore Beach 2020, 88. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Wible, B. Out of harm’s way. Science 2021, 372, 1274–1275. [Google Scholar] [CrossRef] [PubMed]
- Neal, W.J.; Bush, D.M.; Pilkey, O.H. Managed Retreat BT. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 602–606. [Google Scholar]
- Rupp-Armstrong, S.; Nicholls, R.J. Coastal and Estuarine Retreat: A Comparison of the Application of Managed Realignment in England and Germany. J. Coast. Res. 2007, 23, 1418–1430. [Google Scholar] [CrossRef]
- Rush, E. Rising: Dispatches from the New American Shore; Milkweed Editions: Minneapolis, MN, USA, 2018; ISBN 1571313672. [Google Scholar]
- Griggs, G.; Davar, L.; Reguero, B.G. Documenting a Century of Coastline Change along Central California and Associated Challenges: From the Qualitative to the Quantitative. Water 2019, 11, 2648. [Google Scholar] [CrossRef] [Green Version]
- Neal, W.J.; Pilkey, O.H.; Cooper, J.A.G.; Longo, N.J. Why coastal regulations fail. Ocean Coast. Manag. 2017. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Werners, S.E.; Wise, R.M.; Butler, J.R.A.; Totin, E.; Vincent, K. Adaptation pathways: A review of approaches and a learning framework. Environ. Sci. Policy 2021, 116, 266–275. [Google Scholar] [CrossRef]
- de Ruig, L.T.; Barnard, P.L.; Botzen, W.J.W.; Grifman, P.; Hart, J.F.; de Moel, H.; Sadrpour, N.; Aerts, J.C.J.H. An economic evaluation of adaptation pathways in coastal mega cities: An illustration for Los Angeles. Sci. Total Environ. 2019, 678, 647–659. [Google Scholar] [CrossRef]
- Moser, S.C.; Ekstrom, J.A. A framework to diagnose barriers to climate change adaptation. Proc. Natl. Acad. Sci. USA 2010, 107, 22026–22031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CPI. Global Landscape of Climate Finance 2019. 2019. Available online: https://www.climatepolicyinitiative.org/publication/global-landscape-of-climate-finance-2019/ (accessed on 1 August 2021).
- Multilateral Development Banks. 2019 Joint Report on Multilateral Development Banks Climate Finance. 2019. Available online: https://www.eib.org/attachments/press/1257-joint-report-on-mdbs-climate-finance-2019.pdf (accessed on 1 August 2021).
- Dow, K.; Berkhout, F.; Preston, B.L.; Klein, R.J.T.; Midgley, G.; Shaw, M.R. Limits to adaptation. Nat. Clim. Chang. 2013, 3, 305–307. [Google Scholar] [CrossRef]
- Nyborg, K.; Anderies, J.M.; Dannenberg, A.; Lindahl, T.; Schill, C.; Schlüter, M.; Adger, W.N.; Arrow, K.J.; Barrett, S.; Carpenter, S.; et al. Social norms as solutions. Science 2016, 354, 42–43. [Google Scholar] [CrossRef]
- Bisaro, A.; Hinkel, J. Governance of social dilemmas in climate change adaptation. Nat. Clim. Chang. 2016, 6, 354–359. [Google Scholar] [CrossRef]
- Narayan, S. Global Adaptation to Sea-Level Rise and Coastal Hazards Must Fit Local Contexts. One Earth 2020, 3, 405–408. [Google Scholar] [CrossRef]
- Airoldi, L.; Abbiati, M.; Beck, M.W.; Hawkins, S.J.; Jonsson, P.R.; Martin, D.; Moschella, P.S.; Sundelöf, A.; Thompson, R.C.; Åberg, P. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 2005, 52, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Global Commission on Adaptation. Adapt Now: A Global Call for Leadership on Climate Resilience. 2019. Available online: https://gca.org/reports/adapt-now-a-global-call-for-leadership-on-climate-resilience/ (accessed on 1 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griggs, G.; Reguero, B.G. Coastal Adaptation to Climate Change and Sea-Level Rise. Water 2021, 13, 2151. https://doi.org/10.3390/w13162151
Griggs G, Reguero BG. Coastal Adaptation to Climate Change and Sea-Level Rise. Water. 2021; 13(16):2151. https://doi.org/10.3390/w13162151
Chicago/Turabian StyleGriggs, Gary, and Borja G. Reguero. 2021. "Coastal Adaptation to Climate Change and Sea-Level Rise" Water 13, no. 16: 2151. https://doi.org/10.3390/w13162151