Spatial Pattern of Dissolved Nitrogen in the Water on Receiving Agricultural Drainage in the Sanhuanpao Wetland in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Determination
2.3. Remote-Sensing Interpretation
2.4. Data Analysis
2.4.1. The Calculation of Change Rate of TN, NH4-N and NO3-N in Spring and Summer of the Sampling Plots
2.4.2. The Calculation of TNCR and the Other Two ERs for the TNCR and NH4-NCR, TNCR and NO3-NCR
2.4.3. Spatial Interpolation and Area Calculation of Different Groups of TNCR and the Other Two ERs for the TNCR and NH4-NCR, TNCR and NO3-NCR
- <mean − 1STD (TNCR = 2.76);
- From mean − 1STD (TNCR = 2.76) to mean (TNCR = 3.85);
- From mean (TNCR = 3.85) to mean +1STD (TNCR = 4.94); and
- >mean + 1STD (TNCR = 4.94).
- Positive correlation (0 to 0.60);
- Significant positive correlation (0.60 to 0.77 (p < 0.05)); and
- Extremely significant positive correlation (ER ≥ 0.77 (p < 0.01)).
- Positive correlation (0 to 0.60);
- Significant positive correlation (0.60 to 0.76 (p < 0.05)); and
- Extremely significant positive correlation (ER ≥ 0.76 (p < 0.01)).
2.4.4. The Spatial Analysis of TNCR and the Other Two ERs for the TNCR and NH4-NCR, TNCR and NO3-NCR
3. Results
3.1. Areas of Different Groups of TNCR and the Two ERs for TNCR and NH4-NCR, TNCR and NO3-NCR
3.1.1. The Area of Different Groups on TNCR
3.1.2. The Different Significant Areas of the Two ER for TNCR and NH4-NCR, TNCR and NO3-NCR
3.2. Change of Spatial Relationships of TNCR and the Two ERs for TNCR and NH4-NCR, TNCR and NO3-NCR during the Gradual Buffer Extrapolation from Water Channel
3.2.1. The Change of TNCR from Water Channel
3.2.2. The Change of the ER between TNCR and NH4-NCR from Water Channel
3.2.3. The Change of the ER between TNCR and NO3-NCR from Water Channel
3.3. Change of Spatial Relationships of TNCR and Two ERs for TNCR and NH4-NCR, TNCR and NO3-NCR with Gradual Buffer Extrapolation from the Water Inlet
3.3.1. The Change of TNCR from the Water Inlet
3.3.2. The Change of the ER between TNCR and NH4-NCR from the Water Inlet
3.3.3. The Change of the ER between TNCR and NO3-NCR from the Water Inlet
4. Discussion
4.1. Functional Maintenance of TN Removal in Wetland Water
4.2. Deviation from the Geometric Center for Strong NH4-N and NO3-N Removal Areas in Wetlands
4.3. The Extension Direction of Wetland
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nepomuscene, N.J.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth. Parts A/B/C 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Wang, B.; Elise, W.A.; Chen, J.J.; He, F.; Chen, H.; Gao, B. Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; Van Wijk, D.; Van Gerven, L.P.A.; Bakker, E.S.; Brederveld, R.J.; Deangelis, D.L.; Janse, J.H.; Mooij, W.M. Success of lake restoration depends on spatial aspects of nutrient loading and hydrology. Sci. Total Environ. 2019, 679, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Huang, C.C.; Ma, R.H.; Ma, Y.X. Can the watershed non-point source phosphorus flux amount be reflected by lake sediment? Ecol. Indic. 2019, 102, 118–130. [Google Scholar] [CrossRef]
