Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of CdS
2.3. Reaction Systems for the Fluoroquinolone Degradation
2.4. Analyses
2.4.1. CdS Characterization
2.4.2. Chromatographic Analyses
2.4.3. Adsorption in Dark, Degradation Rate Determination, and Cd (II) Leaching
3. Results
3.1. Characterization of the Synthesized CdS (RAMAN, SEM, EDS, TEM, BET, and Diffuse Reflectance)
3.2. Effect of Fluoroquinolone Structure
3.3. Effect of Levofloxacin Concentration
3.4. Routes of Degradation and Primary Transformations
3.5. Degradation of Levofloxacin in Complex Matrices
4. Discussion
4.1. Characterization
4.2. Effect of the Fluoroquinolone Structure
4.3. Effect of the Concentration of Fluoroquinolone
4.4. Routes of Degradation and Primary Transformations of Levofloxacin
4.5. Effect of the Matrix on the Degradation of Levofloxacin
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velenturf, A.P.M.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Nascimento, E.D.S.; Filho, A.T. Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions. Braz. J. Pharm. Sci. 2010, 46, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.O. Waste disposal in the laboratory: Teaching responsibility and safety. J. Chem. Educ. 1983, 60, A81. [Google Scholar] [CrossRef]
- Green Facts. Cadmium. Available online: https://www.greenfacts.org/en/cadmium/index.htm#:~:text=It%20mainly%20affects%20kidneys%20and,%2C%20animals%20and%20micro-organisms (accessed on 1 June 2020).
- Minessota Departament of Health. Cadmium and Drinking Water; Minessota Departament of Health: St. Paul, MN, USA, 2014. Available online: https://www.health.state.mn.us/communities/environment/risk/docs/guidance/gw/cadmiuminfo.pdf (accessed on 25 June 2021).
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Davis, A.P.; Huang, C.P. The photocatalytic oxidation of sulfur-containing organic compounds using cadmium sulfide and the effect on CdS photocorrosion. Water Res. 1991, 25, 1273–1278. [Google Scholar] [CrossRef]
- Davis, A.P.; Huang, C.P. The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Res. 1990, 24, 543–550. [Google Scholar] [CrossRef]
- Villegas-Guzman, P.; Silva-Agredo, J.; González-Gómez, D.; Giraldo-Aguirre, A.L.; Flórez-Acosta, O.; Torres-Palma, R.A. Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO2 photocatalytical treatment of the antibiotic dicloxacillin. J. Environ. Sci. Health Part A 2015, 50, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Granda-Ramírez, C.F.; Hincapié-Mejía, G.M.; Serna-Galvis, E.A.; Torres-Palma, R.A. Degradation of Recalcitrant Safranin T Through an Electrochemical Process and Three Photochemical Advanced Oxidation Technologies. Water Air Soil Pollut. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Giraldo-Aguirre, A.L.; Silva-Agredo, J.; Florez-Acosta, O.A.; Torres-Palma, R.A. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: Analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. Environ. Sci. Pollut. Res. 2017, 24, 6339–6352. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Silva-Agredo, J.; Giraldo, A.L.; Flórez, O.A.; Torres-Palma, R.A. Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chem. Eng. J. 2016, 284, 953–962. [Google Scholar] [CrossRef]
- Bahnemann, D. Photocatalytic formation of sufur-centered radicals by one-electron redox processes onsemiconductor surfaces. In Sulfur-Centered Reactive Intermediates in Chemistry and Biology; Chatgilialoglu, C., Asmus, K.-D., Eds.; Springer: Boston, MA, USA, 1990; pp. 103–120. ISBN 978-1-4684-5876-3. [Google Scholar]
- Armstrong, D.A.; Huie, R.E.; Lymar, S.; Koppenol, W.H.; Merényi, G.; Neta, P.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals. Bioinorg. React. Mech. 2013, 9, 59–61. [Google Scholar] [CrossRef] [Green Version]
- IUPAC Task Group on Radical Electrode Potentials. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals; IUPAC: Research Triangle Park, NC, USA, 2016.
