Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Watershed
2.2. Model Input Data
2.3. Hydrological Modeling
2.4. Sensitivity Analysis
2.5. Model Calibration and Validation
2.6. Model Performance Evaluation
2.7. Model Application for Scenario Simulation
3. Results and Discussions
3.1. Land Use Land Cover Change
3.2. Hydrological Model Performance Evaluation
3.2.1. Sensitivity Analysis
3.2.2. Calibration and Validation
3.2.3. Model Efficiency
3.3. Hydrological Responses to Land Use Land Cover Change
3.3.1. Seasonal Hydrology of the Watershed
3.3.2. Hydrological Responses to Land Use Land Cover Scenarios
3.3.3. Spatial Analysis of Watershed Hydrology to LULC Changes
4. Conclusions
- Stream flow, which is the key hydrological parameter for water resources planning and management in the basin, changed due to LULC change. Droughts and floods which influence hydropower and irrigation production, may increase more frequently and last longer as a consequence of LULC change.
- For all time periods, LULC scenarios resulted in a modest increment in average annual stream flow which can be utilized as an input for reservoir operation in hydropower and irrigation projects.
- The relation of LULC categories and hydrological components revealed that the surface runoff was highly attributed to change in the agricultural land area with a higher correlation coefficient.
- The increase of surface runoff and decrease of ground water simulated during the wet season in the Nashe watershed of the Blue Nile River Basin may lead to increasing extreme weather events, sedimentation, runoff, siltation, and water shortages may occur during the dry season and obstruct socio-economic development in Ethiopia.
- Forest land coverage increase is important for decreasing surface runoff and wet season flow, and increasing lateral flow, ground water, and dry season flow. The appropriate management strategy should be prepared based on the commonly LULC change including afforestation in high-risk areas, such as downstream areas in the Northeastern regions of the watershed.
- The study showed that LULC change will affect the operation of the Nashe hydropower reservoir. Additionally, the predicted LULC changes might affect the land use projects within and outside the Nashe watershed and Blue Nile River Basin, including the GERD (Grand Ethiopian Renaissance Dam). Therefore, it is substantial to reduce the enduring adverse impact of LULC changes on the hydrological response of the Blue Nile River Basin tributaries by formulating and implementing land use management interventions that are essential for sustainable land use resources in Ethiopia.
- The decline of groundwater and surface runoff increase could pose a significant problem for agriculture and may increase the need for irrigation in the dry season. As a result, water storage in reservoirs, in addition to beside natural solutions may become more relevant.
- Understanding the impacts of potential LULC dynamics and how they influence watershed hydrology will allow planners and concerned bodies to formulate strategies to reduce adverse impacts of future LULC dynamics. The findings of the study may aid stakeholders and policy makers to make better decisions about water resources and land management in the future.
- Suitable management systems should be implemented, and it is necessary to have long-term water resource plans to minimize the flooding, soil erosion, and sedimentation caused by the change of LULC. Furthermore, proper conservation measures of water and soil are highly necessary, and should be flexible and adaptable to changing insights on the impacts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environ. Manag. 2016, 57, 412–431. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 2017, 31, 2029–2040. [Google Scholar] [CrossRef]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P.W. Hydrological impacts of land use change in three diverse South African catchments. J. Hydrol 2012, 414–415, 118–135. [Google Scholar] [CrossRef]
- Pang, S.; Wang, X.; Melching, C.S.; Feger, K.H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Hyandye, C.B.; Worqul, A.; Martz, L.W.; Muzuka, A.N.N. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environ. Syst. Res. 2018, 7, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Elfert, S.; Bormann, H. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland “Hunte” catchment. J. Hydrol. 2010, 383, 245–255. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. Hydrologic response in an urban watershed as affected by climate and land-use change. Water 2019, 11, 1603. [Google Scholar] [CrossRef] [Green Version]
- Maetens, W.; Vanmaercke, M.; Poesen, J.; Jankauskas, B.; Jankauskiene, G.; Ionita, I. Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Prog. Phys. Geogr. 2012, 36, 599–653. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef]
- Verma, S.; Bhattarai, R.; Bosch, N.S.; Cooke, R.C.; Kalita, P.K.; Markus, M. Climate Change Impacts on Flow, Sediment and Nutrient Export in a Great Lakes Watershed Using SWAT. Clean-Soil Air. Water. 2015, 43, 1464–1474. [Google Scholar] [CrossRef]
- Gayathri, D.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia. 2015, 4, 1001–1007. [Google Scholar]
- Tegegne, G.; Park, D.K.; Kim, Y.O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [Google Scholar] [CrossRef]
- Waseem, M.; Kachholz, F.; Tränckner, J. Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use. Front Agric. Sci. Eng. 2018, 5, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, D.R.; van Griensven, A.; Liew, W.M.; et al. Swat: Model Use, Calibration, And Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, K. SWAT-Calibration and Uncertainty Programs (CUP). Neprash Technology CA. Available online: http://www.neprashtechnology.ca/wp-content/uploads/2015/06/Usermanual_SwatCup.pdf (accessed on 25 August 2021).
