Different Waters for Different Performances: Can We Imagine Sport-Related Natural Mineral Spring Waters?
Abstract
:1. Introduction
2. Materials and Methods
3. Hydration Status and Sport Performance
4. Rehydration and Athlete’s Health
5. The Goals of Hydration and Rehydration in Athletes
6. Natural Mineral Spring Waters (NMSWs) and Athletic Performance
7. Optimal NMSWs to Hydrate and/or Rehydrate: Water Salts/Volumes and Sport Performance (Explosive/Endurance)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.M.; Cheuvront, S.N.; Chiampas, G.; González-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. EFSA J. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.W.; Densmore, J.J. Hematologic Disorders in the Athlete. Clin. Sports Med. 2005, 24, 599–621. [Google Scholar] [CrossRef]
- Borgman, M.A.; Zaar, M.; Aden, J.K.; Schlader, Z.J.; Gagnon, D.; Rivas, E.; Kern, J.; Koons, N.J.; Convertino, V.A.; Cap, A.P.; et al. Hemostatic responses to exercise, dehydration, and simulated bleeding in heat-stressed humans. Am. J. Physiol. Integr. Comp. Physiol. 2019, 316, R145–R156. [Google Scholar] [CrossRef]
- Carubbi, C.; Masselli, E.; Nouvenne, A.; Russo, M.; Galli, D.; Mirandola, P.; Gobbi, G.; Vitale, M. Laboratory diagnostics of inherited platelet disorders. Clin. Chem. Lab. Med. 2014, 52, 1091–1106. [Google Scholar] [CrossRef] [Green Version]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.E.; Lee, E.C.; Casa, D.J.; Johnson, E.C.; Ganio, M.S.; McDermott, B.P.; Vingren, J.L.; Oh, H.M.; Williamson, K.H. Exertional Hyponatremia and Serum Sodium Change During Ultraendurance Cycling. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yates, B.A.; Ellis, L.A.; Butts, C.L.; McDermott, B.P.; Williamson, K.H.; Armstrong, L.E. Factors Associated with Pre-Event Hydration Status and Drinking Behavior of Middle-Aged Cyclists. J. Nutr. Health Aging 2017, 22, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Kenefick, R.W. Drinking Strategies: Planned Drinking Versus Drinking to Thirst. Sports Med. 2018, 48, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M. Sports Drinks. Funct. Foods 2009, 2009, 279–298. [Google Scholar] [CrossRef]
- Coombes, J.S.; Hamilton, K.L. The Effectiveness of Commercially Available Sports Drinks. Sports Med. 2000, 29, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Singh, R., Jr. Fluid balance and exercise performance. Malays. J. Nutr. 2003, 9, 53–74. [Google Scholar] [PubMed]
- Peacock, O.; Thompson, D.; Stokes, K.A. Voluntary drinking behaviour, fluid balance and psychological affect when ingesting water or a carbohydrate-electrolyte solution during exercise. Appetite 2012, 58, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Sutehall, S.; Muniz-Pardos, B.; Bosch, A.N.; Di Gianfrancesco, A.; Pitsiladis, Y. Sports Drinks on the Edge of a New Era. Curr. Sports Med. Rep. 2018, 17, 112–116. [Google Scholar] [CrossRef]
- European Council. European Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters; European Council: Brussels, Belgium, 2009. [Google Scholar]
- Stasiule, L.; Čapkauskienė, S.; Vizbaraite, D.; Stasiulis, A. Deep mineral water accelerates recovery after dehydrating aerobic exercise: A randomized, double-blind, placebo-controlled crossover study. J. Int. Soc. Sports Nutr. 2014, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Chycki, J.; Kurylas, A.; Maszczyk, A.; Golas, A.; Zajac, A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE 2018, 13, e0205708. [Google Scholar] [CrossRef]