- Lu, S.B.; Gao, X.R.; Wu, P.T.; Li, W.; Bai, X.; Sun, M.; Wang, A. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels. J. Clean. Prod. 2019, 208, 649–655. [Google Scholar] [CrossRef]
- Delphey, P.J.; Dinsmore, J.J. Breeding bird communities of recently restored and natural prairie potholes. Wetlands 1993, 13, 200–206. [Google Scholar] [CrossRef]
- Spangler, J.T.; Sample, D.J.; Fox, L.J.; Owen, J.S.; White, S.A. Data on floating treatment wetland aided nutrient removal from agricultural runoff using two wetland species. Data Brief 2019, 22, 756–761. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Li, X.; Chun, X. Research progress of eutrophication in Wuliangsuhai sea. Environ. Prot. Sci. 2018, 44, 83–88. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L.X.; Lin, S.S. Evaluation on impact of farmland withdrawal water on water quality of Chagan Lake based on WASP model. Water Resour. Prot. 2018, 34, 88–94. (In Chinese) [Google Scholar] [CrossRef]
- Lu, S.Y.; Zhang, W.T.; Xing, Y. Nitrogen evolution with distance of 10 inflow rivers in the three circles of buffer zone around Erhai Lake. China Environ. Sci. 2016, 36, 1561–1567. (In Chinese) [Google Scholar]
- Mukherjee, R.; Kumar, S.; Muduli, P.R. Spatial variation of nitrogen uptake rates in the largest brackish water lagoon of Asia (Chilika, India). Estuar. Coast Shelf Sci. 2019, 216, 87–97. [Google Scholar] [CrossRef]
- Sui, Y.Y.; Ou, Y.; Yan, B.X.; Rousseau, A.N.; Fang, Y.T.; Geng, R.Z.; Wang, L.X.; Ye, N. A dual isotopic framework for identifying nitrate sources in surface runoff in a small agricultural watershed, northeast China. J. Clean. Prod. 2019, 246, 1–9. [Google Scholar] [CrossRef]
- Valiente, N.; Carrey, R.; Otero, N.; Soler, A.; Sanz, D.; Munoz-Martin, A.; Jirsa, F.; Wanek, W.; Gómez-Alday, J.J. A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system. Sci. Total Environ. 2018, 631–632, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Sigler, W.A.; Ewing, S.A.; Jones, C.A.; Payn, R.A.; Brookshire, E.N.J.; Jane, K.K.; Jackson-Smith, D.; Weissmann, G.S. Connections among soil, ground, and surface water chemistries characterize nitrogen loss from an agricultural landscape in the upper Missouri River Basin. J. Hydrol. 2018, 556, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.H.; Mo, D.Q.; Li, J.C.; Deng, Z.Q.; Qin, W.H.; Qin, J.H. Huixian Karst wetland water quality monitoring. Shandong Chem. Ind. 2018, 47, 156–160. (In Chinese) [Google Scholar] [CrossRef]