- Bijlsma, L.; Pitarch, E.; Fonseca, E.; Ibáñez, M.; Botero, A.M.; Claros, J.; Pastor, L.; Hernández, F. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital. J. Environ. Chem. Eng. 2021, 9, 105548. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Total Environ. 2014, 500–501, 250–269. [Google Scholar] [CrossRef] [PubMed]
- Speltini, A.; Sturini, M.; Maraschi, F.; Profumo, A. Fluoroquinolone antibiotics in environmental waters: Sample preparation and determination. J. Sep. Sci. 2010, 33, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Botero-Coy, A.M.; Martínez-Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.P.; Manrique-Losada, L.; Torres-Palma, R.A.; Moncayo-Lasso, A.; Hernández, F. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Zhao, X.; Malik, M.; Hiasa, H.; Mustaev, A.; Kerns, R. Fluoroquinolone resistance. Bact. Resist. Antibiot. Mol. Man 2019, 317, 125–161. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Isaza-Pineda, L.; Moncayo-Lasso, A.; Hernández, F.; Ibáñez, M.; Torres-Palma, R.A. Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrason. Sonochem. 2019, 58, 104635. [Google Scholar] [CrossRef]
- Fang, Z.; Guo, T.; Welz, B. Determination of cadmium, lead and copper in water samples by flame atomic-absorption spectrometry with preconcentration by flow-injection on-line sorbent extraction. Talanta 1991, 38, 613–619. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Chiha, M.; Merouani, S.; Hamdaoui, O.; Baup, S.; Gondrexon, N.; Pétrier, C. Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics. Ultrason. Sonochem. 2010, 17, 773–782. [Google Scholar] [CrossRef]
- Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K. Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photochem. Photobiol. A Chem. 2018, 360, 34–43. [Google Scholar] [CrossRef]
- Wang, F.; Feng, Y.; Chen, P.; Wang, Y.; Su, Y.; Zhang, Q.; Zeng, Y.; Xie, Z.; Liu, H.; Liu, Y.; et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination. Appl. Catal. B Environ. 2018, 227, 114–122. [Google Scholar] [CrossRef]
- Palominos, R.; Freer, J.; Mondaca, M.A.; Mansilla, H.D. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. J. Photochem. Photobiol. A Chem. 2008, 193, 139–145. [Google Scholar] [CrossRef]
- Villegas-Guzman, P.; Silva-Agredo, J.; Florez, O.; Giraldo-Aguirre, A.L.; Pulgarin, C.; Torres-Palma, R.A. Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration. J. Environ. Manag. 2017, 190, 72–79. [Google Scholar] [CrossRef]
- Amstutz, V.; Katsaounis, A.; Kapalka, A.; Comninellis, C.; Udert, K.M. Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes. J. Appl. Electrochem. 2012, 42, 787–795. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Jojoa-Sierra, S.D.; Berrio-Perlaza, K.E.; Ferraro, F.; Torres-Palma, R.A. Structure-reactivity relationship in the degradation of three representative fluoroquinolone antibiotics in water by electrogenerated active chlorine. Chem. Eng. J. 2017, 315, 552–561. [Google Scholar] [CrossRef]
- Zeiri, L.; Patla, I.; Acharya, S.; Golan, Y.; Efrima, S. Raman Spectroscopy of Ultranarrow CdS Nanostructures. J. Phys. Chem. C 2007, 111, 11843–11848. [Google Scholar] [CrossRef]
- Nanda, K.K.; Sarangi, S.N.; Sahu, S.N.; Deb, S.K.; Behera, S.N. Raman spectroscopy of CdS nanocrystalline semiconductors. Phys. B Condens. Matter 1999, 262, 31–39. [Google Scholar] [CrossRef]
- Ludolph, B.; Malik, M.A.; O’Brien, P.; Revaprasadu, N. Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide. Chem. Commun. 1998, 3, 1849–1850. [Google Scholar] [CrossRef]
- Elsevier Semiconductors for Photocatalysis. Available online: https://www.sciencedirect.com/topics/chemistry/cadmium-sulfide (accessed on 3 July 2021).
- Albini, A.; Monti, S. Photophysics and photochemistry of fluoroquinolones. Chem. Soc. Rev. 2003, 32, 238. [Google Scholar] [CrossRef] [PubMed]
- Cornelisse, J.; Havinga, E. Photosubstitution reactions of aromatic compounds. Chem. Rev. 1975, 75, 353–388. [Google Scholar] [CrossRef] [Green Version]
- Sturini, M.; Speltini, A.; Maraschi, F.; Pretali, L.; Profumo, A.; Fasani, E.; Albini, A.; Migliavacca, R.; Nucleo, E. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res. 2012, 46, 5575–5582. [Google Scholar] [CrossRef]
- Ahmad, I.; Bano, R.; Sheraz, M.A.; Ahmed, S.; Mirza, T.; Ansari, S.A. Photodegradation of levofloxacin in aqueous and organic solvents: A kinetic study. Acta Pharm. 2013, 63, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Chu, W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. J. Hazard. Mater. 2012, 219–220, 183–189. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Heynderickx, P.M.; Demeestere, K.; Debevere, K.; Van Langenhove, H.; Dewulf, J. TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Appl. Catal. B Environ. 2012, 111–112, 150–156. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef] [Green Version]
