Evaluation of Hydrological Alterations at the Sub-Daily Scale Caused by a Small Hydroelectric Facility
Abstract
:1. Introduction
2. Methods
2.1. Sub-Daily Hydrological Indicators (SDHI)
2.1.1. Group 1. Magnitude of Sub-Daily Flows
2.1.2. Group 2: Sub-Daily Flow Pulses Frequency
2.1.3. Group 3: Rate of Change of Sub-Daily Flows
2.1.4. Group 4: Duration of Sub-Daily Flow Regimes
2.2. Assessment of Hydrologic Change
2.3. Study Area
2.4. Database
3. Results
3.1. Characterization of the Hydrologic Regime
3.2. Sub-Daily Hydrologic Indicators (SDHI)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaudard, L.; Avanzi, F.; Michele, C.D. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant. Appl. Energy 2018, 210, 604–612. [Google Scholar] [CrossRef]
- Fantin-Cruz, I.; Pedrollo, O.; Girard, P.; Zeilhofer, P.; Hamilton, S.K. Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. J. Hydrol. 2015, 531, 810–820. [Google Scholar] [CrossRef]
- Kelly-Richards, S.; Silber-Coats, N.; Crootof, A.; Tecklin, D.; Bauer, C. Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom. Energy Policy 2017, 101, 251–264. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Stromberg, J.C. The Natural Flow Regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Hart, D.D.; Finelli, C.M. Physical-Biological Coupling in Streams: The Pervasive Effects of Flow on Benthic Organisms. Annu. Rev. Ecol. Syst. 1999, 30, 363–364. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecossystem. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.; Baumgartner, J.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. Rivers Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Ashraf, F.B.; Haghighi, A.T.; Riml, J.; Alfredsen, K.; Koskela, J.J.; Kløve, B. Changes in short term river flow regulation and hydropeaking in Nordic rivers. Sci. Rep. 2018, 8, 17232. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J. Determining the effects of dams on subdaily variation in river flows at a whole-basin scale. River Res. Appl. 2009, 26, 1246–1260. [Google Scholar] [CrossRef]
- Meile, T.; Boillat, J.-L.; Schleiss, A.J. Hydropeaking indicators for characterization of the Upper-Rhone River in Switzerland. Aquat. Sci. 2011, 73, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Haas, N.A.; O’Connor, B.L.; Hayse, J.W.; Bevelhimer, M.S.; Endreny, T.A. Analysis of Daily Peaking and Run-of-River Operations with Flow Variability Metrics, Considering Subdaily to Seasonal Time Scales. J. Am. Water Resour. Assoc. 2014, 50, 1622–1640. [Google Scholar] [CrossRef]
- Sauterleute, J.F.; Charmasson, J. A computational tool for the characterisation of rapid fluctuations in flow and stage in rivers caused by hydropeaking. Environ. Model. Softw. 2014, 55, 266–278. [Google Scholar] [CrossRef]
- Bevelhimer, M.S.; McManamay, R.A.; O’Connor, B. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies. River Res. Appl. 2015, 31, 867–879. [Google Scholar] [CrossRef]
- Carolli, M.; Vanzo, D.; Siviglia, A.; Zolezzi, G.; Bruno, M.C.; Alfredsen, K. A simple procedure for the assessment of hydropeaking flow alterations applied to several European streams. Aquat. Sci. 2015, 77, 639–653. [Google Scholar] [CrossRef]
- Junk, W.J.; Cunha, C.N. Pantanal: A large South American wetland at a crossroads. Ecol. Eng. 2005, 24, 291–401. [Google Scholar] [CrossRef]
- Agência Nacional de Águas. Conjuntura dos Recursos Hídricos no Brasil 2018: Informe Annual; 2018. Available online: https://arquivos.ana.gov.br/portal/publicacao/Conjuntura2018.pdf (accessed on 16 January 2021).
- Collischonn, W.; Paz, A.R.; Melo, M.M.M.; Jardim, P.F. Potenciais Impactos de Barragens Sobre o Regime Hidrológico nos Rios da RH Paraguai. Elaboração de Estudos de Avaliação dos Efeitos da Implantação de Empreendimentos Hidrelétricos na Região Hidrográfica do Rio Paraguai. Agência Nac. Águas Brasilia (DF). 2019. Available online: https://www.ana.gov.br/gestao-da-agua/planejamento-dos-recursos-hidricos/plano-de-recursos-hidricos-rio-paraguai/estudos-de-avaliacao-dos-efeitos-da-implantacao-de-empreendimentos-hidreletricos (accessed on 3 September 2019).
- Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, e1700611. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.T.; Goethals, P.L. Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Fantin-Cruz, I.; de Oliveira, M.D.; Campos, J.A.; de Campos, M.M.; de Souza, R.L.; Mingoti, R.; de Souza, R.L.; Pedrollo, O.; Hamilton, S.K. Further Development of Small Hydropower Facilities Will Significantly Reduce Sediment Transport to the Pantanal Wetland of Brazil. Front. Environ. 2020, 8, 577748. [Google Scholar] [CrossRef]
- Couto, T.B.; Olden, J.D. Global proliferation of small hydropower plants—Science and policy. Front. Ecol. Environ. 2018, 16, 91–100. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2013, 19, 397–441. [Google Scholar] [CrossRef]
- Mathews, R.; Richter, B.D. Application of the indicators of hydrologic alteration software in environmental flow setting. J. Am. Water Resour. Assoc. 2013, 43, 1400–1413. [Google Scholar] [CrossRef]
- Archer, D.; Newson, M. The use of indices of flow variability in assessing the hydrological and instream habitat impacts of upland afforestation and drainage. J. Hydrol. 2002, 268, 244–258. [Google Scholar] [CrossRef]
- Jardim, P.F.; Melo, M.M.M.; Ribeiro, L.C.; Collischonn, W.; Paz, A.R. Modeling Assessment of Large-Scale Hydrologic Alteration in South American Pantanal Due to Upstream Dam Operation. Front. Environ. 2020, 8, 15. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sordo-Ward, Á.; Alonso, C.; Nilsson, C. Characterizing effects of hydropower plants on sub-daily flow regimes. J. Hydrol. 2017, 550, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.; Baumgartner, J.; Wigington, R.; Braun, D. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.; Román, A.; Bejarano, M.D.; de Jalon, D.G.; Carolli, M. A graphical approach to characterize sub-daily flow regimes and evaluate its alterations due to hydropeaking. Sci. Total Environ. 2017, 574, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Ferrite, G.; Nicola, R.; Calheiros, D. O Dia que o Rio Secou. 2014. Available online: https://www.youtube.com/watch?v=9mlU2IYrJ6c (accessed on 14 July 2019).
- Santos, R.E.; Pinto-Coelho, R.M.; Fonseca, R.; Simões, N.R.; Zanchi, F.B. The decline of fisheries on the Madeira River, Brazil: The high cost of the hydroelectric dams in the Amazon Basin. Fish. Manag. Ecol. 2018, 25, 380–391. [Google Scholar] [CrossRef]
- Moreira, M.; Hayes, D.S.; Boavida, I.; Schletterer, M.; Schmutz, S.; Pinheiro, A. Ecologically-based criteria for hydropeaking mitigation. A review. Sci. Total Environ. 2019, 657, 508–1522. [Google Scholar] [CrossRef]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- G1 Mato Grosso. Usina Hidrelétrica é Suspeita de Provocar Morte de Peixes no Rio Itiquira em MT. 2018. Available online: https://g1.globo.com/mt/mato-grosso/noticia/2018/12/19/usina-hidreletrica-e-suspeita-de-provocar-morte-de-peixes-no-rio-itiquira-em-mt.ghtml (accessed on 7 November 2019).
Main SDHI Groups | Descriptions of River Regime (Indicators) | Units |
---|---|---|
Group 1. Magnitude of sub-daily flows | First quartile of the day | m3 s−1 |
Second quartile of the day | m3 s−1 | |
Third quartile of the day | m3 s−1 | |
Fourth quartile of the day | m3 s−1 | |
1-h-minimum flow | m3 s−1 | |
3-h-minimum flow | m3 s−1 | |
1-h-maximum flow | m3 s−1 | |
3-h-maximum flow | m3 s−1 | |
Daily range * | m3 s−1 | |
Group 2. Sub-daily flow pulse frequency | Number of low pulses | NP day−1 |
Number of high pulses | NP day−1 | |
Group 3. Rate of change of sub-daily flows | Number of reversals | NR day−1 |
Rise rate | m3 s−1 h−1 | |
Fall rate | m3 s−1 h−1 | |
Group 4. Duration of sub-daily flow regimes | Duration of stability * | h day−1 |