- Naranjo, R.C.; Niswonger, R.G.; Smith, D.; Rosenberry, D.; Chandra, S. Linkages between hydrology and seasonal variations of nutrients and periphyton in a large oligotrophic subalpine lake. J. Hydrol. 2019, 568, 877–890. [Google Scholar] [CrossRef]
- Liu, Z.M.; Jiang, M.; Tong, S.Z. Hydrological function of Sanhuanpao flood detention zone. Wetl. Sci. 2008, 6, 242–248. (In Chinese) [Google Scholar] [CrossRef]
- Xing, Z.X.; Wang, Y.N.; Ji, Y.; Fu, Q.; Li, H.; Qu, R.Z. Health assessment and spatial variability analysis of the Naolihe basin using a water-based system. Ecol. Indic. 2018, 92, 181–188. [Google Scholar] [CrossRef]
- Cui, B.S.; Liu, X.T. An analysis on ecological character changes of wetlands of Naolihe drainage basin in the Sanjiang plain. J. Nat. Resour. 2001, 16, 107–114. (In Chinese) [Google Scholar]
- Ma, C.X.; Yin, Z.L.; Yu, H.X. Seasonal dynamics characteristics and physical factors of phytoplankton functional groups in Sanhuanpao wetland. J. Northeast For. Univ. 2016, 44, 45–51. (In Chinese) [Google Scholar] [CrossRef]
- Yao, Y.L.; Yu, H.X.; Lu, X.G.; Wang, L. The impacts of wetland cultivation on the regional temperature based on remote sensing—A case study in Naoli watershed of Sanjiang plain, northeast China. Phys. Procedia 2011, 22, 622–626. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Yang, W.X.; Tysklind, M.; Xu, Y.X.; Lin, C.Y.; Gao, X.; Hao, Z.C. Using river sediments to analyze the driving force difference for nonpoint source pollution dynamics between two scales of watersheds. Water Res. 2018, 139, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.X.; Huang, M.; Zhang, Y.D.; Li, J.; Yan, H.M.; Guo, R.; Zhong, X.L. Modeling the effect of nitrogen input on soil carbon storage in Northeast China. Acta Ecol. Sin. 2016, 36, 5379–5390. (In Chinese) [Google Scholar] [CrossRef]
- An, R.; Wang, F.Y.; Yu, H.X.; Ma, C.X. Seasonal dynamics of zooplankton functional groups and their relationships with environmental factors in the sanhuanpao wetland reserve. Acta Ecol. Sin. 2017, 37, 1851–1860. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.G.; Cai, Y.H.; Fan, G.F.; Liu, X.S.; Dai, Y. Application of atractylodes macrocephala koidz extract in methicillin—Resistant staphylococcus aureus. Procedia Eng. 2017, 174, 410–415. [Google Scholar] [CrossRef]
- Li, B.X.; Chen, J.F.; Wu, Z.; Wu, S.F.; Xie, S.G.; Liu, Y. Seasonal and spatial dynamics of denitrification rate and denitrifier community in constructed wetland treating polluted river water. Int. Biodeter. Biodegr. 2018, 126, 143–151. [Google Scholar] [CrossRef]
- Xia, P.H.; Xue, F.; Kong, X.L.; Liu, Y.; Lin, T. Spatial characteristics and impact of water quality in agricultural dicth systems of Caohai wetland in the Guizhou plateau, China. Environ. Chem. 2012, 31, 1201–1207. (In Chinese) [Google Scholar]
