Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wicked Problem of Water
- Closing the water cycle at the building scale;
- Embodied energy in the provision of water;
- Technical facilities for greywater treatment at the building scale;
- NBS_u for greywater treatment at the building scale;
- Policies and regulation to support water reuse.
2.2. Green Roofs and Vertical Greenery System Water Use Based on LCA Studies
2.3. Simulation Case Study
2.3.1. Calculating Rainwater Run-Off Availability
2.3.2. Estimating Greywater Availability
2.3.3. Simulating Evapotranspiration of VGS
2.3.4. Case Study Buildings from Copenhagen, Berlin, Lisbon, Rome, Istanbul, and Tel Aviv
3. Results
3.1. The “Wicked Problem” of Water
3.1.1. Closing the Water Cycle at the Building Scale
3.1.2. Embodied Energy in the Provision of Water
3.1.3. Technical Facilities for Greywater Treatment at the Building Scale
3.1.4. Nature-Based Solutions for Greywater Treatment at the Building Scale
3.1.5. Policies and Regulations to Support Water Reuse
3.2. NBS Units Considered: Focus on “Building Greening” Systems
3.2.1. Vertical Greening Systems (VGS)
3.2.2. Green Roofs (GRs)
3.2.3. Vegetated Pergolas
3.3. Materials for Green Roofs and Vertical Greening Systems: A LCA Approach
3.3.1. Life-Cycle Inventory: Materials
3.3.2. Life-Cycle Inventory: Water
3.3.3. LCA Studies: Sample Findings
3.3.4. Building Greening Horizons: Areas for Improvement
3.4. Simulation Case Study
3.4.1. ET0vert and Precipitation
3.4.2. Run-Off Reduction Potentials
3.4.3. Greywater Management Potentials
3.4.4. Optimized RO-Irrigation Scenario
3.4.5. Full Greywater and Run-Off Irrigation Scenario
4. Discussion
4.1. Simulation Case Study
4.2. Structural Issues
4.3. Ecosystem (Dis)Services
4.4. Future-Proof NBS Units
4.5. Policy Framework
5. Conclusions
- Based on the results obtained from a broad cross-section of cities in Europe, a vertical greening system could be a realistic option to manage on-site greywater and utilize rainwater captured on the roof of a typical residential building.
- The effectiveness of VGS for these purposes can only be understood based on the particular climate conditions of the urban site, most notably as a function of solar exposure that heavily impacts the water loss due to evapotranspiration.
- The potential of VGS must be evaluated with respect to the architectural design of a building, which can limit the vertical area that can absorb and evaporate water, as well as the horizontal area available for rainwater capture.
- The use of greywater for irrigation was shown to have clear benefits, as it can fill in deficits in available rainwater runoff, which would otherwise induce stress in the plants and potentially make VGS untenable. Therefore, policies should encourage and incentivize the on-site collection and distribution of greywater.
- The sustainability of water management, using circular systems, depends on the scale, and our findings reveal limitations in implementation within the scope of a single building, due to the available quantities of both runoff and greywater, and the relative area of VGS. Therefore, it is essential to consider this type of nature-based solution at the larger urban scale of a residential quarter, for instance, where mutual benefits can be made by sharing space or water from one building to other buildings, as well as outdoor green spaces in the vicinity.
- Considering the different possibilities of implementation, our case study results represent new approaches to more integrative urban settings, when compared to traditional building-based solutions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO. Managing water under uncertaintly and risk. In The United Nations Worls Water Development Report 4; UNESCO: Paris, France, 2012; Volume 1, ISBN 978-92-3-104235-5. [Google Scholar]
- UNESCO. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; ISBN 9789231002649. [Google Scholar]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Kisser, J.; Wirth, M.; De Gusseme, B.; Van Eekert, M.; Zeeman, G.; Schoenborn, A.; Vinnerås, B.; Finger, D.C.; Kolbl Repinc, S.; Bulc, T.G.; et al. A review of nature-based solutions for resource recovery in cities. Blue-Green Syst. 2020, 2, 138–172. [Google Scholar] [CrossRef] [Green Version]
- Oral, H.V.; Carvalho, P.; Gajewska, M.; Ursino, N.; Masi, F.; van Hullebusch, E.D.; Kazak, J.K.; Exposito, A.; Cipolletta, G.; Andersen, T.R.; et al. A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature. Blue-Green Syst. 2020, 2, 112–136. [Google Scholar] [CrossRef] [Green Version]
- Gräf, M.; Immitzer, M.; Hietz, P.; Stangl, R. Water-stressed plants do not cool: Leaf surface temperature of living wall plants under drought stress. Sustainability 2021, 13, 3910. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuña, V. Nature-based solutions in the urban context: Terminology, classification and scoring for urban challenges and ecosystem services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef]