Duration high pulse * | h day−1 | |
Duration low pulse * | h day−1 |
Impact Level | Hydrologic Change |
---|---|
Very low (VL) | <25% |
Low (L) | 25–50% |
Medium (M) | 50–75% |
High (H) | >75% |
Indicator | Dry Season | Rainy Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Upstream | Downstream | HCR | Upstream | Downstream | HCR | |||||
Md | QL 25/75 | Md | QL 25/75 | Md | QL 25/75 | Md | QL 25/75 | |||
Group 1. Magnitude of Sub-Daily Flows | ||||||||||
1st quartile (m3 s−1) | 51.9 | 51.9/53.1 | 50.7 | 50.0/52.9 | 85 (H) * | 72.6 | 68.8/75.8 | 73.5 | 70.6/77.2 | 0 (VL) * |
2nd quartile (m3 s−1) | 51.9 | 51.9/52.9 | 50 | 49.4/52.5 | 95 (H) * | 70.9 | 67.5/74.9 | 73.8 | 70.8/77.2 | −13 (VL) * |
3rd quartile (m3 s−1) | 51.9 | 51.9/53.5 | 49.7 | 48.5/53.0 | 90 (H) * | 69.3 | 64.5/73.7 | 72.65 | 69.3/76.1 | −13 (VL) * |
4th quartile (m3 s−1) | 51.9 | 51.9/53.9 | 49.7 | 48.8/53.0 | 90 (H) * | 71.8 | 67.5/75.1 | 73.2 | 70.7/77.1 | −13 (VL) * |
1 h minimum (m3 s−1) | 51.9 | 51.9/52.2 | 49.1 | 47.6/51.2 | 100 (H) * | 67.9 | 63.4/71.6 | 70.9 | 68.4/74.1 | −18 (VL) * |
3 h minimum (m3 s−1) | 51.9 | 51.9/54.6 | 51.4 | 50.5/59.8 | 80 (H) * | 75.4 | 70.3/78.2 | 76.1 | 73.2/79.5 | 11. (VL) * |
1 h maximum (m3 s−1) | 51.9 | 51.9/52.2 | 49.3 | 47.8/51.3 | 100 (H) | 67.9 | 63.7/71.7 | 70.9 | 68.8/74.2 | −21 (VL) * |
3 h maximum (m3 s−1) | 51.9 | 51.9/54.5 | 51.27 | 50.1/57.8 | 80 (H) | 74.9 | 70.1/78.1 | 75.7 | 72.7/79.4 | −6 (VL) * |
Daily range (m3 s−1) | 0.6 | 0/1.9 | 4.4 | 2.3/6.1 | 78 (H) * | 7.9 | 3.9/10.0 | 5.1 | 3.4/7.2 | −6 (VL) * |
Group 2. Sub-Daily Flow Pulses Frequency | ||||||||||
Number of high pulses (NP day−1) | 0 | 0/1 | 1 | 1/1 | 17 (VL) * | 1 | 1/1 | 1 | 1/2 | 25 (L) * |
Number of low pulses (NP day−1) | 0 | 0/1 | 1 | 1/1 | 13 (VL) * | 1 | 1/2 | 2 | 1/2 | 3 (VL) |
Group 3. Rate of Change of Sub-Daily Flows | ||||||||||
Number of reversals (NR day−1) | 1 | 0/4.5 | 5 | 04/06 | 39 (L) * | 6 | 05/07 | 8 | 7/9.5 | 50 (M) * |
Rise rate (m3 s−1 h−1) | 0 | 0/0.6 | 0.68 | 0.4/0.9 | 36 (L) * | 0.98 | 0.8/1.26 | 1.1 | 1/1.46 | −7 (VL) |
Fall rate (m3 s−1 h−1) | 0 | 0/0.6 | 0.65 | 0.4/0.9 | 38 (L) * | 0.89 | 0.7/1.07 | 1.1 | 0.7/1.2 | 46 (L) |
Group 4. Duration of Sub-Daily Flows | ||||||||||
Duration of stability (h day−1) | 20 | 8.0/24.0 | 8 | 6.0/10.5 | 29 (L) * | 5 | 3.0/6.5 | 5 | 3.5/6.5 | 14 (VL) |
Duration high pulse (h day−1) | 0 | 0/2.5 | 4 | 3.0/5.5 | 78 (L) * | 5 | 4.0/6.0 | 4 | 2.0/5.0 | 23 (L) * |
Duration low pulse (h day−1) | 0 | 0/2.5 | 4 | 2.0/5.5 | −162 (L) * | 5 | 3.0/6.0 | 3 | 2.0/5.0 | −83 (H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun-Cruz, C.C.; Tritico, H.M.; Beregula, R.L.; Girard, P.; Zeilhofer, P.; Ribeiro, L.d.S.; Fantin-Cruz, I. Evaluation of Hydrological Alterations at the Sub-Daily Scale Caused by a Small Hydroelectric Facility. Water 2021, 13, 206. https://doi.org/10.3390/w13020206
Braun-Cruz CC, Tritico HM, Beregula RL, Girard P, Zeilhofer P, Ribeiro LdS, Fantin-Cruz I. Evaluation of Hydrological Alterations at the Sub-Daily Scale Caused by a Small Hydroelectric Facility. Water. 2021; 13(2):206. https://doi.org/10.3390/w13020206
Chicago/Turabian StyleBraun-Cruz, Camila C., Hans Mario Tritico, Renato Leandro Beregula, Pierre Girard, Peter Zeilhofer, Letícia de Souza Ribeiro, and Ibraim Fantin-Cruz. 2021. "Evaluation of Hydrological Alterations at the Sub-Daily Scale Caused by a Small Hydroelectric Facility" Water 13, no. 2: 206. https://doi.org/10.3390/w13020206
APA StyleBraun-Cruz, C. C., Tritico, H. M., Beregula, R. L., Girard, P., Zeilhofer, P., Ribeiro, L. d. S., & Fantin-Cruz, I. (2021). Evaluation of Hydrological Alterations at the Sub-Daily Scale Caused by a Small Hydroelectric Facility. Water, 13(2), 206. https://doi.org/10.3390/w13020206