- Garzon-Vidueira, R.; Rial-Otero, R.; Garcia-Nocelo, M.L.; Rivas-Gonzalez, E.; Moure-Gonzalez, D.; Fompedrina-Roca, D.; Vadillo-Santos, I.; Simal-Gandara, J. Identification of nitrates origin in Limia river basin and pollution-determinant factors. Agric. Ecosyst. Environ. 2020, 290, 106775. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jiang, B.; Yang, M.F.; Bi, X. Ecological and environmental status of Chaohu Lake and protection counter measures. Yangtze River 2018, 49, 24–30. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, H.Y.; Zhang, M.Y.; Cui, L.J.; Yang, S.; Li, W.; Zhao, X.S. Analysis on water quality and evaluation on purification value in the Hanshiqiao Wetland in Beijing City. Prot. For. Sci. Technol. 2016, 156, 4–7. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, J.F.; Zhou, Y.; Wang, S.X.; Wang, L.T.; Liu, W.L.; Li, H.T.; Mei, J.J. Ecological function evaluation and regionalization in Baiyangdian Wetland. Acta Ecol. Sin. 2020, 40, 459–472. (In Chinese) [Google Scholar] [CrossRef]
- Debanshi, S.; Pal, S. Modelling water richness and habitat suitability of the wetlands and measuring their spatial linkages in mature Ganges delta of India. J. Environ. Manag. 2020, 271, 110956. [Google Scholar] [CrossRef] [PubMed]
- Otte, M.L.; Fang, W.T.; Jiang, M. A framework for identifying reference wetland conditions in highly altered landscapes. Wetlands 2021, 41, 40. [Google Scholar] [CrossRef]
- Comin, F.A.; Sorando, R.; Darwiche-Criado, N.; Garcia, M.; Masip, A. A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds. Ecol. Eng. 2014, 66, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jablonska, E.; et al. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef] [PubMed]
Plot | Longitude (W) | Latitude (N) | TN (mg/L) | NH4-N (mg/L) | NO3-N (mg/L) |
---|---|---|---|---|---|
1 | 132°14′38″ | 46°49′20″ | 5.22/9.27 | 2.03/0.68 | 0.013/0.34 |
2 | 132°17′8″ | 46°49′23″ | 2.32/9.96 | 0.45/0.65 | 0.151/0.36 |
3 | 132°20′16″ | 46°51′30″ | 1.52/10.00 | 0.11/0.64 | 0.009/0.33 |
4 | 132°21′8″ | 46°49′37″ | 1.15/10.88 | 0.18/0.66 | 0.023/0.35 |
5 | 132°21′9″ | 46°46′33″ | 3.44/10.13 | 0.22/0.66 | 0.016/0.33 |
6 | 132°22′50″ | 46°47′28″ | 1.55/8.41 | 0.23/0.61 | 0.036/0.39 |
7 | 132°23′22″ | 46°51′31″ | 1.11/10.90 | 0.20/0.73 | 0.015/0.35 |
8 | 132°24′29″ | 46°50′16″ | 4.18/10.91 | 0.07/0.60 | 2.057/0.34 |
9 | 132°29′8″ | 46°50′56″ | 2.27/10.15 | 0.45/0.51 | 0.049/0.33 |
10 | 132°31′48″ | 46°50′18″ | 4.99/9.77 | 0.15/0.89 | 1.438/0.31 |
11 | 132°34′12″ | 46°49′34″ | 6.02/9.76 | 2.47/0.64 | 0.004/0.34 |
12 | 132°35′55″ | 46°49′15″ | 5.59/10.70 | 1.69/1.58 | 0.459/0.56 |
13 | 132°37′58″ | 46°49′40″ | 2.19/10.20 | 0.04/0.94 | 0.823/0.33 |
14 | 132°41′42″ | 46°49′23″ | 1.94/10.22 | 0.07/0.57 | 0.707/0.44 |
