Modeling of Cavitation Bubble Cloud with Discrete Lagrangian Tracking
Abstract
:1. Introduction
2. LE Two-Way Coupling Model
2.1. Governing Equations
2.2. Gas Volume Fraction
2.3. Fluid-Mixture Pressure
3. Numerical Methods
3.1. Bubble Dynamics
3.2. Spatial Discretization
3.3. Time Integration
- if , ;
- if and , ;
- if and , .
3.4. Computing Procedure
- Update the volume fraction in each computation cell by Equation (8).
4. Validation
4.1. Isolated Bubble
4.2. 1D Bubble Advection
4.3. Single Bubble Oscillating
5. Application of a Bubble Cloud Interacting with Pressure Wave
6. Rayleigh Collapse of a Bubble Cloud
6.1. Rayleigh Collapse
6.2. Results and Discussion
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Darmana, D.; Deen, N.G.; Kuipers, J.A.M. Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model. Chem. Eng. Sci. 2005, 60, 3383–3404. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production—A review. Renew. Sustain. Energy Rev. 2012, 16, 2347–2353. [Google Scholar] [CrossRef]
- Coussios, C.C.; Roy, R.A. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech. 2008, 40, 395–420. [Google Scholar] [CrossRef]
- Vlaisavljevich, E.; Lin, K.W.; Warnez, M.T.; Singh, R.; Mancia, L.; Putnam, A.J.; Johnsen, E.; Cain, C.; Xu, Z. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Phys. Med. Biol. 2015, 60, 2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohl, C.D.; Arora, M.; Dijkink, R.; Janve, V.; Lohse, D. Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 2006, 89, 074102. [Google Scholar] [CrossRef]
- Balachandar, S.; Eaton, J.K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Allen, J.S.; Yoshizawa, S.; Ikeda, T.; Kaneko, Y. Medical ultrasound with microbubbles. Exp. Therm. Fluid Sci. 2005, 29, 255–265. [Google Scholar] [CrossRef]
- Lauer, E.; Hu, X.; Hickel, S.; Adams, N.A. Numerical investigation of collapsing cavity arrays. Phys. Fluids 2012, 24, 052104. [Google Scholar] [CrossRef]
- Lauer, E.; Hu, X.Y.; Hickel, S.; Adams, N.A. Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 2012, 69, 1–19. [Google Scholar] [CrossRef]
- Tiwari, A.; Pantano, C.; Freund, J.B. Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 2015, 775, 1–23. [Google Scholar] [CrossRef]
- Stride, E.; Coussios, C. Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 171–191. [Google Scholar] [CrossRef]
- Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields. J. Appl. Phys. 2013, 113, 184902. [Google Scholar] [CrossRef]
- Iida, Y.; Ashokkumar, M.; Tuziuti, T.; Kozuka, T.; Yasui, K.; Towata, A.; Lee, J. Bubble population phenomena in sonochemical reactor: I Estimation of bubble size distribution and its number density with pulsed sonication–Laser diffraction method. Ultrason. Sonochem. 2010, 17, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K. Simulation, Experiments, and Modeling of Cloud Cavitation with Application to Burst Wave Lithotripsy. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2018. [Google Scholar]
- Ando, K.; Colonius, T.; Brennen, C.E. Numerical simulation of shock propagation in a polydisperse bubbly liquid. Int. J. Multiph. Flow 2011, 37, 596–608. [Google Scholar] [CrossRef]
- Delale, C.F.; Nas, S.; Tryggvason, G. Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 2005, 17, 121705. [Google Scholar] [CrossRef]
- Calzavarini, E.; Kerscher, M.; Lohse, D.; Toschi, F. Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 2008, 607, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Egerer, C.P.; Schmidt, S.J.; Hickel, S.; Adams, N.A. Efficient implicit LES method for the simulation of turbulent cavitating flows. J. Comput. Phys. 2016, 316, 453–469. [Google Scholar] [CrossRef]
- Lauterborn, W.; Kurz, T. Physics of bubble oscillations. Rep. Prog. Phys. 2010, 73, 106501. [Google Scholar] [CrossRef]