- Chycki, J.; Zając, T.; Maszczyk, A.; Kurylas, A. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise. Biol. Sport 2017, 34, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467. [Google Scholar] [CrossRef] [Green Version]
- Casa, D.J.; Cheuvront, S.N.; Galloway, S.D.; Shirreffs, S.M. Fluid Needs for Training, Competition, and Recovery in Track-and-Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Miccheli, A.; Marini, F.; Capuani, G.; Miccheli, A.T.; Delfini, M.; Di Cocco, M.E.; Puccetti, C.; Paci, M.; Rizzo, M.; Spataro, A. The Influence of a Sports Drink on the Postexercise Metabolism of Elite Athletes as Investigated by NMR-Based Metabolomics. J. Am. Coll. Nutr. 2009, 28, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Kalman, D.; Feldman, S.; Krieger, D.R.; Bloomer, R.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalpana, K.; Lal, P.R.; Kusuma, D.L.; Khanna, G.L. The Effects of Ingestion of Sugarcane Juice and Commercial Sports Drinks on Cycling Performance of Athletes in Comparison to Plain Water. Asian J. Sports Med. 2013, 4, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Seery, S.; Jakeman, P. A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men. Br. J. Nutr. 2016, 116, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; E Armstrong, L.; Bray, G.M.; Caballero, B.; Frei, B.; Willett, W.C. A new proposed guidance system for beverage consumption in the United States. Am. J. Clin. Nutr. 2006, 83, 529–542. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Aragon-Vargas, L.F.; Chamorro, M.; Maughan, R.J.; Serratosa, L.; Zachwieja, J.J. The Sweating Response of Elite Professional Soccer Players to Training in the Heat. Int. J. Sports Med. 2005, 26, 90–95. [Google Scholar] [CrossRef]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Casa, U.J.; Carter, R. Fluid needs for training and competition in athletics. J. Sports Sci. 2007, 25, S83–S91. [Google Scholar] [CrossRef]
- Judelson, D.A.; Maresh, C.M.; Anderson, J.M.; Armstrong, L.E.; Casa, D.J.; Kraemer, W.J.; Volek, J.S. Hydration and Muscular Performance. Sports Med. 2007, 37, 907–921. [Google Scholar] [CrossRef]
- Shirreffs, S.M. Symposium on ‘Performance, exercise and health’ Hydration, fluids and performance. Proc. Nutr. Soc. 2008, 68, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J.; Shirreffs, S.M. Development of hydration strategies to optimize performance for athletes in high-intensity sports and in sports with repeated intense efforts. Scand. J. Med. Sci. Sports 2010, 20, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Blackwell, J. Hydration Status, Fluid Intake, and Electrolyte Losses in Youth Soccer Players. Int. J. Sports Physiol. Perform. 2012, 7, 367–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garth, A.K.; Burke, L.M. What Do Athletes Drink During Competitive Sporting Activities? Sports Med. 2013, 43, 539–564. [Google Scholar] [CrossRef]
- Cleary, M.A.; Sweeney, L.A.; Kendrick, Z.V.; Sitler, M.R. Dehydration and symptoms of delayed-onset muscle soreness in hyper-thermic males. J. Athl Train. 2005, 40, 288–297. [Google Scholar]
- Cengiz, A. Effects of self-selected dehydration and meaningful rehydration on anaerobic power and heart rate recovery of elite wrestlers. J. Phys. Ther. Sci. 2015, 27, 1441–1444. [Google Scholar] [CrossRef] [Green Version]