15 | 132°44′47″ | 46°51′46″ | 5.71/12.23 | 2.53/2.38 | 0.026/0.46 |
16 | 132°44′53″ | 46°50′16″ | 1.47/10.79 | 0.15/0.55 | 0.014/0.34 |
17 | 132°45′27″ | 46°48′13″ | 2.23/10.43 | 0.22/1.15 | 0.234/0.33 |
18 | 132°47′20″ | 46°50′20″ | 1.09/11.25 | 0.07/2.50 | 0.004/0.49 |
19 | 132°47′21″ | 46°48′26″ | 1.88/9.41 | 0.19/0.72 | 0.013/0.33 |
20 | 132°48′49″ | 46°48′26″ | 3.95/9.70 | 0.20/0.69 | 0.030/0.33 |
21 | 132°49′46″ | 46°45′26″ | 2.40/9.84 | 0.05/0.65 | 0.119/0.33 |
22 | 132°53′2″ | 46°49′18″ | 5.66/11.26 | 3.50/1.65 | 0.026/0.55 |
23 | 132°55′58″ | 46°50′53″ | 1.05/9.76 | 0.14/0.64 | 0.032/0.34 |
24 | 132°56′57″ | 46°49′41″ | 1.44/11.41 | 0.19/1.46 | 0.014/0.33 |
Type | Samples | Errors | Type Accuracy (%) | Overall Classification Accuracy (%) |
---|---|---|---|---|
Building site | 24 | 0 | 100 | 91 |
Paddy fields | 26 | 3 | 88 | |
Dry land | 15 | 2 | 87 | |
Forest land | 20 | 4 | 80 | |
Water | 12 | 0 | 100 | |
Wetlands | 30 | 2 | 93 |
NH4-NCR | NO3-NCR | ||||
---|---|---|---|---|---|
Elimination | Eliminated Sampling Plot | Correlation Coefficient after Sampling-Plot Data Elimination | Elimination | Eliminated Sampling Plot | Correlation Coefficient after Sampling-Plot Data Elimination |
Step | Step | ||||
1 | 13 | 0.48 | 1 | 11 | 0.50 |
2 | 7 | 0.53 | 2 | 23 | 0.55 |
3 | 4 | 0.60 * | 3 | 4 | 0.60 * |
4 | 23 | 0.68 * | 4 | 7 | 0.65 * |
5 | 16 | 0.73 * | 5 | 1 | 0.69 * |
6 | 24 | 0.77 ** | 6 | 22 | 0.73 * |
7 | 3 | 0.81 ** | 7 | 15 | 0.76 ** |
8 | 6 | 0.85 ** | 8 | 24 | 0.79 ** |
9 | 9 | 0.87 ** | 9 | 5 | 0.82 ** |
10 | 19 | 0.90 ** | 10 | 16 | 0.84 ** |
11 | 2 | 0.94 ** | 11 | 20 | 0.87 ** |
12 | 17 | 0.96 ** | 12 | 12 | 0.89 ** |
13 | 14 | 0.98 ** | 13 | 10 | 0.93 ** |
14 | 10 | 0.98 ** | 14 | 8 | 0.97 ** |
15 | 8 | 0.99 ** | 15 | 14 | 0.98 ** |
16 | 21 | 1.00 ** | 16 | 19 | 0.99 ** |
17 | 5 | 1.00 ** | 17 | 6 | 0.99 ** |
18 | 15 | 1.00 ** | 18 | 21 | 0.99 ** |
19 | 22 | 1.00 ** | 19 | 9 | 1.00 ** |
20 | 11 | 1.00 ** | 20 | 2 | 1.00 ** |
21 | 20 | 1.00 ** | 21 | 3 | 1.00 ** |
22 | 1 | 1.00 ** | 22 | 17 | 1.00 ** |
23 | 12 | 1.00 ** | 23 | 18 | 1.00 ** |
24 | 18 | 1.00 ** | 24 | 13 | 1.00 ** |
Index | Mean (m) | Root-Mean-Square | Average Standard Error | RMS/ASE |
---|---|---|---|---|
TNCR | 16 | 1.6535 | 1.5763 | 1.0490 |
ER (TNCR and NH4-NCR) | 18 | 0.2832 | 0.2686 | 1.0544 |
ER (TNCR and NO3-NCR) | 21 | 0.2322 | 0.2238 | 1.0375 |
Start Line of Functions | Index | Equation Times | Mean of ER | STD of ER | ||
---|---|---|---|---|---|---|
R2 | R2+ | R2 | R2+ | |||
Distance from water channel | TNCR | 6 | 0.7308 ** | 0.2782 | 0.6623 * | 0.1684 |
5 | 0.4526 | 0.0006 | 0.4939 | 0.0009 | ||
4 | 0.4520 | 0.2702 | 0.4930 | 0.1593 | ||
3 | 0.1818 | 0.2702 | 0.3337 | 0.1188 | ||
2 | 0.1268 | 0.0881 | 0.2149 | 0.0295 | ||
