Integrated Low-Cost Approach for Measuring the State of Conservation of Agricultural Terraces in Tuscany, Italy
Abstract
:1. Introduction
- proposition of a methodology for assessing the state of conservation of dry-wall terraces across large agricultural areas in Tuscany;
- identify the morphological factors most correlated (and easily implemented by a public administrators) to the instability of dry stone walls.
- The novelty of this work concerns the application of the methodology based on openacces data, useful to improve territorial planning by public bodies. By acquiring indicators related to the conservation state of terraced systems, there can be developed a rough classification for territories in the thousands of km2.
2. Materials and Methods
2.1. Study Areas
2.2. Field Surveys and Damage Classification Scale System
2.3. LiDAR DTM Data: Flow Accumulation and Water Discharge Map
2.4. Comparing Field Data and Simulation Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Damage Classes References Photos
References
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Arnáez-Vadillo, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, M.; Conti, L.; Frezza, L.; Santoro, A. Territorial Analysis of the Agricultural Terraced Landscapes of Tuscany (Italy): Preliminary Results. Sustainability 2015, 7, 4564–4581. [Google Scholar] [CrossRef] [Green Version]
- Paliaga, G.; Luino, F.; Turconi, L.; De Graff, J.V.; Faccini, F. Terraced Landscapes on Portofino Promontory (Italy): Identification, Geo-Hydrological Hazard and Management. Water 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Kiesow, S.; Bork, H.-R. Agricultural terraces as a proxy to landscape history on Madeira island, Portugal. Ler História 2017, 71, 127–152. [Google Scholar] [CrossRef]
- Marcu, A.; Viespe, C. Laser-grown ZnO nanowires for room-temperature SAW-sensor applications. Sens. Actuators B Chem. 2015, 208, 1–6. [Google Scholar] [CrossRef]
- Tarolli, P. Agricultural Terraces Special Issue Preface. Land Degrad. Dev. 2018, 29, 3544–3548. [Google Scholar] [CrossRef]
- Soriano, M.A.; Herath, S. Climate change and traditional upland paddy farming: A Philippine case study. Paddy Water Environ. 2019, 18, 317–330. [Google Scholar] [CrossRef]
- Fukamachi, K. Sustainability of terraced paddy fields in traditional satoyama landscapes of Japan. J. Environ. Manag. 2017, 202, 543–549. [Google Scholar] [CrossRef]
- Branch, N.P.; Kemp, R.A.; Silva, B.; Meddens, F.M.; Williams, A.; Kendall, A.; Pomacanchari, C.V. Testing the sustainability and sensitivity to climatic change of terrace agricultural systems in the Peruvian Andes: A pilot study. J. Archaeol. Sci. 2007, 34, 1–9. [Google Scholar] [CrossRef]
- Gao, X.; Roder, G.; Jiao, Y.-M.; Ding, Y.; Liu, Z.; Tarolli, P. Farmers’ landslide risk perceptions and willingness for restoration and conservation of world heritage site of Honghe Hani Rice Terraces, China. Landslides 2020, 17, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Di Fazio, S.; Modica, G. Historic Rural Landscapes: Sustainable Planning Strategies and Action Criteria. The Italian Experience in the Global and European Context. Sustainability 2018, 10, 3834. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, F.; Pappalardo, S.E.; Cosner, A.; Brugnaro, S.; Alum, K.; Pozzo, A.D.; De Marchi, M. Mapping Agricultural Terraces in Italy. Methodologies Applied in the MAPTER Project. Environ. Hist. Mak. 2018, 179–194. [Google Scholar] [CrossRef]