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Wagner, P.D.; Kumar, S.; Schneider, K.; Earth, S. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 1943–1985. [Google Scholar]
- Saddique, N.; Mahmood, T.; Bernhofer, C. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environ. Earth Sci. 2020, 79, 1–13. [Google Scholar] [CrossRef]
- Dos Santos, F.; de Oliveira, R.; Di Lollo, J. Effects of Land Use Changes on Streamflow and Sediment Yield in Atibaia River Basin—SP, Brazil. Water 2020, 12, 1711. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Twisa, S.; Kazumba, S.; Kurian, M.; Buchroithner, M.F. Evaluating and predicting the effects of land use changes on hydrology in Wami river basin, Tanzania. Hydrology 2020, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Rafiei, V.; Ghahramani, A.; An-Vo, D.A.; Mushtaq, S. Modelling hydrological processes and identifying soil erosion sources in a tropical catchment of the great barrier reef using SWAT. Water 2020, 12, 2179. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska-Senoner, A.E.; Hejduk, L.; Banasik, K. An Attempt to Decompose the Impact of Land Use and Climate Change on Annual Runoff in a Small Agricultural Catchment. Water Resour. Manag. 2021, 35, 881–896. [Google Scholar] [CrossRef]
- Kebede, W.; Tefera, M.; Habitamu, T.; Alemayehu, T. Impact of Land Cover Change on Water Quality and Stream Flow in Lake Hawassa Watershed of Ethiopia. Agric. Sci. 2014, 5, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Khadr, M. Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia). Ain. Shams. Eng. J. 2016, 7, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Tekalegn, W.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed hydrological response to combined land use/land cover and climate change in highland ethiopia: Finchaa catchment. Water 2020, 12, 1801. [Google Scholar] [CrossRef]
- Galata, A.W.; Demissei, T.A.; Leta, M.K. Watershed Hydrological Responses to Changes in Land Use and Land Cover at Hangar Watershed, Ethiopia. Iran. J. Energy Environ. 2020, 11, 1–7. [Google Scholar]
- Karamage, F.; Zhang, C.; Fang, X.; Liu, T.; Ndayisaba, F.; Nahayo, L.; Kayiranga, A.; Nsengiyumva, J.B. Modeling rainfall-runoffresponse to land use and land cover change in Rwanda (1990–2016). Water 2017, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.B.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. Hydrologic impacts of land use changes in the Sabor river basin: A historical view and future perspectives. Water 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Megersa, K.L.; Tamene, A.D.; Sifan, A.K. Impacts of Land Use Land Cover Change on Sediment Yield and Stream Flow. Int. J. Sci. Technol. 2017, 6, 763–781. [Google Scholar]
- Kitila, G.; Gebrekidan, H.; Alamrew, T. Soil quality attributes induced by land use changes in the Fincha’a watershed, Nile Basin of western Ethiopia. Sci. Technol. Arts. Res. J. 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Gebrehiwot, S.G.; Bewket, W.; Gärdenäs, A.I.; Bishop, K. Forest cover change over four decades in the Blue Nile Basin, Ethiopia: Comparison of three watersheds. Reg. Environ. Chang. 2014, 14, 253–266. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Dube, T. Predicting streamflow for land cover changes in the Upper Gilgel Abay River Basin, Ethiopia: A TOPMODEL based approach. Phys. Chem. Earth. 2014, 76–78, 3–15. [Google Scholar] [CrossRef]
