Targeted Hydrolysis of β-Lactam Antibiotics in Dry Suspension Residue: A Proposed Method to Reduce Ecological Toxicity and Bacterial Resistance
Abstract
:1. Introduction
Residue of β-Lactam Dry Suspension Formulation as a Potential Source of Pollution
2. Materials and Methods
2.1. Reactivity of β-Lactams towards Hydrolysis
2.2. Targeted Hydrolysis of the β-Lactam Ring
2.3. Preparation of HPLC Samples
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.H.; Aziz, H.A.; Khan, N.A.; Hasan, M.A.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Vambol, V.; Changani, F.; Yousef, M.; et al. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A Critical review. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Brausch, J.M.; Connors, K.A.; Brooks, B.W.; Rand, G.M. Human pharmaceuticals in the aquatic environment: A review of recent toxicological studies and considerations for toxicity testing. Rev. Environ. Contam. Toxicol. 2012, 218, 1–99. [Google Scholar]
- Ivar do Sul, J.A.; Costa, M.F. The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352–364. [Google Scholar] [CrossRef]
- Burns, E.E.; Boxall, A.B.A. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 2018, 37, 2776–2796. [Google Scholar] [CrossRef] [Green Version]
- McCarty, L.S.; Borgert, C.J.; Posthuma, L. The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regul. Toxicol. Pharmacol. 2018, 99, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Nebot, C.; Falcon, R.; Boyd, K.G.; Gibb, S.W. Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: A rural perspective. Environ. Sci. Pollut. Res. Int. 2015, 22, 10559–10568. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, B. Body of Evidence. Environ. Health Perspect. 2003, 111, A394–A399. [Google Scholar] [CrossRef]
- Letsinger, S.; Kay, P. Comparison of prioritisation schemes for human pharmaceuticals in the aquatic environment. Environ. Sci. Pollut. Res. Int. 2019, 26, 3479–3491. [Google Scholar] [CrossRef] [Green Version]
- Khetan, S.K.; Collins, T.J. Human pharmaceuticals in the aquatic environment: A challenge to Green Chemistry. Chem. Rev. 2007, 107, 2319–2364. [Google Scholar] [CrossRef]
- Al-Odaini, N.A.; Zakaria, M.P.; Yaziz, M.I.; Surif, S. Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 6791–6806. [Google Scholar] [CrossRef] [Green Version]
- Doerr-MacEwen, N.A.; Haight, M.E. Expert stakeholders′ views on the management of human pharmaceuticals in the environment. Environ. Manag. 2006, 38, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Depledge, M. Reduce drug waste in the environment. Nature 2011, 478, 36. [Google Scholar] [CrossRef]
- Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ. Sci. Technol. 2019, 53, 2950–2960. [Google Scholar] [CrossRef] [Green Version]
- Janex-Habibi, M.L.; Huyard, A.; Esperanza, M.; Bruchet, A. Reduction of endocrine disruptor emissions in the environment: The benefit of wastewater treatment. Water Res. 2009, 43, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, J.; Kumar, P.S.; Anandan, S.; Zhou, M.; Grieser, F.; Ashokkumar, M. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere 2010, 80, 747–752. [Google Scholar] [CrossRef]
- Clara, M.; Strenn, B.; Kreuzinger, N. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res. 2004, 38, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Putschew, A.; Wischnack, S.; Jekel, M. Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Sci. Total. Environ. 2000, 255, 129–134. [Google Scholar] [CrossRef]
- Bilal, M.; Ashraf, S.S.; Barcelo, D.; Iqbal, H.M.N. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total. Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef]
- Kern, W.V. Antibiotika und antibakterielle Chemotherapeutika. In Arzneiverordnungs-Report; Schwabe, U., Paffrath, D., Ludwig, W.D., Klauber, J., Eds.; Springer: Heidelberg/Berlin, Germany, 2019; pp. 435–459. [Google Scholar]