- Serna-Galvis, E.A.; Ferraro, F.; Silva-Agredo, J.; Torres-Palma, R.A. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Res. 2017, 122, 128–138. [Google Scholar] [CrossRef]
- Niu, X.-Z.; Busetti, F.; Langsa, M.; Croué, J.-P. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Res. 2016, 106, 214–222. [Google Scholar] [CrossRef]
- Belvedere, A.; Boscá, F.; Cuquerella, M.C.; de Guidi, G.; Miranda, M.A. Photoinduced N-Demethylation of Rufloxacin and its Methyl Ester Under Aerobic Conditions. Photochem. Photobiol. 2002, 76, 252. [Google Scholar] [CrossRef]
- Salma, A.; Thoröe-Boveleth, S.; Schmidt, T.C.; Tuerk, J. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin. J. Hazard. Mater. 2016, 313, 49–59. [Google Scholar] [CrossRef]
- Davis, A.P.; Huang, C.P. Water treatment and quality alteration. In Selected Water Resources Abstracts; NTIS, Ed.; Geological Survey U.S., Departament of Interior: Washington, DC, USA, 1990. [Google Scholar]
- Peterson, L.R. Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity. Clin. Infect. Dis. 2001, 33, S180–S186. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Mehta, S.K.; Kansal, S.K. Visible light driven photocatalytic degradation of ofloxacin and malachite green dye using cadmium sulphide nanoparticles. J. Environ. Chem. Eng. 2018, 6, 3631–3639. [Google Scholar] [CrossRef]
- Díez-Mato, E.; Cortezón-Tamarit, F.C.; Bogialli, S.; García-Fresnadillo, D.; Marazuela, M.D. Phototransformation of model micropollutants in water samples by photocatalytic singlet oxygen production in heterogeneous medium. Appl. Catal. B Environ. 2014, 160–161, 445–455. [Google Scholar] [CrossRef]
- Danen, W.C.; Warner, R.J.; Arudi, R.L. Nucleophilic Reactions of Superoxide Anion Radical. In Organic Free Radicals; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1978; Volume 69, pp. 244–257. [Google Scholar]
- Hayyan, M.; Hashim, M.A.; Alnashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhang, D.; Yin, K.; Yang, C.; Luo, S.; Crittenden, J.C. Degradation of thiacloprid via unactivated peroxymonosulfate: The overlooked singlet oxygen oxidation. Chem. Eng. J. 2020, 388, 124264. [Google Scholar] [CrossRef]
- Guateque-Londoño, J.F.; Serna-Galvis, E.A.; Silva-Agredo, J.; Ávila-Torres, Y.; Torres-Palma, R.A. Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data Brief 2020, 31, 105692. [Google Scholar] [CrossRef]
- Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Dutta, V.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P.; Nguyen, V.H. Tailoring cadmium sulfide-based photocatalytic nanomaterials for water decontamination: A review. Environ. Chem. Lett. 2021, 19, 271–306. [Google Scholar] [CrossRef]
Initial Concentration (Co in µM) | Photolytic System (UVA Alone) | Photocatalytic System (UVA/CdS) | ||
---|---|---|---|---|
rexperimental (µM min−1) | radjusted with Equation (7) (µM min−1) | rexperimental (µM min−1) | radjusted with Equation (8) (µM min−1) | |
4.3 | 0.0038 | 0.0044 | 0.0371 | 0.0390 |
13.8 | 0.0249 | 0.0236 | 0.0747 | 0.0705 |
23.4 | 0.0421 | 0.0427 | 0.0818 | 0.0834 |
Kinetics values | k: 0.002 min−1 | kL-H: 0.112 µM min−1; KL-H: 0.126 µM−1 | ||
APE (%) * | 7.4 | 4.2 |
Compound | Concentration (mM) |
---|---|
Urea | 266.40 |
NaCH3COO | 125.00 |
Na2SO4 | 16.19 |
NH4Cl | 33.65 |
NaH2PO4 | 24.17 |
KCl | 56.34 |
MgCl2 | 3.89 |
CaCl2 | 4.60 |
NaOH | 3.00 |
pH: 6.1 |
Compound | Concentration (mM) |
---|---|
Urea | 20.98 |
Na2SO4 | 0.71 |
NH4Cl | 0.93 |
KH2PO4 | 0.37 |
KCl | 1.34 |
CaCl2 × 2H2O | 0.34 |
NaCl | 50.05 |
pH: 5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serna-Galvis, E.A.; Ávila-Torres, Y.; Ibáñez, M.; Hernández, F.; Torres-Palma, R.A. Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water. Water 2021, 13, 2154. https://doi.org/10.3390/w13162154
Serna-Galvis EA, Ávila-Torres Y, Ibáñez M, Hernández F, Torres-Palma RA. Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water. Water. 2021; 13(16):2154. https://doi.org/10.3390/w13162154
Chicago/Turabian StyleSerna-Galvis, Efraím A., Yenny Ávila-Torres, María Ibáñez, Félix Hernández, and Ricardo A. Torres-Palma. 2021. "Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water" Water 13, no. 16: 2154. https://doi.org/10.3390/w13162154
APA StyleSerna-Galvis, E. A., Ávila-Torres, Y., Ibáñez, M., Hernández, F., & Torres-Palma, R. A. (2021). Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water. Water, 13(16), 2154. https://doi.org/10.3390/w13162154