- Atanasova, N.; Castellar, J.A.C.; Pineda-Martos, R.; Nika, C.E.; Katsou, E.; Istenič, D.; Pucher, B.; Andreucci, M.B.; Langergraber, G. Nature-based solutions and circularity in cities. Circ. Econ. Sustain. 2021, 1, 319–332. [Google Scholar] [CrossRef]
- Langergraber, G.; Castellar, J.A.C.; Pucher, B.; Baganz, G.; Milosevic, D.; Andreucci, M.B.; Kearny, K.; Pineda-Martos, R.; Atanasova, N. A framework for addressing circularity challenges in cities with nature-based solutions. Water 2021, submitted. [Google Scholar]
- Pearlmutter, D.; Theochari, D.; Nehls, T.; Pinho, P.; Piro, P.; Korolova, A.; Papaefthimiou, S.; Mateo, M.C.G.; Calheiros, C.; Zluwa, I.; et al. Enhancing the circular economy with nature-based solutions in the built urban environment: Green building materials, systems and sites. Blue-Green Syst. 2020, 2, 46–72. [Google Scholar] [CrossRef] [Green Version]
- Langergraber, G.; Pucher, B.; Simperler, L.; Kisser, J.; Katsou, E.; Buehler, D.; Mateo, M.C.G.; Atanasova, N. Implementing nature-based solutions for creating a resourceful circular city. Blue-Green Syst. 2020, 2, 173–185. [Google Scholar] [CrossRef]
- Castellar Da Cunha, J.A.; Arias, C.A.; Carvalho, P.; Rysulova, M.; Canals, J.M.; Perez, G.; Gonzalez, M.B.; Morató, J.F. “Wetwall”-an innovative design concept for the treatment of wastewater at an urban scale. Desalin. Water Treat. 2018, 109, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Prenner, F.; Pucher, B.; Zluwa, I.; Pitha, U.; Langergraber, G. Rainwater Use for Vertical Greenery Systems: Development of a Conceptual Model for a Better Understanding of Processes and Influencing Factors. Water 2021, 13, 1860. [Google Scholar] [CrossRef]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef] [PubMed]
- Mendez, C.B.; Afshar, B.R.; Kinney, K. Effect of Roof Material on Water Quality for Rainwater Harvesting Systems; Texas Water Development Board: Austin, TX, USA, 2010. [Google Scholar]
- Gikas, G.D.; Tsihrintzis, V.A. Assessment of water quality of first-flush roof runoff and harvested rainwater. J. Hydrol. 2012, 466–467, 115–126. [Google Scholar] [CrossRef]
- Amin, M.T.; Kim, T.; Amin, M.N.; Han, M.Y. Effects of catchment, first-flush, storage conditions, and time on microbial quality in rainwater harvesting systems. Water Environ. Res. 2013, 85, 2317–2329. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; FAO: Rome, Italy, 1998. [Google Scholar]
- Saad, R. Modelling the Water Demand of Urban Vertical Green Based on Remote Climate Station Data. Master’s Thesis, Technical University, Berlin, Germany, 2020. [Google Scholar]
- Perez, R.; Stewart, R.; Arbogast, C.; Seals, R.; Scott, J. An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation. Sol. Energy 1986, 36, 481–497. [Google Scholar] [CrossRef]
- Hoffmann, K.A.; Šuklje, T.; Kozamernik, J.; Nehls, T. Modelling the cooling energy saving potential of facade greening in summer for a set of building typologies in mid-latitudes. Energy Build. 2021, 238, 110816. [Google Scholar] [CrossRef]
- CAP. Copenhagen Climate Adaptation Plan. Available online: https://en.klimatilpasning.dk/media/568851/copenhagen_adaption_plan.pdf (accessed on 26 May 2021).
- Bİcan, N.B. A New methodology for analysis of spatial interventions towards sustainability in social housing regeneration–the case of gyldenrisparken in Copenhagen. Metu J. Fac. Archit. 2020, 37, 35–58. [Google Scholar]
- Foteinaki, K.; Li, R.; Heller, A.; Rode, C. Heating system energy flexibility of low-energy residential buildings. Energy Build. 2018, 180, 95–108. [Google Scholar] [CrossRef]
- Dugord, P.A.; Lauf, S.; Schuster, C.; Kleinschmit, B. Land use patterns, temperature distribution, and potential heat stress risk-The case study Berlin, Germany. Comput. Environ. Urban. Syst. 2014, 48, 86–98. [Google Scholar] [CrossRef]
- SDUD Senate Department of Urban Development (SDUD): Flächennutzung und Stadtstruktur, Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Edition 2015. Available online: http://www.stadtentwicklung.berlin.de (accessed on 26 May 2021).
- Buchin, O.; Jänicke, B.; Meier, F.; Scherer, D.; Ziegler, F. The role of building models in the evaluation of heat-related risks. Nat. Hazards Earth Syst. Sci. 2016, 16, 963–976. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Oliveira, A.; Marias, M.; Correia, E. Identificação das Ilhas de Calor Urbano e Simulação Para as Áreas Críticas da Cidade de Lisboa; Câmara Municipal De Lisboa: Lisboa, Portugal, 2020. (In Portuguese) [Google Scholar]
- Morais, L.F.L. Revitalização da Baixa Pombalina: Proposta de Humanização. Master’s Thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal, 2015. (In Portuguese). [Google Scholar]
- Miranda, F. Caracterisação dos Edifícios Pombalinos. Master’s Thesis, Faculdade de Ciências e Tecnologia, Almada, Portugal, 2011. (In Portuguese). [Google Scholar]
- Rome Municipality Struttura, Natalità, Mortalità, Incremento-2019. Città Metropolitana di Roma Capitale-Dipartimento Programmazione e Attuazione Urbanistica. Available online: https://www.comune.roma.it/web-resources/cms/documents/01_Municipio_pop_2019.pdf (accessed on 26 May 2021).