- Sith, R.; Nadaoka, K. Comparison of SWAT and GSSHA for high time resolution prediction of stream flow and sediment concentration in a small agricultural watershed. Hydrology 2017, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Banasik, K.; Hejduk, L.; Krajewski, A.; Wasilewicz, M. The intensity of siltation of a small reservoir in Poland and its relationship to environmental changes. Catena 2021, 204, 105436. [Google Scholar] [CrossRef]
- Kushwaha, A.; Jain, M.K. Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model. Water Resour. Manag. 2013, 27, 3005–3023. [Google Scholar] [CrossRef]
- Ghoraba, S.M. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alexandria Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Khalid, K.; Ali, M.F.; Rahman, N.F.A.; Mispan, M.R.; Haron, S.H.; Othman, Z.; Bachok, M.F. Sensitivity Analysis in Watershed Model Using SUFI-2 Algorithm. Procedia Eng. 2016, 162, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological Stream Flow Modelling for Calibration and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Gholami, A.; Habibnejad Roshan, M.; Shahedi, K.; Vafakhah, M.; Solaymani, K. Hydrological stream flow modeling in the Talar catchment (central section of the Alborz Mountains, north of Iran): Parameterization and uncertainty analysis using SWAT-CUP. J. Water Land Dev. 2016, 30, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Smarzyńska, K.; Miatkowski, Z. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland. J. Water Land Dev. 2016, 29, 31–47. [Google Scholar] [CrossRef]
- Sao, D.; Kato, T.; Tu, L.H.; Thouk, P.; Fitriyah, A.; Oeurng, C. Evaluation of different objective functions used in the sufi-2 calibration process of swat-cup on water balance analysis: A case study of the pursat river basin, cambodia. Water 2020, 12, 2901. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Tankpa, V.; Wang, L.; Awotwi, A.; Singh, L.; Thapa, S.; Atanga, R.A.; Guo, X. Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China. Environ. Dev. Sustain. 2020, 23, 7883–7912. [Google Scholar] [CrossRef]
- Whittaker, G.; Confesor, R.; Di Luzio, M.; Arnold, J.G. Detection of overparameterization and overfitting in an automatic calibration of SWAT. Trans. ASABE 2010, 53, 1487–1499. [Google Scholar] [CrossRef]
- Boufala, M.; El Hmaidi, A.; Chadli, K.; Essahlaoui, A.; El Ouali, A.; Taia, S. Hydrological modeling of water and soil resources in the basin upstream of the Allal El Fassi dam (Upper Sebou watershed, Morocco). Model. Earth Syst. Environ. 2019, 5, 1163–1177. [Google Scholar] [CrossRef]
- Niraula, R.; Meixner, T.; Norman, L.M. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes. J. Hydrol. 2015, 522, 439–451. [Google Scholar] [CrossRef]
