Assessment of Water Quality Regulation Functions in Southwestern Europe Watersheds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: The Southwestern Europe Territory
2.2. Subsystem Scale Model
2.3. Validation of Nitrate-Related Ecological Functions at the Subsystem Scale (~3000 km2)
2.3.1. Study Area: The Garonne River basin
2.3.2. Methodology: Comparing Subsystem and Water Body Scale Models
2.4. NP and NR Driver Selection
3. Results
3.1. Comparison between High and Low Resolution SWAT Models for the Garonne Watershed
3.2. Spatial and Seasonal Variations of Nitrate-Related Ecological Functions over SUDOE Territory
3.3. NNB and Drivers in the SUDOE Territory
3.4. Relation between IHA and Nitrate Net Balance (NNB)
4. Discussion
4.1. Large Scale Application: Model Performances
4.2. NNB Variation in Time and Space
4.3. Drivers for NR and NP with Different Resolutions
4.4. The Human Impact on NR Function Determination
4.5. Setup of EF Indicators to Quantify Water Quality Regulation Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ercin, A.E.; Hoekstra, A.Y. Water Footprint Scenarios for 2050: A Global Analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Romero, E.; Garnier, J.; Lassaletta, L.; Billen, G.; Le Gendre, R.; Riou, P.; Cugier, P. Large-Scale Patterns of River Inputs in Southwestern Europe: Seasonal and Interannual Variations and Potential Eutrophication Effects at the Coastal Zone. Biogeochemistry 2013, 113, 481–505. [Google Scholar] [CrossRef] [Green Version]
- Bond, N.R.; Burrows, R.M.; Kennard, M.J.; Bunn, S.E. Chapter 6—Water Scarcity as a Driver of Multiple Stressor Effects. In Multiple Stressors in River Ecosystems; Sabater, S., Elosegi, A., Ludwig, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–129. ISBN 978-0-12-811713-2. [Google Scholar]
- Masante, D.; Vogt, J. Drought in Central—Northern Europe—August 2018; Copernicus. 2018. Available online: http://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201808_Central_North_Europe.pdf (accessed on 20 October 2021).
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Smakhtin, V.; Revenga, C.; Döll, P. A Pilot Global Assessment of Environmental Water Requirements and Scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Sabater, S.; Bregoli, F.; Acuña, V.; Barceló, D.; Elosegi, A.; Ginebreda, A.; Marcé, R.; Muñoz, I.; Sabater-Liesa, L.; Ferreira, V. Effects of Human-Driven Water Stress on River Ecosystems: A Meta-Analysis. Sci. Rep. 2018, 8, 11462. [Google Scholar] [CrossRef]
- von Schiller, D.; Aristi, I.; Ponsatí, L.; Arroita, M.; Acuña, V.; Elosegi, A.; Sabater, S. Regulation Causes Nitrogen Cycling Discontinuities in Mediterranean Rivers. Sci. Total Environ. 2016, 540, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Cakir, R.; Raimonet, M.; Sauvage, S.; Paredes-Arquiola, J.; Grusson, Y.; Roset, L.; Meaurio, M.; Navarro, E.; Sevilla-Callejo, M.; Lechuga-Crespo, J.L.; et al. Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change. Water 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Sauvage, S.; Sánchez-Pérez, J.-M.; Vervier, P.; Naiman, R.-J.; Alexandre, H.; Bernard-Jannin, L.; Boulêtreau, S.; Delmotte, S.; Julien, F.; Peyrard, D.; et al. Modelling the Role of Riverbed Compartments in the Regulation of Water Quality as an Ecological Service. Ecol. Eng. 2018, 118, 19–30. [Google Scholar] [CrossRef]
- EU Water Framework Directive Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; EUR-Lex. 2000. Available online: http://data.europa.eu/eli/dir/2000/60/oj/fra (accessed on 20 October 2021).