- Pallarés, J.G.; Martínez-Abellán, A.; López-Gullón, J.M.; Morán-Navarro, R.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Muscle contraction velocity, strength and power output changes following different degrees of hypohydration in competitive olympic combat sports. J. Int. Soc. Sports Nutr. 2016, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Barley, O.R.; Chapman, D.W.; Abbiss, C. Weight Loss Strategies in Combat Sports and Concerning Habits in Mixed Martial Arts. Int. J. Sports Physiol. Perform. 2018, 13, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.R.; Low, I.C.C.; Stephenson, M.C.; Kok, T.; Nolte, H.W.; Soong, T.W.; Lee, J.K.W. Altered brain structure with preserved cortical motor activity after exertional hypohydration: A MRI study. J. Appl. Physiol. 2019, 127, 157–167. [Google Scholar] [CrossRef]
- Gauchard, G.C.; Gangloff, P.; Vouriot, A.; Mallié, J.-P.; Perrin, P.P. Effects of Exercise-Induced Fatigue with and without Hydration on Static Postural Control in Adult Human Subjects. Int. J. Neurosci. 2002, 112, 1191–1206. [Google Scholar] [CrossRef]
- Goulet, E.D. Dehydration and endurance performance in competitive athletes. Nutr. Rev. 2012, 70, S132–S136. [Google Scholar] [CrossRef] [PubMed]
- Deshayes, T.A.; Jeker, D.; Goulet, E.D. Impact of Pre-exercise Hypohydration on Aerobic Exercise Performance, Peak Oxygen Consumption and Oxygen Consumption at Lactate Threshold: A Systematic Review with Meta-analysis. Sports Med. 2020, 50, 581–596. [Google Scholar] [CrossRef]
- Clark, H.R.; Barker, M.; Corfe, B.M. Nutritional Strategies of Mountain Marathon Competitors—An Observational Study. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, J.M.; Rivera-Cisneros, A.E.; Ramírez, M.J.; de Tovar-García, J.L.; Portillo-Gallo, J.; Franco-Santillán, R. Hydration status and aerobic capacity: Effects on plasmatic volume during strenuous physical exercise. Cir. Cir. 2005, 73, 287–295. [Google Scholar]
- Holland, J.J.; Skinner, T.L.; Irwin, C.; Leveritt, M.D.; Goulet, E.D.B. The Influence of Drinking Fluid on Endurance Cycling Performance: A Meta-Analysis. Sports Med. 2017, 47, 2269–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, L.; Moss, J.; Henry, J.; Papadopoulou, C.; Mears, S.A. Hypohydration impairs endurance performance: A blinded study. Physiol. Rep. 2017, 5, e13315. [Google Scholar] [CrossRef] [PubMed]
- Barley, O.R.; Chapman, D.W.; Mavropalias, G.; Abbiss, C.R.; Marvopalais, G. The Influence of Heat Acclimation and Hypohydration on Post-Weight-Loss Exercise Performance. Int. J. Sports Physiol. Perform. 2020, 15, 213–221. [Google Scholar] [CrossRef]
- Luttrell, M.J.; Halliwill, J.R. Recovery from exercise: Vulnerable state, window of opportunity, or crystal ball? Front. Physiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.G.; Nevill, M.E.; Thompson, D.; Collie, J.; Williams, C. The influence of a 6.5% carbohydrate-electrolyte solution on performance of prolonged intermittent high-intensity running at 30 °C. J. Sports Sci. 2003, 21, 371–381. [Google Scholar] [CrossRef]
- Merry, T.L.; Ainslie, P.N.; Cotter, J.D. Effects of aerobic fitness on hypohydration-induced physiological strain and exercise impairment. Acta Physiol. 2010, 198, 179–190. [Google Scholar] [CrossRef]
- McNeely, B.D.; Meade, R.D.; Fujii, N.; Seely, A.J.E.; Sigal, R.J.; Kenny, G.P. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. Am. J. Physiol. Integr. Comp. Physiol. 2017, 313, R730–R739. [Google Scholar] [CrossRef]