- Makhtoumi, Y.; Li, S.; Ibeanusi, V.; Chen, G. Evaluating water balance variables under land use and climate projections in the upper choctawhatchee River Watershed, in Southeast US. Water 2020, 12, 2205. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansari, H.; Ziaei, A.N. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 2020, 13, 1–15. [Google Scholar] [CrossRef]
- Benegas, L.; Ilstedt, U.; Roupsard, O.; Jones, J.; Malmer, A. Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America. Agric. Ecosyst. Environ. 2014, 183, 185–196. [Google Scholar] [CrossRef]
- Santos, D.V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic response to land use change in a large basin in eastern Amazon. Water 2018, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Mango, L.M.; Melesse, A.M.; McClain, M.E.; Gann, D.; Setegn, S.G. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: Results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci. 2011, 15, 2245–2258. [Google Scholar] [CrossRef] [Green Version]
- Belihu, M.; Tekleab, S.; Abate, B.; Bewket, W. Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. HydroResearch 2020, 3, 85–94. [Google Scholar] [CrossRef]
- Shawul, A.A.; Chakma, S.; Melesse, A.M. The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLSR) analysis in the Upper Awash Basin. J. Hydrol. Reg. Stud. 2019, 26, 100640. [Google Scholar] [CrossRef]
- Abe, C.A.; Lobo, F.D.L.; Dibike, Y.B.; Costa, M.P.D.F.; Dos Santos, V.; Novo, E.M.L. Modelling the effects of historical and future land cover changes on the hydrology of an Amazonian basin. Water 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- Aduah, M.S.; Jewitt, G.P.W.; Toucher, M.L.W. Assessing impacts of land use changes on the hydrology of a lowland rainforest catchment in Ghana, West Africa. Water 2017, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; de Almeida Castanho, A.D. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523, 822–829. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
Data Types | Research Data | Resolution/Period | Sources |
---|---|---|---|
Spatial data | Digital Elevation Model (DEM) | 30 m | The shuttle radar topographic mapping obtained from the Ministry of Water, Irrigation, and Energy, Ethiopia |
Land Use Land cover | 30 m/(1990, 2005, 2019, 2035, and 2050) | Derived from Landsat images (Landsat-5, Landsat-7, and Landsat-8) and Predicted by Land change modeler model [8] | |
Soil | 1:50,000 | Ministry of Water, Irrigation, and Energy (MoWIE), Ethiopia | |
Meteorological data | Daily observed weather data | 1985–2019 | National Meteorological Agency, Ethiopia |
Hydrological data | Daily stream flow | 1985–2008 | Ministry of Water, Irrigation, and Energy (MoWIE), Ethiopia |
Performance Rating | NSE | PBIAS | R² |
---|---|---|---|
Unsatisfactory | NSE ≤ 0.5 | PBIAS ≥ ±25 | R² < 0.50 |
Satisfactory | 0.5 < NSE ≤ 0.65 | ±15 ≤ PBIAS < ±25 | 0.50 < R² < 0.70 |
Good | 0.65 < NSE ≤ 0.75 | ±10 ≤ PBIAS < ±15 | 0.70 < R² < 0.80 |
Very good | 0.75 < NSE ≤ 1 | PBIAS < ±10 | >0.80 |
Parameters Name | Description | Sensitivity | Parameter Value | ||||
---|---|---|---|---|---|---|---|
t-Stat | p-Value | Rank | Min | Max | Fitted | ||
r__RCHRG_DP.gw | Deep aquifer percolation fraction | −0.54 | 0.04 | 9 | 0 | 1 | 0.837 |
r__SLSUBBSN.hru | Average slope length (m) | −0.83 | 0.03 | 8 | 0 | 150 | 76.98 |