- Martín-López, B.; Church, A.; Başak Dessane, E.; Chenu, C.; Christie, M.; Gerino, M.; Keune, H.; Osipova, E.; Oteros-Rozas, E.; Paillard, S.; et al. Chapter 2: Nature’s Contributions to People and Quality of Life—The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia; IPBES. 2018. Available online: https://ipbes.net/assessment-reports/eca (accessed on 20 October 2021).
- Goldstein, P.Z. Functional Ecosystems and Biodiversity Buzzwords. Conserv. Biol. 2001, 13, 247–255. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Jax, K. Function and “Functioning” in Ecology: What Does It Mean? Oikos 2005, 111, 641–648. [Google Scholar] [CrossRef]
- Datry, T.; Dole-Olivier, M.J.; Marmonier, P.; Claret, C.; Perrin, J.F.; Lafont, M.; Breil, P. La Zone Hyporhéique, Une Composante à Ne Pas Négliger Dans l’état Des Lieux et La Restauration Des Cours d’eau. Ing. Eau Agric. Territ. 2008, 54, 3–18. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, Eutrophication and Harmful Algal Blooms along the Freshwater to Marine Continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.; Billen, G.; Bleeker, A.; Grennfelt, P.; Grinsven, H.; van Grizzetti, B. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-1-139-50137-8. [Google Scholar]
- Ameziane, T.; Dauta, A.; Le Cohu, R. Eutrophication Level of the Lowland Garonne River (France) and Water Chlorophyll a Values: A Doubtful Relationship Pointed out by the Potamoplankton Composition; Hydrobiologia; Springer: Berlin, Germany, 1999. [Google Scholar]
- Camargo, J.; Alonso, A.; Salamanca, A. Nitrate Toxicity to Aquatic Animals: A Review with New Data for Freshwater Invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef]
- Muylaert, K.; Sanchez-Pérez, J.-M.; Teissier, S.; Sauvage, S.; Dauta, A.; Vervier, P. Eutrophication and Its Effect on Dissolved Si Concentrations in the Garonne River (France). J. Limnol. 2009, 68, 368–374. [Google Scholar] [CrossRef]
- Bernard-Jannin, L.; Sun, X.; Teissier, S.; Sauvage, S.; Sánchez-Pérez, J.-M. Spatio-Temporal Analysis of Factors Controlling Nitrate Dynamics and Potential Denitrification Hot Spots and Hot Moments in Groundwater of an Alluvial Floodplain. Ecol. Eng. 2015, 103, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Ferrant, S.; Oehler, F.; Durand, P.; Ruiz, L.; Salmon-Monviola, J.; Justes, E.; Dugast, P.; Probst, A.; Probst, J.-L.; Sanchez-Perez, J.-M. Understanding Nitrogen Transfer Dynamics in a Small Agricultural Catchment: Comparison of a Distributed (TNT2) and a Semi Distributed (SWAT) Modeling Approaches. J. Hydrol. 2011, 406, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gruber, N.; Galloway, J.N. An Earth-System Perspective of the Global Nitrogen Cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Haag, D.; Kaupenjohann, M. Landscape Fate of Nitrate Fluxes and Emissions in Central Europe: A Critical Review of Concepts, Data, and Models for Transport and Retention. Agric. Ecosyst. Environ. 2001, 86, 135. [Google Scholar] [CrossRef]
- Sun, X.; Bernard-Jannin, L.; Sauvage, S.; Garneau, C.; Arnold, J.G.; Srinivasan, R.; Sánchez-Pérez, J.M. Assessment of the Denitrification Process in Alluvial Wetlands at Floodplain Scale Using the SWAT Model. Ecol. Eng. 2017, 103, 344–358. [Google Scholar] [CrossRef]
- Peyrard, D.; Delmotte, S.; Sauvage, S.; Namour, P.; Gérino, M.; Vervier, P.; Sanchez-Pérez, J.-M. Longitudinal Transformation of Nitrogen and Carbon in the Hyporheic Zone of an N-Rich Stream: A Combined Modelling and Field Study. Phys. Chem. Earth 2011, 36, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology 1989, 70, 1893–1905. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Lassaletta, L. The Nitrogen Cascade from Agricultural Soils to the Sea: Modelling Nitrogen Transfers at Regional Watershed and Global Scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130123. [Google Scholar] [CrossRef]