1 | 0.0387 | K = 0.0008 | 0.1854 | K = −0.0034 | ||
NH4-NCR | 6 | 0.3823 | 0.0105 | 0.4506 | 0.0080 | |
5 | 0.3718 | 0.0546 | 0.4426 | 0.0369 | ||
4 | 0.3172 | 0.0004 | 0.4057 | 0.0299 | ||
3 | 0.3168 | 0.0698 | 0.3758 | 0.1087 | ||
2 | 0.2470 | 0.0058 | 0.2671 | 0.0012 | ||
1 | 0.2412 | K = 0.0003 | 0.2659 | K = −0.0004 | ||
NO3-NCR | 6 | 0.7171 ** | 0.2479 | 0.7055 ** | 0.2379 | |
5 | 0.4692 | 0.0260 | 0.4676 | 0.0043 | ||
4 | 0.4432 | 0.1387 | 0.4633 | 0.1800 | ||
3 | 0.3045 | 0.1005 | 0.2833 | 0.0980 | ||
2 | 0.2040 | 0.0313 | 0.1853 | 0.0437 | ||
1 | 0.1727 | K = 0.0001 | 0.1416 | K = −0.0002 | ||
East–west length of wetland | TNCR | 6 | 0.5025 * | 0.2717 | 0.0996 | 0.0481 |
5 | 0.2308 | 0.0295 | 0.0515 | 0.0332 | ||
4 | 0.2013 | 0.0926 | 0.0183 | 0.0102 | ||
3 | 0.1087 | 0.0500 | 0.0081 | 0.0041 | ||
2 | 0.0587 | 0.0048 | 0.0040 | 0.0001 | ||
1 | 0.0539 | K = 0.0005 | 0.0039 | K = 0.0001 | ||
NH4-NCR | 6 | 0.0644 | 0.0412 | 0.0855 | 0.0194 | |
5 | 0.0232 | 0.0018 | 0.0661 | 0.0615 | ||
4 | 0.0214 | 0.0075 | 0.0046 | 0.0026 | ||
3 | 0.0139 | 0.0001 | 0.0020 | 0.0009 | ||
2 | 0.0138 | 0.0096 | 0.0011 | 0.0007 | ||
1 | 0.0042 | K = 0.0001 | 0.0004 | K = 0.0001 | ||
NO3-NCR | 6 | 0.2767 | 0.0633 | 0.0813 | 0.0016 | |
5 | 0.2134 | 0.0732 | 0.0797 | 0.0770 | ||
4 | 0.1402 | 0.0894 | 0.0027 | 0.0006 | ||
3 | 0.0508 | 0.0025 | 0.0021 | 0.0001 | ||
2 | 0.0483 | 0.0455 | 0.0020 | 0.0019 | ||
1 | 0.0028 | K = 0.0001 | 0.0001 | K = 0.0001 |
Group | TNCR | ER (TNCR and NH4-NCR) | ER (TNCR and NO3-NCR) | |||
---|---|---|---|---|---|---|
Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | |
1 | 4143 | 16.52 | 1058 | 4.22 | 27 | 0.11 |
2 | 6480 | 25.84 | 1768 | 7.05 | 1474 | 5.88 |
3 | 11,661 | 46.51 | 22,249 | 88.73 | 23,574 | 94.01 |
4 | 2790 | 11.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chu, L.; Song, Y.; Wang, G.; Jiang, M. Spatial Pattern of Dissolved Nitrogen in the Water on Receiving Agricultural Drainage in the Sanhuanpao Wetland in China. Water 2021, 13, 2683. https://doi.org/10.3390/w13192683
Wang X, Chu L, Song Y, Wang G, Jiang M. Spatial Pattern of Dissolved Nitrogen in the Water on Receiving Agricultural Drainage in the Sanhuanpao Wetland in China. Water. 2021; 13(19):2683. https://doi.org/10.3390/w13192683
Chicago/Turabian StyleWang, Xiaodong, Lijuan Chu, Yujia Song, Guodong Wang, and Ming Jiang. 2021. "Spatial Pattern of Dissolved Nitrogen in the Water on Receiving Agricultural Drainage in the Sanhuanpao Wetland in China" Water 13, no. 19: 2683. https://doi.org/10.3390/w13192683
APA StyleWang, X., Chu, L., Song, Y., Wang, G., & Jiang, M. (2021). Spatial Pattern of Dissolved Nitrogen in the Water on Receiving Agricultural Drainage in the Sanhuanpao Wetland in China. Water, 13(19), 2683. https://doi.org/10.3390/w13192683