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating ecosystem services and green infrastructure: Assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Rome Municipality PRG Adottato—G2 Guida per la Qualità Degli Interventi. Città Metropolitana di Roma Capitale-Dipartimento Programmazione e Attuazione Urbanistica. Available online: http://www.urbanistica.comune.roma.it/prg-adottato/prg-adottato-elaborati-gestionali/prg-adottato-g2.html (accessed on 26 May 2021).
- Ünal, Y.S.; Sonuç, C.Y.; Incecik, S.; Topcu, H.S.; Diren-Üstün, D.H.; Temizöz, H.P. Investigating urban heat island intensity in Istanbul. Theor. Appl. Climatol. 2020, 139, 175–190. [Google Scholar] [CrossRef]
- TKGM. General Directorate of Land Registry and Cadastre of Turkey Parcel Details (Tapu ve Kadastro Genel Müdürlüğü Parsel Sorgulama). Available online: https://parselsorgu.tkgm.gov.tr (accessed on 11 March 2021).
- Welter, V.M. The 1925 master plan for Tel-aviv by patrick geddes. Isr. Stud. 2009, 14, 94–119. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Cristiano, E.; Deidda, R.; Viola, F. The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Sci. Total Environ. 2021, 756, 143876. [Google Scholar] [CrossRef]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Martins, A.M.T.; de Campos, I.D. From the horizontal garden to the vertical garden: An architectural and environmental perspective of the “Green” element. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 072022. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Martorell, I.; Cabeza, L.F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renew. Sustain. Energy Rev. 2014, 39, 139–165. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment–Analysis and assessment of the cooling potential of mitigation tecnologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Water as a Key Resource in Sustainable Development. Available online: http://www.un-documents.net/harare-1.htm (accessed on 26 May 2021).
- Radić, M.; Dodig, M.B.; Auer, T. Green facades and living walls-A review establishing the classification of construction types and mapping the benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef] [Green Version]
- Sheweka, S.; Magdy, N. The living walls as an approach for a healthy urban environment. Energy Procedia 2011, 6, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Reséndiz, J.A.; Ruiz-García, L.; Olivieri, F.; Ventura-Ramos, E. Experimental assessment of the thermal behavior of a living wall system in semi-arid environments of central Mexico. Energy Build. 2018, 174, 31–43. [Google Scholar] [CrossRef]
- Quinn, R.; Melville-Shreeve, P.; Butler, D.; Stovin, V. A Critical evaluation of the water supply and stormwater management performance of retrofittable domestic rainwater harvesting systems. Water 2020, 12, 1184. [Google Scholar] [CrossRef] [Green Version]
- Molaei, O.; Kouchakzadeh, M.; Fashi, F.H. Evaluation of rainwater harvesting performance for water supply in cities with cold and semi-arid climate. Water Supply 2019, 19, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.; Azulai, N.; Oron, G.; Arnold, M.; Nejidat, A.; Ronen, Z. Environmental impact and health risks associated with greywater irrigation: A case study. Water Sci. Technol. 2005, 52, 161–169. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Pareek, V.K.; Ang, M. A review of greywater characteristics and treatment processes. Water Sci. Technol. 2013, 67, 1403–1424. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; Acheampong, M.A.; DeVries, N.K. Greywater characteristics, treatment systems, reuse strategies and user perception—A review. Water Air Soil Pollut. 2018, 229, 255. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Ward, S.; Rivera-Sanchez, M.L.; Zaraza-Peña, J.M. Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households. Environ. Sci. Pollut. Res. 2018, 25, 19200–19216. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, M.; Peter-Fröhlich, A.; Dlabacs, C.; Pawlowski, L.; Bonhomme, A. EU demonstration project for separate discharge and treatment of urine, faeces and greywater-Part II: Cost comparison of different sanitation systems. Water Sci. Technol. 2007, 56, 251–257. [Google Scholar] [CrossRef]
- Ottelé, M.; Perini, K.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Koura, J.; Manneh, R.; Belarbi, R.; El Khoury, V.; El Bachawati, M. Comparative cradle to grave environmental life cycle assessment of traditional and extensive vegetative roofs: An application for the Lebanese context. Int. J. Life Cycle Assess. 2020, 25, 423–442. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2014: Water and Energy; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2014. [Google Scholar]
- NYSERDA. Statewide Assessment of Energy Use by the Municipal Water and Wastewater Sector; 2008. Available online: https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/Statewide-Assessment-Energy-Use.pdf (accessed on 26 May 2021).
- Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water–energy nexus for water distribution systems: A literature review. Environ. Rev. 2019, 27, 519–544. [Google Scholar] [CrossRef]
- Yüce, S.; Kazner, C.; Hochstrat, R.; Wintgens, T.; Melin, T. Water reuse versus seawater desalination–evaluation of the economic and environmental viability. In Water-Energy Interactions in Water Reuse; Lazarova, V., Choo, K.-H., Cornel, P., Eds.; IWA: London, UK, 2012. [Google Scholar]
- Schaum, C.; Lensch, D.; Cornel, P. Water reuse and reclamation: A contribution to energy efficiency in the water cycle. J. Water Reuse Desalin. 2015, 5, 83–94. [Google Scholar] [CrossRef] [Green Version]
- ISTAT (Italian National Institute of Statistics). ISTAT Water Statistics|Years 2015–2018. Available online: https://www.istat.it/it/files/2019/03/Water-report.pdf (accessed on 26 May 2021).