- Nouvenne, A.; Meschi, T.; Prati, B.; Guerra, A.; Allegri, F.; Vezzoli, G.; Soldati, L.; Gambaro, G.; Maggiore, U.; Borghi, L. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: A 3-mo randomized controlled trial. Am. J. Clin. Nutr. 2009, 91, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpino, G.; Del Ben, M.; Pastori, D.; Carnevale, R.; Baratta, F.; Overi, D.; Francis, H.; Cardinale, V.; Onori, P.; Safarikia, S.; et al. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD. Hepatology 2020, 72, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Viegas, J.; Esteves, A.F.; Cardoso, E.M.; Arosa, F.A.; Vitale, M.; Taborda-Barata, L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front. Public Health 2019, 7, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.; Guede, D.; Durães, C.; Brandão, I.; Silva, N.; Passos, E.; Bernardes, M.; Monteiro, R.; Martins, M.J. Differential Modulation of Cancellous and Cortical Distal Femur by Fructose and Natural Mineral-Rich Water Consumption in Ovariectomized Female Sprague Dawley Rats. Nutrients 2019, 11, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornai, M.; Colucci, R.; Antonioli, L.; Ghisu, N.; Tuccori, M.; Gori, G.; Blandizzi, C.; Del Tacca, M. Effects of a bicarbonate-alkaline mineral water on digestive motility in experimental models of functional and inflammatory gastrointestinal disorders. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Mirandola, P.; Gobbi, G.; Micheloni, C.; Vaccarezza, M.; Di Marcantonio, D.; Ruscitti, F.; De Panfilis, G.; Vitale, M. Hydrogen sulfide inhibits IL-8 expression in human keratinocytes via MAP kinase signaling. Lab. Investig. 2011, 91, 1188–1194. [Google Scholar] [CrossRef]
- Gobbi, G.; Ricci, F.; Malinverno, C.; Carubbi, C.; Pambianco, M.; De Panfilis, G.; Vitale, M.; Mirandola, P. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab. Investig. 2009, 89, 994–1006. [Google Scholar] [CrossRef] [Green Version]
- Quattrini, S. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef]
- Petraccia, L.; Liberati, G.; Masciullo, S.G.; Grassi, M.; Fraioli, A. Water, mineral waters and health. Clin. Nutr. 2006, 25, 377–385. [Google Scholar] [CrossRef]
- Albertini, M.C.; Dacha, M.; Teodori, L.; Conti, M.E. Drinking mineral waters: Biochemical effects and health implications the state-of-the-art. Int. J. Environ. Health 2007, 1, 153. [Google Scholar] [CrossRef]
- Costa-Vieira, D.; Monteiro, R.; Martins, M.J. Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review. Nutrients 2019, 11, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Calcium and Magnesium in Drinking-Water. Public Health Significance; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Vitoria, I.; Maraver, F.; Ferreira-Pêgo, C.; Armijo, F.; Moreno, L.A.; Salas-Salvadó, J. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs. Nutr. Hosp. 2014, 30, 188–199. [Google Scholar] [PubMed]
- Greupner, T.; Schneider, I.; Hahn, A. Calcium Bioavailability from Mineral Waters with Different Mineralization in Comparison to Milk and a Supplement. J. Am. Coll. Nutr. 2017, 36, 386–390. [Google Scholar] [CrossRef]
- Maraver, F.; Vitoria, I.; Ferreira-Pêgo, C.; Armijo, F.; Salas-Salvadó, J. Magnesium in tap and bottled mineral water in Spain and its contribution to nutritional recommendations. Nutr. Hosp. 2015, 31, 2297–2312. [Google Scholar]
- Karagülle, O.; Kleczka, T.; Vidal, C.; Candir, F.; Gundermann, G.; Külpmann, W.R.; Gehrke, A.; Gutenbrunner, C. Magnesium Absorption from Mineral Waters of Different Magnesium Content in Healthy Subjects. Complement. Med. Res. 2006, 13, 9–14. [Google Scholar] [CrossRef]