- Savo, V.; Caneva, G.; McClatchey, W.; Reedy, D.; Salvati, L. Combining Environmental Factors and Agriculturalists’ Observations of Environmental Changes in the Traditional Terrace System of the Amalfi Coast (Southern Italy). AMBIO 2013, 43, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Camera, C.; Apuani, T.; Masetti, M. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy). Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 2287–2322. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Venturi, M.; Agnoletti, M. Agricultural Heritage Systems and Landscape Perception among Tourists. The Case of Lamole, Chianti (Italy). Sustainability 2020, 12, 3509. [Google Scholar] [CrossRef]
- Preti, F. Il Territorio Terrazzato: Punti Di Forza e Criticità. In Proceedings of the Il Futuro dei Terrazzamenti Sul Territorio del Montalbano tra Criticità e Sviluppo, Tuscany, Italy, 22 February 2020. [Google Scholar]
- Agnoletti, M.; Errico, A.; Santoro, A.; Dani, A.; Preti, F. Terraced Landscapes and Hydrogeological Risk. Effects of Land Abandonment in Cinque Terre (Italy) during Severe Rainfall Events. Sustainability 2019, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Dorren, L.; Rey, F. A review of the effect of terracing on erosion. Soil Conserv. Prot. Eur. 2004, 97–108. [Google Scholar]
- Arnáez, J.; Lasanta, T.; Errea, M.P.; Ortigosa, L. Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: The case of Camero Viejo. Land Degrad. Dev. 2011, 22, 537–550. [Google Scholar] [CrossRef]
- Raso, E.; Cevasco, A.; Di Martire, D.; Pepe, G.; Scarpellini, P.; Calcaterra, D.; Firpo, M. Landslide-inventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network. J. Maps 2019, 15, 818–830. [Google Scholar] [CrossRef] [Green Version]
- Lasanta, T.; Ruiz-Flaño, P.; Lana-Renault, N.; Arnáez, J. Agricultural terraces in the Spanish mountains: An abandoned landscape and a potential resource. Bol. Asoc. Geógr. Esp. 2013, 63, 487–491. [Google Scholar]
- Dunjó, G.; Pardini, G.; Gispert, M. Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena 2003, 52, 23–37. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Martínez-Hernández, C.; Iserloh, T.; Cerdà, A. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Walsh, K. Societal stability and environmental change: Examining the archaeology-soil erosion paradox. Geoarchaeology 2016, 32, 23–35. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Cammeraat, L.H.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landf. 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Bartolini, G.; Grifoni, D.; Magno, R.; Torrigiani, T.; Gozzini, B. Changes in temporal distribution of precipitation in a Mediterranean area (Tuscany, Italy) 1955–2013. Int. J. Clim. 2018, 38, 1366–1374. [Google Scholar] [CrossRef]
- Bartolini, G.; Grifoni, D.; Torrigiani, T.; Vallorani, R.; Meneguzzo, F.; Gozzini, B. Precipitation changes from two long-term hourly datasets in Tuscany, Italy. Int. J. Clim. 2014, 34, 3977–3985. [Google Scholar] [CrossRef]
- Dehn, M.; Bürger, G.; Buma, J.; Gasparetto, P. Impact of climate change on slope stability using expanded downscaling. Eng. Geol. 2000, 55, 193–204. [Google Scholar] [CrossRef]
- LaFevor, M.C. Restoration of degraded agricultural terraces: Rebuilding landscape structure and process. J. Environ. Manag. 2014, 138, 32–42. [Google Scholar] [CrossRef]
- Chaplot, V.; Brown, J.; Dlamini, P.; Eustice, T.; Janeau, J.-L.; Jewitt, G.; Lorentz, S.; Martin, L.; Nontokozo-Mchunu, C.; Oakes, E.; et al. Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat. Agric. Water Manag. 2011, 98, 1704–1710. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V. Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Fallu, D.J.; Zhang, H.; Walsh, K.; Van Oost, K.; Brown, A.G.; Tarolli, P. Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sens. 2020, 12, 1946. [Google Scholar] [CrossRef]