- Magagna, D.; Hidalgo González, I.; Bidoglio, G.; Peteves, S.; Adamovic, M.; Bisselink, B.; De Felice, M.; De Roo, A.; Dorati, C.; Ganora, D.; et al. Water—Energy Nexus in Europe; Publications Office of the European Union: Luxembourg, 2019; ISBN 9789276033851. [Google Scholar]
- DNAVA (Danish Water and Wasterwater Association). Water in Figures-2019 DANVA Statistics & Benchmarking. Available online: https://www.danva.dk/media/6355/2019_water-in-figures_web.pdf (accessed on 26 May 2021).
- Tal, A. Addressing desalination’s carbon footprint: The israeli experience. Water 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Bertanza, G.; Sorlini, S.; Vaccari, M. Energy Balance in the Water Cycle in Italy: State of the Art and Perspectives. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability; Naddeo, V., Balakrishnan, M., Choo, K.A.H., Eds.; Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Springer: Cham, Switzerland, 2019. [Google Scholar]
- BDEW. (German Association of Energy and Water Industries) Kennzahlenvergleich Wasserversorgung und Abwasserbeseitigung Brandenburg. Available online: https://www.bdew.de/media/documents/190430_Brandenburg-Benchmarking-Bericht-Betrachtungsjahr-2017.pdf (accessed on 26 May 2021).
- ERSAR. Relatório Anual dos Serviços de Águas e Resíduos em Portugal-2020 Entidade Reguladora dos Serviços de Águas e Resíduos; ERSAR: Lisbon, Portugal, 2020; ISBN 978-989-8360-39-7. (In Portuguese) [Google Scholar]
- ERSAR. Guia Técnico 24-Uso Eficiente de Energia nos Serviços de Água (Technical Guide 24-Efficient Use of Energy in Water Services). Available online: http://www.ersar.pt/pt/publicacoes/publicacoes-tecnicas/guias (accessed on 26 May 2021).
- ISIK. Su Ve Kanalizasyon Idaresi (Water and Sewage Administration Turkey) Faaliyet Raporu (Activity Report (2019)). Available online: https://www.iski.gov.tr/web/assets/SayfalarDocs/faaliyetraporlari/faaliyetraporu/pdf/2019-FAALİYET-RAPORU.pdf (accessed on 26 May 2021).
- Gorgich, M.; Mata, T.M.; Martins, A.; Caetano, N.S.; Formigo, N. Application of domestic greywater for irrigating agricultural products: A brief study. Energy Rep. 2020, 6, 811–817. [Google Scholar] [CrossRef]
- Eregno, F.E.; Moges, M.E.; Heistad, A. Treated greywater reuse for hydroponic lettuce production in a Green Wall system: Quantitative health risk assessment. Water 2017, 9, 454. [Google Scholar] [CrossRef] [Green Version]
- Paul, R.; Kenway, S.; Mukheibir, P. How scale and technology influence the energy intensity of water recycling systems-An analytical review. J. Clean. Prod. 2019, 215, 1457–1480. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Prodanovic, V.; Hatt, B.; McCarthy, D.; Zhang, K.; Deletic, A. Green walls for greywater reuse: Understanding the role of media on pollutant removal. Ecol. Eng. 2017, 102, 625–635. [Google Scholar] [CrossRef]
- Chowdhury, R.K.; Abaya, J.S. An experimental study of greywater irrigated green roof systems in an arid climate. J. Water Manag. Model. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Masi, F.; Bresciani, R.; Rizzo, A.; Edathoot, A.; Patwardhan, N.; Panse, D.; Langergraber, G. Green walls for greywater treatment and recycling in dense urban areas: A case-study in Pune. J. Water, Sanit. Hyg. Dev. 2016, 6, 342–347. [Google Scholar] [CrossRef]
- Zraunig, A.; Estelrich, M.; Gattringer, H.; Kisser, J.; Langergraber, G.; Radtke, M.; Rodriguez-Roda, I.; Buttiglieri, G. Long term decentralized greywater treatment for water reuse purposes in a tourist facility by vertical ecosystem. Ecol. Eng. 2019, 138, 138–147. [Google Scholar] [CrossRef]
- Gattringer, H.; Claret, A.; Radtke, M.; Kisser, J.; Zraunig, A.; Odriguez-Roda, I.; Buttiglieri, G. Novel vertical ecosystem for sustainable water treatment and reuse in tourist resorts. Int. J. Sustain. Dev. Plan. 2016, 11, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Pucher, B.; Riberio, G.; Langergraber, G.; Zluwa, I.; Spörl, P.; Pitha, U. Entwicklung eines multifunktionalen Living-Wall-Systems zur Reinigung und Nutzung von Grauwasser. Wasser Abfall. 2020, 22, 37–40. [Google Scholar] [CrossRef]
- WHO. Safe use of wastewater, excreta and greywater guidelines. Wastewater use in agriculture. World Health 2006, 2, 204. [Google Scholar]
- FAO. Aquastat Core Database. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/aquastat/en/databases/maindatabase (accessed on 26 May 2021).
- ENVE. (Commission fo Environment Climate change and Energy) Mariya Gancheva, Alicia McNeill, Melanie Muro. In Water Reuse–Legislative Framework in EU Regions. Available online: https://op.europa.eu/en/publication-detail/-/publication/c573861f-e712-11e8-b690-01aa75ed71a1/language-en (accessed on 26 May 2021).