- Al-Ahmad, A.; Daschner, F.D.; Kümmerer, K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 1999, 37, 158–163. [Google Scholar] [CrossRef]
- Harris, S.; Morris, C.; Morris, D.; Cormican, M.; Cummins, E.J. Simulation model to predict the fate of ciprofloxacin in the environment after wastewater treatment. Environ. Sci. Health. A Tox Hazard Subst. Environ. Eng. 2013, 48, 675–685. [Google Scholar] [CrossRef]
- Gozlan, I.; Rotstein, A.; Avisar, D. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere 2013, 91, 985–992. [Google Scholar] [CrossRef]
- Langin, A.; Alexy, R.; König, A.; Kümmerer, K. Deactivation and transformation products in biodegradability testing of ß-lactams amoxicillin and piperacillin. Chemosphere 2009, 75, 347–354. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Fukutsu, N.; Kawasaki, T.; Saito, K.; Nakazawa, H. An approach for decontamination of β-lactam antibiotic residues or contaminants in the pharmaceutical manufacturing environment. Chem. Pharm. Bull. 2006, 54, 1340–1343. [Google Scholar] [CrossRef] [Green Version]
- Bergheim, M.; Helland, T.; Kallenborn, R.; Kümmerer, K. Benzyl-penicillin (Penicillin G) transformation in aqueous solution at low temperature under controlled laboratory conditions. Chemosphere 2010, 81, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Devault, D.A.; Nefau, T.; Levi, Y.; Karolak, S. The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions. Environ. Sci. Pollut. Res. Int. 2017, 24, 25645–25655. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total. Environ. 2016, 563, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, S.; Steliopoulos, G.; Hamscher, G. Comprehensive metabolomics analysis of nontargeted LC-HRMS data provides valuable insights regarding the origin of veterinary drug residues. J. Agric. Food Chem. 2020, 68, 12493–12502. [Google Scholar] [CrossRef]
- De Jong, J.; van den Berg, P.B.; Visser, S.T.; de Vries, T.W.; de Jong-van den Berg, L.T. Antibiotic usage, dosage and course length in children between 0 and 4 years. Acta Paediatr. 2009, 98, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Dusdieker, L.B.; Murph, J.R.; Milavetz, G. How much antibiotic suspension is enough? Pediatrics 2000, 106, E10. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Cha, J.; Carlson, K. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2005, 1097, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Moges, F.; Endris, M.; Belyhun, Y.; Worku, W. Isolation and characterization of multiple drug resistance bacterial pathogens from waste water in hospital and non-hospital environments, Northwest Ethiopia. BMC Res. Notes 2014, 7, 215. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Wolny-Koladka, K. Resistance to antibiotics and the occurrence of genes responsible for the development of methicillin resistance in staphylococcus bacteria isolated from the environment of horse riding centers. J. Equine Vet. Sci. 2018, 61, 65–71. [Google Scholar] [CrossRef]
- Singer, A.C.; Xu, Q.; Keller, V.D.J. Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study. PLoS ONE 2019, 14, e0221568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frere, J.M. Mechanism of action of beta-lactam antibiotics at the molecular level. Biochem. Pharmacol. 1977, 26, 2203–2210. [Google Scholar] [CrossRef]
- Imming, P.; Klar, B.; Dix, D. Hydrolytic stability versus ring size in lactams: Implications for the development of lactam antibiotics and other serine protease inhibitors. J. Med. Chem. 2000, 43, 4328–4331. [Google Scholar] [CrossRef]