- Seidel, U.; Baumhof, E.; Hägele, F.A.; Bosy-Westphal, A.; Birringer, M.; Rimbach, G. Lithium-Rich Mineral Water is a Highly Bioavailable Lithium Source for Human Consumption. Mol. Nutr. Food Res. 2019, e1900039. [Google Scholar] [CrossRef]
- Margarucci, L.M.; Spica, V.R.; Gianfranceschi, G.; Valeriani, F. Untouchability of natural spa waters: Perspectives for treatments within a personalized water safety plan. Environ. Int. 2019, 133, 105095. [Google Scholar] [CrossRef]
- Hosseinlou, A.; Khamnei, S.; Zamanlu, M. The effect of water temperature and voluntary drinking on the post rehydration sweating. Int. J. Clin. Exp. Med. 2013, 6, 683–687. [Google Scholar]
- Cuddy, J.S.; Ham, J.A.; Harger, S.G.; Slivka, D.R.; Ruby, B.C. Effects of an Electrolyte Additive on Hydration and Drinking Behavior During Wildfire Suppression. Wilderness Environ. Med. 2008, 19, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Merson, S.J.; Maughan, R.J.; Shirreffs, S.M. Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man. Graefe Arch. Clin. Exp. Ophthalmol. 2008, 103, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-W.; Tsai, Y.-S.; Jean, W.-H.; Chen, C.-Y.; Ivy, J.L.; Huang, C.-Y.; Kuo, C.-H. Deep ocean mineral water accelerates recovery from physical fatigue. J. Int. Soc. Sports Nutr. 2013, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.R.; Keen, D.A.; Constantopoulos, E.; Weninger, S.N.; Hines, E.; Koppinger, M.P.; Khalpey, Z.; Konhilas, Y.L.J.P. Fluid type influences acute hydration and muscle performance recovery in human subjects. J. Int. Soc. Sports Nutr. 2019, 16, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes’ Health. Nutrients 2019, 11, 1353. [Google Scholar] [CrossRef] [Green Version]
- Brancaccio, P.; Limongelli, F.M.; Paolillo, I.; D’Aponte, A.; Donnarumma, V.; Rastrelli, L. Supplementation of Acqua Lete® (Bicarbonate Calcic Mineral Water) improves hydration status in athletes after short term anaerobic exercise. J. Int. Soc. Sports Nutr. 2012, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Flasar, C. What is urine specific gravity? Nursing 2008, 38, 14. [Google Scholar] [CrossRef]
- O’Neal, E.K.; Johnson, S.L.; Davis, B.A.; Pribyslavska, V.; Stevenson-Wilcoxson, M.C. Urine Specific Gravity as a Practical Marker for Identifying Suboptimal Fluid Intake of Runners ∼12-hr Postexercise. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 32–38. [Google Scholar] [CrossRef]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B.; Naumovski, N. Hydrogen Rich Water Improved Ventilatory, Perceptual and Lactate Responses to Exercise. Int. J. Sports Med. 2019, 40, 879–885. [Google Scholar] [CrossRef]
- Barnett, M.E.; Madgwick, D.K.; Takemoto, D.J. Protein kinase C as a stress sensor. Cell. Signal. 2007, 19, 1820–1829. [Google Scholar] [CrossRef] [Green Version]
- Queirolo, V.; Galli, D.; Masselli, E.; Borzì, R.M.; Martini, S.; Vitale, F.; Gobbi, G.; Carubbi, C.; Mirandola, P. PKCε is a regulator of hypertrophic differentiation of chondrocytes in osteoarthritis. Osteoarthr. Cartil. 2016, 24, 1451–1460. [Google Scholar] [CrossRef]
- Mears, S.A.; Shirreffs, S.M. Voluntary Water Intake during and Following Moderate Exercise in the Cold. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marotta, D.; Sica, C. Composition and classification of Italian mineral waters Nota II. Ann. Chim Appl. 1933, 23, 245–257. [Google Scholar]