- Monisteriale, D. Gazzetta Ufficiale della Repubblica Italiana-23 Luglio 2003, n. 169. Available online: http://extranet.regione.piemonte.it/ambiente/bga/archivio_documenti/2003_sem_02_30/30_atti_stato/dm_185_12_06_2003.pdf (accessed on 26 May 2021).
- Decreto-Lei n.º 119/2019. Estabelece o Regime jurídico de Produção de água para Reutilização, Obtida a Partir do Tratamento de águas Residuais, bem como da sua Utilização. Published: Diário da República n.º 159/2019, Série I de 2019-08-21. Available online: https://data.dre.pt/eli/dec-lei/119/2019/08/21/p/dre (accessed on 26 May 2021).
- EC Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0271:EN:HTML (accessed on 26 May 2021).
- EC Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Annex VI, part B. Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 26 May 2021).
- EU Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 26 May 2021).
- Cipolletta, G.; Ozbayram, E.G.; Eusebi, A.L.; Akyol, Ç.; Malamis, S.; Mino, E.; Fatone, F. Policy and legislative barriers to close water-related loops in innovative small water and wastewater systems in Europe: A critical analysis. J. Clean. Prod. 2021, 288, 125604. [Google Scholar] [CrossRef]
- Umweltbundesamt Untersuchung der Potentiale Für die Nutzung von Regenwasser zur Verdunstungskühlung in Städten–Abschlussbericht. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-09-16_texte_111-2019_verdunstungskuehlung.pdf (accessed on 26 May 2021). (In Germany).
- BWG. Berliner Wassergesetz. In der Fassung vom 17. Juni 2005. Zuletzt Geändert Durch Gesetz vom 6. Juni 2008. § 36a: Niederschlagswasserbewirtschaftung; 2008. (In Germany) [Google Scholar]
- DWA. Merkblatt DWA-M 153. Handlungsempfehlungen zum umgang mit regenwasser. In Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. Hennef; 2007. [Google Scholar]
- DAW. Merkblatt DWA-M 277. Hinweise zur auslegung von anlagen zur behandlung und nutzung von grauwasser und grauwasserteilströmen. In Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. Hennef.; 2017. [Google Scholar]
- Urbangreenup. NBS Catalogue; URBAN GreenUP Consortium Partners, 2018. [Google Scholar]
- Unalab. Nature Based Solutions–Technical Handbook (Part. II); Publisher: Unalab. 2019. Available online: https://unalab.eu/system/files/2020-02/unalab-technical-handbook-nature-based-solutions2020-02-17.pdf (accessed on 26 May 2021).
- Nature4cities. NBS Multi-Scalar and Multi-Thematic Typology and Associated Database. 2020. Available online: https://docs.wixstatic.com/ugd/55d29d_8813db2df690497e80740537b6a8a844.pdf (accessed on 26 May 2021).
- Perini, K.; Ottelé, M. Designing green façades and living wall systems for sustainable constructions. Int. J. Des. Nat. Ecodynamics 2014, 9, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.S.G.; Mahmud, H.B.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar] [CrossRef]
- Poórová, Z.; Vranayová, Z. Green Roofs and Water Retention in Košice, Slovakia; Springer International Publishing: Cham, Switzerland, 2019; ISBN 9783030240394. [Google Scholar]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build. Environ. 2012, 48, 57–65. [Google Scholar] [CrossRef]
- Stovin, V. The potential of green roofs to manage Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Poë, S.; Stovin, V.; Berretta, C. Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration. J. Hydrol. 2015, 523, 356–367. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban. Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. ThinkNature Nature Based Solutions Handbook. Available online: https://oppla.eu/product/19999 (accessed on 26 May 2021).
- Theodosiou, T. Green roofs in buildings: Thermal and environmental behaviour. Adv. Build. Energy Res. 2009, 3, 271–288. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy. 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Stefanakis, A.I. Green roofs towards circular and resilient cities. Circ. Econ. Sustain. 2021, 1, 395–411. [Google Scholar] [CrossRef]
- ANCV. Coberturas Verdes: Guia Técnico para projeto, construção e manutenção. In ANCV-Associação Nacional de Coberturas Verdes; ANCV: Porto, Portugal, 2019; ISBN 9789893300298. [Google Scholar]
- Nagase, A. Novel application and reused materials for extensive green roof substrates and drainage layers in Japan–Plant growth and moisture uptake implementation. Ecol. Eng. 2020, 153, 105898. [Google Scholar] [CrossRef]
- Cascone, S.; Gagliano, A.; Poli, T.; Sciuto, G. Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Build. Simul. 2019, 12, 379–393. [Google Scholar] [CrossRef]