- Wildfeuer, A.; Rader, K. Stability of beta-lactamase inhibitors and beta-lactam antibiotics in parenteral formulations as well as in body fluids and tissue homogenates. Comparison of sulbactam, clavulanic acid, ampicillin and amoxicillin. Arzneimittelforschung 1991, 41, 70–73. [Google Scholar] [PubMed]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total. Environ. 2014, 466, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Müller, A. Stewardship für antibiotika in der pädiatrie. Drug Res. 2018, 68, S6–S7. [Google Scholar] [CrossRef] [Green Version]
- Bax, R. How to evaluate and predict the ecologic impact of antibiotics: The pharmaceutical industry view from research and development. Clin. Microbiol. Infect. 2001, 7 (Suppl. 5), 46–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices-a review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef]
- Dos Santos, A.J.; Kronka, M.S.; Fortunato, G.V.; Lanza, M.R.V. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Curr. Opin. Electrochem. 2021, 26, 100674. [Google Scholar] [CrossRef]
- Bian, X.; Xia, Y.; Zhan, T.; Wang, L.; Zhou, W.; Dai, Q.; Chen, J. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: Electrode characterization, operational parameters optimization and degradation mechanism. Chemosphere 2019, 233, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci. Total. Environ. 2021, 765, 144163. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wang, J.; Dou, M.; Huang, X. Enhanced photocatalytic removal of amoxicillin with Ag/TiO2/mesoporous g-C3N4 under visible light: Property and mechanistic studies. Environ. Sci. Pollut. Res. 2020, 27, 7025–7039. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.L.; Fu, C.C.; Juang, R.S. Removal of metronidazole and amoxicillin mixtures by UV/TiO2 photocatalysis: An insight into degradation pathways and performance improvement. Environ. Sci. Pollut. Res. 2019, 26, 11846–11855. [Google Scholar] [CrossRef]
- Zha, S.; Zhou, Y.; Jin, X.; Chen, Z. The removal of amoxicillin from wastewater using organobentonite. J. Environ. Manag. 2013, 129, 569–576. [Google Scholar] [CrossRef]
- Alharbi, S.K.; Price, W.E. Degradation and fate of pharmaceutically active contaminants by advanced oxidation processes. Curr. Pollut. Rep. 2017, 3, 268–280. [Google Scholar] [CrossRef]
Time for Quantitative Hydrolysis [min] | c NaOH [mol/L] | Ratio NaOH/ Dry Suspension | Degradation [%] | cv * |
---|---|---|---|---|
60 | 0.5 | 1:1 | 93.6 | 0.21 |
60 | 1.0 | 1:1 | 94.9 | 0.44 |
60 | 0.5 | 2:1 | 95.6 | 0.35 |
60 | 1.0 | 2:1 | 95.5 | 0.92 |
90 | 1.0 | 2:1 | 99.8 | 0.15 |
120 | 1.0 | 2:1 | 99.9 | 0.56 |
150 | 1.0 | 2:1 | 99.9 | 0.70 |
180 | 1.0 | 2:1 | 99.9 | 0.70 |
210 | 1.0 | 2:1 | 100.0 | 0.22 |
240 | 1.0 | 2:1 | 100.0 | 0.60 |
API | c NaOH [mol/L] | Ratio NaOH/Prepared Dry Suspension | 100% β-Lactam Hydrolysis Reached at |
---|---|---|---|
amoxicillin | 0.5 | 1:1 | 20 min |
cefaclor | 0.4 | 1:1 | 20 min |
cefadroxil | 1 | 2:1 | 60 min |
cefuroxime | 1 | 2:1 | 240 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahms, A.; Peifer, C. Targeted Hydrolysis of β-Lactam Antibiotics in Dry Suspension Residue: A Proposed Method to Reduce Ecological Toxicity and Bacterial Resistance. Water 2021, 13, 2225. https://doi.org/10.3390/w13162225
Brahms A, Peifer C. Targeted Hydrolysis of β-Lactam Antibiotics in Dry Suspension Residue: A Proposed Method to Reduce Ecological Toxicity and Bacterial Resistance. Water. 2021; 13(16):2225. https://doi.org/10.3390/w13162225
Chicago/Turabian StyleBrahms, Arne, and Christian Peifer. 2021. "Targeted Hydrolysis of β-Lactam Antibiotics in Dry Suspension Residue: A Proposed Method to Reduce Ecological Toxicity and Bacterial Resistance" Water 13, no. 16: 2225. https://doi.org/10.3390/w13162225
APA StyleBrahms, A., & Peifer, C. (2021). Targeted Hydrolysis of β-Lactam Antibiotics in Dry Suspension Residue: A Proposed Method to Reduce Ecological Toxicity and Bacterial Resistance. Water, 13(16), 2225. https://doi.org/10.3390/w13162225