Ocean Response to Super-Typhoon Haiyan
Abstract
:1. Introduction
2. Material and Method
2.1. Material
2.2. Method
3. Result
3.1. Best Track
3.2. SSH
3.3. Surface Wind
3.4. SST
3.5. Ocean Profiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mogensen, K.S.; Magnusson, L.; Bidlot, J.R. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Ocean. 2017, 122, 4392–4412. [Google Scholar] [CrossRef]
- Bushnell, J.M.; Cherrett, R.C.; Falvey, R.J. Joint Typhoon Warning Center Annual Tropical Cyclone Report 2018; Report; Joint Typhoon Warning Center: Honolulu, HI, USA, 2018. [Google Scholar]
- Wada, A.; Uehara, T.; Ishizaki, S. Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: Observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Prog. Earth Planet. Sci. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; He, H.; Hu, X.; Wang, D.; Gao, C.; Song, J. Numerical Simulations of Typhoon Hagupit (2008) Using WRF. Weather Forecast. 2019, 34, 999–1015. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Duan, Y.; Shay, L.K. Tropical Cyclone Intensity Change from a Simple Ocean–Atmosphere Coupled Model. J. Atmos. Sci. 2001, 58, 154–172. [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Xie, L.; Guan, C.; Zhao, D. A Coupled Atmosphere–Wave–Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone. Mon. Weather Rev. 2011, 139, 132–152. [Google Scholar] [CrossRef]
- Ning, J.; Xu, Q.; Feng, T.; Zhang, H.; Wang, T. Upper Ocean Response to Two Sequential Tropical Cyclones over the Northwestern Pacific Ocean. Remote Sens. 2019, 11, 2431. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Xu, Q.; Zhang, H.; Wang, T.; Fan, K. Impact of Cyclonic Ocean Eddies on Upper Ocean Thermodynamic Response to Typhoon Soudelor. Remote Sens. 2019, 11, 938. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.I.; Pun, I.F.; Lien, C.C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Huang, H.C.; Boucharel, J.; Lin, I.I.; Jin, F.F.; Lien, C.C.; Pun, I.F. Air-sea fluxes for Hurricane Patricia (2015): Comparison with supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res. Ocean. 2017, 122, 6076–6089. [Google Scholar] [CrossRef]
- Liu, Z.; Hou, Y.; Xie, Q.; Hu, P.; Liu, Y. The upper-ocean response to typhoons as measured at a moored acoustic Doppler current profiler. Chin. J. Ocean. Limnol. 2015, 33, 1256–1264. [Google Scholar] [CrossRef]
- Guan, S.; Liu, Z.; Song, J.; Hou, Y.; Feng, L. Upper ocean response to Super Typhoon Tembin (2012) explored using multiplatform satellites and Argo float observations. Int. J. Remote Sens. 2017, 38, 5150–5167. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, B.; Liu, G.; Li, X.; Zhang, H.; He, Y. Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations. Remote Sens. 2018, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, S.; He, H.L.; Song, J.B.; Ling, Z.; Cao, A.Z.; Zou, Z.S.; Qiao, W.L. Observational study of the coupled atmosphere-ocean system for super-typhoon Meranti using satellite, surface drifter, Argo float, and reanalysis data. Acta Oceanol. Sin. 2021, 40, 70–84. [Google Scholar] [CrossRef]
- Li, F.N.; Song, J.B.; He, H.L.; Li, S.; Li, X.; Guan, S.D. Assessment of surface drag coefficient parametrizations based on observations and simulations using the Weather Research and Forecasting model. Atmos. Ocean. Sci. Lett. 2016, 9, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Song, J.; Li, X. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013). Nat. Hazards 2018, 92, 647–671. [Google Scholar] [CrossRef]
- Wada, A.; Kanada, S.; Yamada, H. Effect of Air-Sea Environmental Conditions and Interfacial Processes on Extremely Intense Typhoon Haiyan (2013). J. Geophys. Res. Atmos. 2018, 123, 10379–10405. [Google Scholar] [CrossRef]