- Passalacqua, P.; Tarolli, P.; Georgiou, E.F. Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resour. Res. 2010, 46, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Sofia, G.; Calligaro, S.; Prosdocimi, M.; Preti, F.; Fontana, G.D. Vineyards in Terraced Landscapes: New Opportunities from Lidar Data. Land Degrad. Dev. 2015, 26, 92–102. [Google Scholar] [CrossRef]
- Pijl, A.; Tosoni, M.; Roder, G.; Sofia, G.; Tarolli, P. Design of Terrace Drainage Networks Using UAV-Based High-Resolution Topographic Data. Water 2019, 11, 814. [Google Scholar] [CrossRef] [Green Version]
- Spanò, A.; Sammartano, G.; Tunin, F.C.; Cerise, S.; Possi, G. GIS-based detection of terraced landscape heritage: Comparative tests using regional DEMs and UAV data. Appl. Geomat. 2018, 10, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Fontana, G.D. Hillslope-to-valley transition morphology: New opportunities from high resolution DTMs. Geomorphology 2009, 113, 47–56. [Google Scholar] [CrossRef]
- Sofia, G.; Tarolli, P.; Cazorzi, F.; Fontana, G.D. An objective approach for feature extraction: Distribution analysis and statistical descriptors for scale choice and channel network identification. Hydrol. Earth Syst. Sci. 2011, 15, 1387–1402. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Sofia, G.; Fontana, G.D. Geomorphic features extraction from high-resolution topography: Landslide crowns and bank erosion. Nat. Hazards 2012, 61, 65–83. [Google Scholar] [CrossRef]
- Sofia, G.; Pirotti, F.; Tarolli, P. Variations in multiscale curvature distribution and signatures of LiDAR DTM errors. Earth Surf. Process. Landf. 2013, 38, 1116–1134. [Google Scholar] [CrossRef]
- Sofia, G.; Fontana, G.D.; Tarolli, P. High-resolution topography and anthropogenic feature extraction: Testing geomorphometric parameters in floodplains. Hydrol. Process. 2013, 28, 2046–2061. [Google Scholar] [CrossRef]
- Preti, F.; Tarolli, P.; Dani, A.; Calligaro, S.; Prosdocimi, M. LiDAR derived high resolution topography: The next challenge for the analysis of terraces stability and vineyard soil erosion. J. Agric. Eng. 2013, 44, 44. [Google Scholar] [CrossRef]
- Lin, C.-W.; Tseng, C.-M.; Tseng, Y.-H.; Fei, L.-Y.; Hsieh, Y.-C.; Tarolli, P. Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography. J. Asian Earth Sci. 2013, 62, 389–400. [Google Scholar] [CrossRef]
- Tucci, G.; Parisi, E.I.; Castelli, G.; Errico, A.; Corongiu, M.; Sona, G.; Viviani, E.; Bresci, E.; Preti, F. Multi-Sensor UAV Application for Thermal Analysis on a Dry-Stone Terraced Vineyard in Rural Tuscany Landscape. ISPRS Int. J. Geo-Inf. 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Guarnieri, L.; Vivoni, E.R.; Castelli, F.; Preti, F. Spectral-ALS data fusion for different roughness parameterizations of forested floodplains. River Res. Appl. 2011, 27, 826–840. [Google Scholar] [CrossRef]
- Forzieri, G.; Castelli, F.; Preti, F. Advances in remote sensing of hydraulic roughness. Int. J. Remote Sens. 2011, 33, 630–654. [Google Scholar] [CrossRef]
- Franceschi, S.; Antonello, A.; Floreancig, V.; Gianelle, D.; Comiti, F.; Tonon, G. Identifying treetops from aerial laser scanning data with particle swarming optimization. Eur. J. Remote Sens. 2018, 51, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Jenkins, D.G.; McCauley, L.A. GIS, SINKS, FILL, and disappearing wetlands: Unintended consequences in algorithm development and use. In Proceedings of the ACM Symposium on Applied Computing, Dijon, France, 23–27 April 2006; Volume 1, pp. 277–282. [Google Scholar]
- Kinner, D.; Mitasova, H.; Harmon, R.S.; Toma, L.; Stallard, R.; Russell, S. GIS-based Stream Network Analysis for The Chagres River Basin, Republic of Panama. In B. Chapter Rio Chagres A Multidiscip. Profile a Trop, Watershed; Springer: Berlin/Heidelberg, Germany, 2005; pp. 83–95. [Google Scholar]