- Shafique, M.; Azam, A.; Rafiq, M.; Ateeq, M.; Luo, X. An overview of life cycle assessment of green roofs. J. Clean. Prod. 2020, 250, 119471. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L.; Bacenetti, J. An environmental life cycle assessment of living wall systems. J. Environ. Manag. 2020, 254, 109743. [Google Scholar] [CrossRef]
- Chen, C.-F. Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecol. Eng. 2013, 52, 51–58. [Google Scholar] [CrossRef]
- Natarajan, M.; Rahimi, M.; Sen, S.; Mackenzie, N.; Imanbayev, Y. Living wall systems: Evaluating life-cycle energy, water and carbon impacts. Urban. Ecosyst. 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Cortês, A.; Tadeu, A.; Santos, M.I.; de Brito, J.; Almeida, J. Innovative module of expanded cork agglomerate for green vertical systems. Build. Environ. 2021, 188, 107461. [Google Scholar] [CrossRef]
- Bozorg Chenani, S.; Lehvävirta, S.; Häkkinen, T. Life cycle assessment of layers of green roofs. J. Clean. Prod. 2015, 90, 153–162. [Google Scholar] [CrossRef]
- Morau, D.; Rabarison, T.; Rakotondramiarana, H. Life cycle analysis of green roof implemented in a global south low-income country. Br. J. Environ. Clim. Chang. 2017, 7, 43–55. [Google Scholar] [CrossRef] [Green Version]
- El Bachawati, M.; Manneh, R.; Belarbi, R.; Dandres, T.; Nassab, C.; El Zakhem, H. Cradle-to-gate Life Cycle Assessment of traditional gravel ballasted, white reflective, and vegetative roofs: A Lebanese case study. J. Clean. Prod. 2016, 137, 833–842. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J.; Paulo, B.; Bentes, I.; Teixeira, C.A. Life cycle analysis of a new modular greening system. Sci. Total Environ. 2018, 627, 1146–1153. [Google Scholar] [CrossRef]
- Pushkar, S. Modeling the substitution of natural materials with industrial byproducts in green roofs using life cycle assessments. J. Clean. Prod. 2019, 227, 652–661. [Google Scholar] [CrossRef]
- Rincón, L.; Coma, J.; Pérez, G.; Castell, A.; Boer, D.; Cabeza, L.F. Environmental performance of recycled rubber as drainage layer in extensive green roofs. A comparative life cycle assessment. Build. Environ. 2014, 74, 22–30. [Google Scholar] [CrossRef]
- Kotsiris, G.; Androutsopoulos, A.; Polychroni, E.; Souliotis, M.; Kavga, A. Carbon footprint of green roof installation on school buildings in Greek Mediterranean climatic region. Int. J. Sustain. Energy 2019, 38, 866–883. [Google Scholar] [CrossRef]
- Rasul, M.G.; Arutla, L.K.R. Environmental impact assessment of green roofs using life cycle assessment. Energy Rep. 2020, 6, 503–508. [Google Scholar] [CrossRef]
- Pan, L.; Chu, L.M. Energy saving potential and life cycle environmental impacts of a vertical greenery system in Hong Kong: A case study. Build. Environ. 2016, 96, 293–300. [Google Scholar] [CrossRef]
- Pirouz, B.; Palermo, S.A.; Maiolo, M.; Arcuri, N.; Piro, P. Decreasing water footprint of electricity and heat by extensive green roofs: Case of southern Italy. Sustainability 2020, 12, 10178. [Google Scholar] [CrossRef]
- Vacek, P.; Struhala, K.; Matějka, L. Life-cycle study on semi intensive green roofs. J. Clean. Prod. 2017, 154, 203–213. [Google Scholar] [CrossRef]
- BauKarussell No Title. Available online: https://www.baukarussell.at/ (accessed on 26 May 2021).
- Romm, T.M.; Kasper, T. Eco-Efficient Construction Using Local Resources. In Manual of Recycling, Buildings as Sources of Materials; Hillebrandt, A., Riegler-Floors, P., Rosen, A., Seggewies, J.-K., Eds.; Business Information GmbH: Munich, Germany, 2019. [Google Scholar]
- Eksi, M.; Sevgi, O.; Akburak, S.; Yurtseven, H.; Esin, İ. Assessment of recycled or locally available materials as green roof substrates. Ecol. Eng. 2020, 156, 105966. [Google Scholar] [CrossRef]
- Matlock, J.M.; Rowe, D.B. The suitability of crushed porcelain and foamed glass as alternatives to heat-expanded shale in green roof substrates: An assessment of plant growth, substrate moisture, and thermal regulation. Ecol. Eng. 2016, 94, 244–254. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Calheiros, C.S.C.; Martins, J.P.; Costa, F.M.; Palha, P.; de Freitas, S.; Ramos, N.M.M.; Castro, P.M.L. Substrate influence on aromatic plant growth in extensive green roofs in a Mediterranean climate. Urban. Ecosyst. 2017, 20, 1347–1357. [Google Scholar] [CrossRef]
- Tadeu, A.; Simões, N.; Almeida, R.; Manuel, C. Drainage and water storage capacity of insulation cork board applied as a layer on green roofs. Constr. Build. Mater. 2019, 209, 52–65. [Google Scholar] [CrossRef]
- Cortês, A.; Almeida, J.; de Brito, J.; Tadeu, A. Water retention and drainage capability of expanded cork agglomerate boards intended for application in green vertical systems. Constr. Build. Mater. 2019, 224, 439–446. [Google Scholar] [CrossRef]