- Kueh, M.T.; Chen, W.M.; Sheng, Y.F.; Lin, S.C.; Wu, T.R.; Yen, E.; Tsai, Y.L.; Lin, C.Y. Effects of horizontal resolution and air–sea flux parameterization on the intensity and structure of simulated Typhoon Haiyan (2013). Nat. Hazards Earth Syst. Sci. 2019, 19, 1509–1539. [Google Scholar] [CrossRef] [Green Version]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Ubelmann, C.; Klein, P.; Fu, L.L. Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping. J. Atmos. Ocean. Technol. 2015, 32, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Woo, H.J.; Park, K.A. Inter-Comparisons of Daily Sea Surface Temperatures and In-Situ Temperatures in the Coastal Regions. Remote Sens. 2020, 12, 1592. [Google Scholar] [CrossRef]
- Riser, S.C.; Freeland, H.J.; Roemmich, D.; Wijffels, S.; Troisi, A.; Belbéoch, M.; Gilbert, D.; Xu, J.; Pouliquen, S.; Thresher, A.; et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Chang. 2016, 6, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.A.; Smedstad, O.M. Variational Data Assimilation for the Global Ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II); Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–343. [Google Scholar] [CrossRef]
- Xu, Y.; He, H.; Song, J.; Hou, Y.; Li, F. Observations and Modeling of Typhoon Waves in the South China Sea. J. Phys. Oceanogr. 2017, 47, 1307–1324. [Google Scholar] [CrossRef]
- Qiao, W.; Song, J.; He, H.; Li, F. Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A Dyn. Meteorol. Oceanogr. 2019, 71, 1657552. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.X.; Braun, S.A. Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation. Mon. Weather Rev. 2001, 129, 2023–2039. [Google Scholar] [CrossRef]
- Holland, G.J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Moon, I.J.; Ginis, I.; Hara, T.; Thomas, B. A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev. 2007, 135, 2869–2878. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wu, L.; Johnson, N.C.; Ling, Z. Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys. Res. Lett. 2016, 43, 7632–7638. [Google Scholar] [CrossRef]
- Clement, B.M.; Gurvan, M.; Albert, F.S.; Alban, L.; Daniele, L. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
Variable | Dataset | Version | Resolution |
---|---|---|---|
Best track | JTWC in IBTrACS | V03r10 | 6 hourly |
SSH | AVISO | V5.1 | 1/4 × 1/4, daily |
wind | CCMP | V2.0 | daily |
wind, SST | NCEP-FNL | 1 × 1, 6-hourly | |
wind, SST | ERA5 | 1/4 × 1/4, 3-hourly | |
SST | MW_IR OISST | V02.0 | 9 km, 6-hourly |
CTD field | HYCOM | GOFS3.1:GLBv0.08 | 1/12 × 1/12, 3-hourly |
CTD profile | Argo | float-dependent |
Dataset | Bias | RMSE | CC |
---|---|---|---|
CCMP | −43.379 | 44.977 | 0.621 * |
NCEP-FNL | −21.373 | 23.776 | 0.770 * |
ERA5 | −34.392 | 37.116 | 0.317 |
Dataset | Bias | RMSE | CC |
---|---|---|---|
NCEP-FNL | 0.481 | 0.584 | 0.975 * |
ERA5 | 0.222 | 0.425 | 0.971 * |
HYCOM | 0.172 | 0.464 | 0.967 * |
Argo ID | Variable | Bias | RMSE | CC |
---|---|---|---|---|
5904871 | SST | 0.033 | 0.131 | 0.787 * |
SSS | −0.026 | 0.058 | 0.776 * | |
MLD | −0.617 | 5.320 | 0.915 * | |
ITD | 1.820 | 9.116 | 0.751 * | |
5904870 | SST | −0.095 | 0.148 | 0.873 * |
SSS | −0.036 | 0.060 | 0.233 | |
MLD | −9.620 | 13.506 | 0.186 | |
ITD | −10.714 | 13.717 | 0.194 | |
2901537 | SST | −0.166 | 0.294 | 0.675 * |
SSS | −0.016 | 0.091 | 0.768 * | |
MLD | −4.331 | 10.413 | 0.438 | |
ITD | −7.224 | 10.357 | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oginni, T.E.; Li, S.; He, H.; Yang, H.; Ling, Z. Ocean Response to Super-Typhoon Haiyan. Water 2021, 13, 2841. https://doi.org/10.3390/w13202841
Oginni TE, Li S, He H, Yang H, Ling Z. Ocean Response to Super-Typhoon Haiyan. Water. 2021; 13(20):2841. https://doi.org/10.3390/w13202841
Chicago/Turabian StyleOginni, Tolulope Emmanuel, Shuang Li, Hailun He, Hongwei Yang, and Zheng Ling. 2021. "Ocean Response to Super-Typhoon Haiyan" Water 13, no. 20: 2841. https://doi.org/10.3390/w13202841
APA StyleOginni, T. E., Li, S., He, H., Yang, H., & Ling, Z. (2021). Ocean Response to Super-Typhoon Haiyan. Water, 13(20), 2841. https://doi.org/10.3390/w13202841