- Kilding, A.E.; Tunstall, H.; Wraith, E.; Good, M.; Gammon, C.; Smith, C. Sweat Rate and Sweat Electrolyte Composition in International Female Soccer Players during Game Specific Training. Int. J. Sports Med. 2009, 30, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B.; Barnes, K.A.; Anderson, M.L.; Passe, D.H.; Stofan, J.R. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J. Sports Sci. 2016, 34, 358–368. [Google Scholar] [CrossRef]
- Baker, L.B.; De Chavez, P.J.D.; Ungaro, C.T.; Sopeña, B.C.; Nuccio, R.P.; Reimel, A.J.; Barnes, K.A. Exercise intensity effects on total sweat electrolyte losses and regional vs. whole-body sweat [Na+], [Cl−], and [K+]. Graefe Arch. Clin. Exp. Ophthalmol. 2019, 119, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.B.; Wolfe, A.S. Physiological mechanisms determining eccrine sweat composition. Graefe Arch. Clin. Exp. Ophthalmol. 2020, 120, 719–752. [Google Scholar] [CrossRef] [Green Version]
Nomenclature | Criteria |
---|---|
Bicarbonate | Bicarbonate content greater than 600 mg/L |
Sulphate | Sulphate content greater than 200 mg/L |
Chloride | Chloride content greater than 200 mg/L |
Calcium | Calcium content greater than 150 mg/L |
Magnesium | Magnesium content greater than 50 mg/L |
Fluoride | Fluoride content greater than 1 mg/L |
Iron | Bivalent iron content greater than 1 mg/L |
Acidic | Free carbon dioxide content greater than 250 mg/L |
Sodium | Sodium content greater than 200 mg/L |
Suitable for a low-sodium diet | Sodium content less than 20 mg/L |
Sweat Composition | Sweat Losses | NMSWs Composition (mmol/L) | |||
---|---|---|---|---|---|
Mineral | Symbol | mmol/L | LIE (mmol/L) | MIE (mmol/L) | |
Sodium | Na+ | 10–90 a | 32.6 ± 14.3 b | 52.7 ± 14.6 b 31.1 ± 11.7 c | Salt waters (sodium content ≥ 8.70; chloride content ≥ 5.64) Sodium-sulphate waters (sodium content ≥ 8.70; sulphate content ≥ 2.08) |
Chloride | Cl− | 10–90 a | 29.8 ± 13.6 b | 52.5 ± 15.6 b 31.1 ± 11.7 c | Salt waters (sodium content ≥ 8.70; chloride content ≥ 5.64) |
Potassium | K+ | 2–8 a | 2.6 ± 1 b | 5 ± 1.5 b 4 ± 1.4 c | Salt waters (potassium average content 2.60 d; sodium content ≥ 8.70; chloride content ≥ 5.64) |
Bicarbonate | HCO3− | 0.5–5 a | nr | nr | Bicarbonate waters (bicarbonate content ≥ 9.83) |
Magnesium | Mg2+ | 0.02–0.40 a | nr | 0.1 ± 0 c | Magnesiac waters (magnesium content ≥ 2.06) Magnesium-sulphate waters (magnesium content ≥ 2.06; sulphate content ≥ 2.08) |
Calcium | Ca2+ | 0.2–2 a | nr | 0.6 ± 0.2 c | Bicarbonate-calcic waters (bicarbonate content ≥ 9.83; calcium content ≥ 3.74) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presta, V.; Ambrosini, L.; Carubbi, C.; Masselli, E.; Mirandola, P.; Arcari, M.L.; Gobbi, G.; Vitale, M. Different Waters for Different Performances: Can We Imagine Sport-Related Natural Mineral Spring Waters? Water 2021, 13, 166. https://doi.org/10.3390/w13020166
Presta V, Ambrosini L, Carubbi C, Masselli E, Mirandola P, Arcari ML, Gobbi G, Vitale M. Different Waters for Different Performances: Can We Imagine Sport-Related Natural Mineral Spring Waters? Water. 2021; 13(2):166. https://doi.org/10.3390/w13020166
Chicago/Turabian StylePresta, Valentina, Luca Ambrosini, Cecilia Carubbi, Elena Masselli, Prisco Mirandola, Maria Luisa Arcari, Giuliana Gobbi, and Marco Vitale. 2021. "Different Waters for Different Performances: Can We Imagine Sport-Related Natural Mineral Spring Waters?" Water 13, no. 2: 166. https://doi.org/10.3390/w13020166