r__SOL_AWC (..).sol | Soil available water capacity (mm H2O/mm soil) | −0.96 | 0.03 | 7 | −25 | 25 | −12.1 |
v__GWQMN.gw | Threshold depth of water in shallow aquifer required for return flow (mm) | −1.17 | 0.01 | 6 | 0 | 5000 | 1921 |
v__CH_N2.rte | Manning’s roughness coefficient for the main channel | 1.96 | 0.00 | 5 | 0 | 1 | 0.524 |
v__ALPHA_BF.gw | Base flow alpha factor for bank storage | 2.68 | 0.00 | 4 | 0 | 1 | 0.367 |
r__SOL_K (..).sol | Saturated hydraulic conductivity (mm/hour) | 7.23 | 0.00 | 3 | −25 | 25 | 17.15 |
v__GW_DELAY.gw | Ground water Delay from soil to channels (days) | −8.21 | 0.00 | 2 | 0 | 500 | 19.02 |
r__CN2.mgt | SCS runoff curve number | 13.13 | 0.00 | 1 | −25 | 25 | −16.31 |
Index | R2 | NSE | PBIAS | p-Factor | r-Factor | Index |
---|---|---|---|---|---|---|
Calibration | 0.80 | 0.76 | 3.03 | 0.83 | 0.74 | Calibration |
Validation | 0.85 | 0.80 | 1.28 | 0.80 | 0.69 | Validation |
Hydrologic Components | LULC Scenarios | Changes (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
1990 | 2005 | 2019 | 2035 | 2050 | 1990–2005 | 2005–2019 | 2019–2035 | 2035–2050 | |
Surface runoff | 288.15 | 292.04 | 311.02 | 318.26 | 314.56 | 1.35 | 6.50 | 2.33 | −1.16 |
Lateral flow | 69.24 | 67.88 | 67.67 | 65.40 | 60.61 | −1.96 | -0.31 | −3.35 | −7.32 |
Ground water | 171.59 | 166.99 | 147.20 | 143.72 | 152.89 | −2.68 | −11.85 | −2.36 | 6.38 |
Water Yield | 528.98 | 526.02 | 526.86 | 527.96 | 528.06 | −0.56 | 0.16 | 0.21 | −0.02 |
Evapotranspiration | 284.11 | 283.06 | 279.26 | 277.11 | 275.81 | −0.37 | −1.34 | −0.77 | −0.47 |
SurfQ 1 | LatQ | GWQ | WYLD | ET | AGRL | FRST | GRSL | RNGL | UrbL | WatB | |
---|---|---|---|---|---|---|---|---|---|---|---|
SurfQ 1 | 1.00 | ||||||||||
LatQ | −0.60 | 1.00 | |||||||||
GWQ | −0.97 | 0.41 | 1.00 | ||||||||
WYLD | −0.38 | 0.86 | 0.24 | 1.00 | |||||||
ET | −0.96 | 0.79 | 0.88 | 0.57 | 1.00 | ||||||
AGRL | 0.97 | −0.74 | −0.89 | −0.52 | −0.99 | 1.00 | |||||
FRST | −0.96 | 0.79 | 0.89 | 0.60 | 1.00 | −0.98 | 1.00 | ||||
GRSL | −0.89 | 0.78 | 0.78 | 0.51 | 0.95 | -0.97 | 0.93 | 1.00 | |||
RNGL | −0.92 | 0.57 | 0.87 | 0.27 | 0.90 | −0.95 | 0.88 | 0.96 | 1.00 | ||
UrbL | 0.71 | −0.99 | −0.53 | −0.82 | −0.87 | 0.84 | −0.86 | −0.87 | −0.69 | 1.00 | |
WatB | 0.99 | −0.70 | −0.94 | −0.48 | −0.98 | 0.97 | −0.99 | −0.89 | −0.88 | 0.79 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leta, M.K.; Demissie, T.A.; Tränckner, J. Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia. Water 2021, 13, 2372. https://doi.org/10.3390/w13172372
Leta MK, Demissie TA, Tränckner J. Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia. Water. 2021; 13(17):2372. https://doi.org/10.3390/w13172372
Chicago/Turabian StyleLeta, Megersa Kebede, Tamene Adugna Demissie, and Jens Tränckner. 2021. "Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia" Water 13, no. 17: 2372. https://doi.org/10.3390/w13172372
APA StyleLeta, M. K., Demissie, T. A., & Tränckner, J. (2021). Hydrological Responses of Watershed to Historical and Future Land Use Land Cover Change Dynamics of Nashe Watershed, Ethiopia. Water, 13(17), 2372. https://doi.org/10.3390/w13172372