- Nehls, T.; Peters, A.; Kraus, F.; Rim, Y.N. Water dynamics at the urban soil-atmosphere interface—Rainwater storage in paved surfaces and its dependence on rain event characteristics. J. Soils Sediments 2021, 21, 2025–2034. [Google Scholar] [CrossRef]
- Kim, J.; Song, I.; Oh, H.; Jong, J.; Park, J.; Choung, Y. A laboratory-scale graywater treatment system based on a membrane filtration and oxidation process-characteristics of graywater from a residential complex. Desalination 2009, 238, 347–357. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Claus, K.; Rousseau, S. Public versus private incentives to invest in green roofs: A cost benefit analysis for Flanders. Urban. For. Urban. Green. 2012, 11, 417–425. [Google Scholar] [CrossRef]
- Peng, L.L.H.; Jim, C.Y. Economic evaluation of green-roof environmental benefits in the context of climate change: The case of Hong Kong. Urban. For. Urban. Green. 2015, 14, 554–561. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- FLL. Fassadenbegrünungsrichtlinien: Richtlinien Für Die Planung, Ausführung und Pflege von Wand- und Fassadenbegrünungen; FLL: Bonn, Germany, 2018. [Google Scholar]
- Lapointe, M.; Cumming, G.S.; Gurney, G.G. Comparing ecosystem service preferences between urban and rural dwellers. Bioscience 2019, 69, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Sipilä, M. Hopping on one leg–The challenge of ecosystem disservices for urban green management. Urban. For. Urban. Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Von Döhren, P.; Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosyst. Serv. 2019, 40, 101031. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; Mastellone, M.; Ruggiero, S.; Vanoli, G.P. Green walls, a critical review: Knowledge gaps, design parameters, thermal performances and multi-criteria design approaches. Energies 2020, 13, 2296. [Google Scholar] [CrossRef]
- Berndtsson, J.A.C.C.; Bengtsson, L.; Jinno, K. Runoff water quality from intensive and extensive vegetated roofs. Ecol. Eng. 2009, 35, 369–380. [Google Scholar] [CrossRef]
- Grard, B.J.-P.; Chenu, C.; Manouchehri, N.; Houot, S.; Frascaria-Lacoste, N.; Aubry, C. Rooftop farming on urban waste provides many ecosystem services. Agron. Sustain. Dev. 2018, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Pardela, Ł.; Kowalczyk, T.; Bogacz, A.; Kasowska, D. Sustainable green roof ecosystems: 100 years of functioning on fortifications-A case study. Sustainability 2020, 12, 4721. [Google Scholar] [CrossRef]
- Rafael, S.; Vicente, B.; Rodrigues, V.; Miranda, A.I.; Borrego, C.; Lopes, M. Impacts of green infrastructures on aerodynamic flow and air quality in Porto’s urban area. Atmos. Environ. 2018, 190, 317–330. [Google Scholar] [CrossRef]
- Townsend, A.R.; Howarth, R.W.; Bazzaz, F.A.; Booth, M.S.; Cleveland, C.S.C.C.; Collinge, S.K.; Dobson, A.P.; Epstein, P.R.; Holland, E.A.; Keeney, D.R.; et al. Human health effects of a changing global nitrogen cycle. Front. Ecol. Environ. 2003, 1, 240–246. [Google Scholar] [CrossRef]
- Moro, P.A.; Assisi, F.; Cassetti, F.; Bissoli, M.; Borghini, R.; Davanzo, F.; Della Puppa, T.; Dimasi, V.; Ferruzzi, M.; Giarratana, T.; et al. Toxicological hazards of natural environments: Clinical reports from poison Control Centre of Milan. Urban. For. Urban. Green. 2009, 8, 179–186. [Google Scholar] [CrossRef]
- Wong, G.K.L.; Jim, C.Y. Urban-microclimate effect on vector mosquito abundance of tropical green roofs. Build. Environ. 2017, 112, 63–76. [Google Scholar] [CrossRef]
- Fernandez-, R.; Gonzalez-R, P. Green roofs as a habitat for birds: A review. J. Anim. Vet. Adv. 2010, 9, 2041–2052. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.W.; Ridlon, A.D.; Gaynor, K.M.; Gaines, S.D.; Stier, A.C.; Halpern, B.S. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 2020, 23, 1522–1536. [Google Scholar] [CrossRef]
- Wong, B.B.M.; Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 2015, 26, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, B.; Paço, T.A.; Luz, A.C.; Palha, P.; Milliken, S.; Kotzen, B.; Branquinho, C.; Pinho, P.; de Carvalho, R.C. Are biocrusts and xerophytic vegetation a viable green roof typology in a Mediterranean climate? A comparison between differently vegetated green roofs in water runoff and water quality. Water 2021, 13, 94. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Zhang, G.; He, B.-J. Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban. For. Urban. Green. 2021, 58, 126992. [Google Scholar] [CrossRef]
City | Climate (2) | Typical Building | Water Availability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class (1) | P | T | P-ET Oct-Mar Apr-Sep | Ground | Facade | Window | v/h | O | GW Capita | GW Facade | RO Facade | ||