- Fuster, D.; Colonius, T. Modelling bubble clusters in compressible liquids. J. Fluid Mech. 2011, 688, 352–389. [Google Scholar] [CrossRef] [Green Version]
- Allaire, G.; Clerc, S.; Kokh, S. A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 2002, 181, 577–616. [Google Scholar] [CrossRef] [Green Version]
- Gorokhovski, M.; Herrmann, M. Modeling primary atomization. Annu. Rev. Fluid Mech. 2008, 40, 343–366. [Google Scholar] [CrossRef]
- Ma, J.; Hsiao, C.T.; Chahine, G.L. Numerical study of acoustically driven bubble cloud dynamics near a rigid wall. Ultrason. Sonochem. 2018, 40, 944–954. [Google Scholar] [CrossRef]
- Maeda, K.; Colonius, T. Bubble cloud dynamics in an ultrasound field. J. Fluid Mech. 2019, 862, 1105–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, X.; Pan, S.; Hu, X.; Adams, N.A. Numerical investigation of homogeneous cavitation nucleation in a microchannel. Phys. Rev. Fluids 2018, 3, 064303. [Google Scholar] [CrossRef]
- Darmana, D.; Deen, N.G.; Kuipers, J. Parallelization of an Euler–Lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas–liquid two-phase flow. J. Comput. Phys. 2006, 220, 216–248. [Google Scholar] [CrossRef]
- Rayleigh, L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Shams, E.; Finn, J.; Apte, S.V. A numerical scheme for Euler–Lagrange simulation of bubbly flows in complex systems. Int. J. Numer. Methods Fluids 2011, 67, 1865–1898. [Google Scholar] [CrossRef]
- Abgrall, R. How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach. J. Comput. Phys. 1996, 125, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Saurel, R.; Abgrall, R. A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 1999, 150, 425–467. [Google Scholar] [CrossRef]
- Hu, X.; Adams, N.; Herrmann, M.; Iaccarino, G. Multi-scale modeling of compressible multi-fluid flows with conservative interface method. In Proceedings of the Summer Program; Center for Turbulence Research, Stanford University: Stanford, CA, USA, 2010; Volume 301. [Google Scholar]
- Han, L.H.; Hu, X.Y.; Adams, N.A. Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure. J. Comput. Phys. 2014, 262, 131–152. [Google Scholar] [CrossRef]
- Jiang, G.S.; Shu, C.W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef] [Green Version]
- Roe, P.L. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 1981, 43, 357–372. [Google Scholar] [CrossRef]
- Johnsen, E.; Colonius, T. Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 2006, 219, 715–732. [Google Scholar] [CrossRef]
- Alehossein, H.; Qin, Z. Numerical analysis of Rayleigh-Plesset equation for cavitating water jets. Int. J. Numer. Methods Eng. 2007, 72, 780–807. [Google Scholar] [CrossRef]
- Hu, X.Y.; Khoo, B.C.; Adams, N.A.; Huang, F.L. A conservative interface method for compressible flows. J. Comput. Phys. 2006, 219, 553–578. [Google Scholar] [CrossRef]
- Maeda, K.; Colonius, T. Eulerian-Lagrangian method for simulation of cloud cavitation. J. Comput. Phys. 2018, 371, 994–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohl, S.W.; Klaseboer, E.; Khoo, B.C. Bubbles with shock waves and ultrasound: A review. Interface Focus 2015, 5, 20150019. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Ohl, C.D.; Lohse, D. Effect of nuclei concentration on cavitation cluster dynamics. J. Acoust. Soc. Am. 2007, 121, 3432–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, X.; Zhu, Y.; Zhang, C.; Hu, X.; Adams, N.A. Modeling of Cavitation Bubble Cloud with Discrete Lagrangian Tracking. Water 2021, 13, 2684. https://doi.org/10.3390/w13192684
Lyu X, Zhu Y, Zhang C, Hu X, Adams NA. Modeling of Cavitation Bubble Cloud with Discrete Lagrangian Tracking. Water. 2021; 13(19):2684. https://doi.org/10.3390/w13192684
Chicago/Turabian StyleLyu, Xiuxiu, Yujie Zhu, Chi Zhang, Xiangyu Hu, and Nikolaus A. Adams. 2021. "Modeling of Cavitation Bubble Cloud with Discrete Lagrangian Tracking" Water 13, no. 19: 2684. https://doi.org/10.3390/w13192684