- Hofierka, J.; Knutová, M. Simulating spatial aspects of a flash flood using the Monte Carlo method and GRASS GIS: A case study of the Malá Svinka Basin (Slovakia). Open Geosci. 2015, 7, 118–125. [Google Scholar] [CrossRef]
- Benini, G. Sistemazioni Idraulico-Forestali; UTET: Turin, Italy, 1990; p. 283. [Google Scholar]
- Preti, F.; Errico, A.; Caruso, M.; Dani, A.; Guastini, E. Dry-stone wall terrace monitoring and modelling. Land Degrad. Dev. 2018, 29, 1806–1818. [Google Scholar] [CrossRef]
- Preti, F.; Guastini, E.; Penna, D.; Dani, A.; Cassiani, G.; Boaga, J.; Deiana, R.; Romano, N.; Nasta, P.; Palladino, M.; et al. Conceptualization of Water Flow Pathways in Agricultural Terraced Landscapes. Land Degrad. Dev. 2018, 29, 651–662. [Google Scholar] [CrossRef]
- Errico, A.; Castelli, G.; Penna, D.; Preti, F. Terracing: From Agriculture to Multiple Ecosystem Services. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Lazo, P.; Giovanny, M.M.; McDonnell, J.J.; Crespo, P. The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. J. Hydrol. 2019, 572, 805–819. [Google Scholar] [CrossRef]
- Penna, D.; Van Meerveld, I.; Zuecco, G.; Fontana, G.D.; Borga, M. Hydrological response of an Alpine catchment to rainfall and snowmelt events. J. Hydrol. 2016, 537, 382–397. [Google Scholar] [CrossRef]
- Camera, C.; Apuani, T.; Masetti, M. Mechanisms of failure on terraced slopes: The Valtellina case (Northern Italy). Landslides 2012, 11, 43–54. [Google Scholar] [CrossRef]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
Damage Type | Damage Scale |
---|---|
Regular (Undamaged) | 1 |
Bulging in central and upper portion | 2 |
Bulging in lower portion | 3 |
Whole wall bulging, translation | 4 |
Failure | 5 |
Dry-stone wall missing | 6 |
Land Use | Slope | Soil Type | ||
---|---|---|---|---|
Light | Medium | Heavy | ||
Forest | <10% | 0.13 | 0.18 | 0.25 |
>10% | 0.16 | 0.21 | 0.36 | |
Pasture | <10% | 0.16 | 0.16 | 0.22 |
>10% | 0.22 | 0.42 | 0.62 | |
Agriculture | <10% | 0.40 | 0.60 | 0.70 |
>10% | 0.52 | 0.72 | 0.82 |
Rainfall Intensity | 5 mm/h | 50 mm/h | 180 mm/h |
---|---|---|---|
Residual standard error | 0.019 | 0.008 | 0.185 |
R2 | 0.13 | 0.16 | 0.07 |
p | 0.059 | 0.007 | 0.003 |
5mm/h | 50 mm/h | 180 mm/h | |
---|---|---|---|
Damage scale vs. Water discharge | |||
R2 | 0.018 | 0.022 | 0.087 |
p | 0.1547 | 0.1226 | 0.001 |
Deformation vs. Water discharge | |||
R2 | 0.13 | 0.13 | 0.18 |
p | 0.029 | 0.029 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cambi, M.; Giambastiani, Y.; Giannetti, F.; Nuti, E.; Dani, A.; Preti, F. Integrated Low-Cost Approach for Measuring the State of Conservation of Agricultural Terraces in Tuscany, Italy. Water 2021, 13, 113. https://doi.org/10.3390/w13020113
Cambi M, Giambastiani Y, Giannetti F, Nuti E, Dani A, Preti F. Integrated Low-Cost Approach for Measuring the State of Conservation of Agricultural Terraces in Tuscany, Italy. Water. 2021; 13(2):113. https://doi.org/10.3390/w13020113
Chicago/Turabian StyleCambi, Martina, Yamuna Giambastiani, Francesca Giannetti, Elena Nuti, Andrea Dani, and Federico Preti. 2021. "Integrated Low-Cost Approach for Measuring the State of Conservation of Agricultural Terraces in Tuscany, Italy" Water 13, no. 2: 113. https://doi.org/10.3390/w13020113
APA StyleCambi, M., Giambastiani, Y., Giannetti, F., Nuti, E., Dani, A., & Preti, F. (2021). Integrated Low-Cost Approach for Measuring the State of Conservation of Agricultural Terraces in Tuscany, Italy. Water, 13(2), 113. https://doi.org/10.3390/w13020113