mm/a | °C | mm | ---------------m2------------- | (-) | inh/m2 | L/inh d | ---L/m2 d--- | ||||||
Copenhagen | Dfb | 614 | 9.4 | 151 | −206 | 980 | 3206 | 1408 | 3.27 | 0.044 | 51 | 0.69 | 0.37 |
Berlin | Dfb | 585 | 10.3 | 118 | −238 | 166 | 440 | 132 | 2.65 | 0.065 | 63 | 1.54 | 0.43 |
Rome | Csa | 605 | 17.8 | 135 | −644 | 1302 | 3996 | 813 | 3.07 | 0.029 | 90 | 0.85 | 0.41 |
Lisbon | Csa | 571 | 17.4 | 126 | −791 | 237 | 407 | 142 | 1.72 | 0.021 | 81 | 0.99 | 0.71 |
Istanbul | Csa | 546 | 16.0 | −18 | −840 | 231 | 310 | 132 | 1.34 | 0.170 | 58 | 7.35 | 0.82 |
Tel-Aviv | Csa | 506 | 21.5 | −171 | −1090 | 165 | 330 | 66 | 2.00 | 0.040 | 58 | 1.16 | 0.57 |
Water Source | Primary Energy Drivers | Energy Consumption in kW h/m3 | |
---|---|---|---|
Range | Average | ||
Groundwater (distribution included) | Pumping | 0.27–1.30 | ≈0.5 |
Surface Water | Pumping | 0.5–4.0 | |
Brackish Water | Reverse osmosis | 1.2–4.0 | ≈1.5 |
Seawater | Reverse osmosis | 2.5–10.0 | ≈3.5 |
Catchment, Conveyance, and Treatment | Distribution | Combined Energy for Water Provision | |
---|---|---|---|
Country | --------------------------------------------kW h/m3------------------------------------------- | ||
Germany | 0.5–0.7 a | ||
Brandenburg | 0.43 d | 0.11 d | 0.54 |
Denmark | 0.2 a–0.6; 0.43 b | ||
Copenhagen | 0.3 b | ||
Israel | 3.0–3.5 c | 0.4–1 c | 3.4–4.5 |
Istanbul | 1.73 h | ||
Portugal | 0.33 f | 0.33–0.55 g | |
Italy | 0.184–0.45 e | 0.146–0.325 e | 0.330–0.775 e |
Feasible Small-Scale Treatment Technology for Greywater | Analogous Average Energy Consumption [kW h/m3] (From Medium Scale Treatment Plants for Conventional Wastewater Treatment) |
---|---|
Biological stage | |
SMBR | 0.2–4 |
SBR | 0–0.29 |
BR | 0.66 |
Disinfection | |
UV Disinfection | 0.02–0.8 |
RO | 0.56–1.3 |
NBS_u Type | Location | Plant Type | Calculation Method | Water Consumption | Reference | |
---|---|---|---|---|---|---|
Extensive GR | Antananarivo, Madagascar | Grass | CML Baseline | 96 L/m2 a | [120] | |
Calabria, Italy | Native Mediterranean plant species | precipitation + irrigation − run off | 127 L/m2 149 L/m2 | winter period summer period | [128] | |
Lebanon | Sunflower | IMPACT 2002+ | 15 L/m2 | summer period | [56] | |
Intensive GR | Antananarivo, Madagascar | Grass | CML Baseline | 730 L/m2 a | [120] | |
Puigverd de Lleida, Spain | Sedum, Lampranthus, Delosperma | EI 99 | 4032 L/m2 a | June–August | [124] | |
Pot-based VGS | Delft, Netherlands | Pteropsida | Averaged for whole year | 1 L/m2 d | Planter boxes | [55] |
3 L/m2 d | Felt layers | |||||
Madrid, Spain | Hederahelix stems biomass | ILCD Midpoint | 8 L/m2 d | [115] | ||
Madrid, Spain | Lonicera n. stems biomass | ILCD Midpoint | 2 L/m2 d | [115] | ||
Los Angeles, USA | Liriope muscari | - | 6 L/m2 d | [117] | ||
Portugal | Sedum album | CML 2001 Endpoint approach | 8.7 L/m2 d 340 L/m2 a | Spring and summer Total | [122] | |
VGS | Hong Kong | Peperomiaclaviformis | CML-2001 | 100 L/m2 month | [127] |
City | Water Management Potential | |||||||
---|---|---|---|---|---|---|---|---|
(a) Solely RO Irrigation | (b) Optimized RO Irrigation | (c) Full RO + GW Irrigation | ||||||
Facade Greened | Evaporated RO | Facade Greened | Evaporated RO | Evaporated GW | Facade Greened | Evaporated RO | Evaporated GW | |
% | % | % | ||||||
Copenhagen | 10 | 35 | 26 | 79 | 11 | 46 | 92 | 41 |
Berlin | 13 | 39 | 64 | 95 | 29 | 87 | 100 | 47 |
Rome | 4 | 17 | 24 | 64 | 21 | 28 | 67 | 27 |
Lisbon | - | - | 28 | 44 | 28 | 28 | 44 | 28 |
Istanbul | 3 | 9 | 100 | 100 | 30 | 136 | 100 | 45 |
Tel-Aviv | - | - | 28 | 60 | 53 | 28 | 60 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearlmutter, D.; Pucher, B.; Calheiros, C.S.C.; Hoffmann, K.A.; Aicher, A.; Pinho, P.; Stracqualursi, A.; Korolova, A.; Pobric, A.; Galvão, A.; et al. Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs. Water 2021, 13, 2165. https://doi.org/10.3390/w13162165
Pearlmutter D, Pucher B, Calheiros CSC, Hoffmann KA, Aicher A, Pinho P, Stracqualursi A, Korolova A, Pobric A, Galvão A, et al. Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs. Water. 2021; 13(16):2165. https://doi.org/10.3390/w13162165
Chicago/Turabian StylePearlmutter, David, Bernhard Pucher, Cristina S. C. Calheiros, Karin A. Hoffmann, Andreas Aicher, Pedro Pinho, Alessandro Stracqualursi, Alisa Korolova, Alma Pobric, Ana Galvão, and et al. 2021. "Closing Water Cycles in the Built Environment through Nature-Based Solutions: The Contribution of Vertical Greening Systems and Green Roofs" Water 13, no. 16: 2165. https://doi.org/10.3390/w13162165