- Grizzetti, B.; Bouraoui, F.; Marsily, G.D. Assessing Nitrogen Pressures on European Surface Water. Glob. Biogeochem. Cycles 2008, 22, GB4023. [Google Scholar] [CrossRef]
- Viaroli, P.; Soana, E.; Pecora, S.; Laini, A.; Naldi, M.; Fano, E.A.; Nizzoli, D. Space and Time Variations of Watershed N and P Budgets and Their Relationships with Reactive N and P Loadings in a Heavily Impacted River Basin (Po River, Northern Italy). Sci. Total Environ. 2018, 639, 1574–1587. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Xia, X.; Zhang, L.; Zhang, S.; McDowell, W.H.; Hou, L. Nitrogen Removal Rates in a Frigid High-Altitude River Estimated by Measuring Dissolved N2 and N2O. Sci. Total Environ. 2018, 645, 318–328. [Google Scholar] [CrossRef]
- Grayson, R.B.; Blöschl, G.; Western, A.W.; McMahon, T.A. Advances in the Use of Observed Spatial Patterns of Catchment Hydrological Response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Boithias, L.; Sauvage, S.; Merlina, G.; Jean, S.; Probst, J.-L.; Sánchez Pérez, J.M. New Insight into Pesticide Partition Coefficient Kd for Modelling Pesticide Fluvial Transport: Application to an Agricultural Catchment in South-Western France. Chemosphere 2014, 99, 134–142. [Google Scholar] [CrossRef] [Green Version]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.W.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Weigel, B.M.; Henne, L.J.; Martínez-Rivera, L.M. Macroinvertebrate-Based Index of Biotic Integrity for Protection of Streams in West-Central Mexico. J. N. Am. Benthol. Soc. 2002, 21, 686–700. [Google Scholar] [CrossRef]
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to Model Ecosystem Services: A Systematic Review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Nixon, S.; Trent, Z.; Marcuello, C.; Lallana, C. Europe’s Water: An Indicator-Based Assessment: Summary; European Environment Agency; Office for Official Publications of the European Communities: Copenhagen, Danemark, 2003; ISBN 978-92-9167-576-0.
- Tockner, K.; Uehlinger, U.; Robinson, C.T. Rivers of Europe; Academic Press: London, UK, 2009; ISBN 978-0-08-091908-9. [Google Scholar]
- González, M.Á.T. Agua y plan hidrológico en la región de murcia. Pap. Geogr. 2002, 36, 185–206. [Google Scholar]
- Olcina, A.G.; Amorós, A.M.R. El Problema del Agua en la Comunidad Valenciana; Fundación de la Comunidad Valenciana Agua y Progreso: Valencia, Spain, 2007; ISBN 978-84-611-5317-6. [Google Scholar]
- Panagos, P.; Montanarella, L.; Van Liedekerke, M. Introduction of European Soil Portal and Soil Mapping. In Symposium II—9th International Conferene of the ESAFS; ESAFS: Tokyo, Japan, 2009; Volume II, pp. 95–99. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool: Theoretical Documentation Version 2009. 2011. Available online: https://swat.tamu.edu/docs/ (accessed on 21 October 2021).
- Fu, B.; Merritt, W.S.; Croke, B.F.W.; Weber, T.R.; Jakeman, A.J. A Review of Catchment-Scale Water Quality and Erosion Models and a Synthesis of Future Prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Gao, Y.; Vogel, R.M.; Kroll, C.N.; Poff, N.L.; Olden, J.D. Development of Representative Indicators of Hydrologic Alteration. J. Hydrol. 2009, 374, 136–147. [Google Scholar] [CrossRef]
- Moriasi, D.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015. [Google Scholar]
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Model; Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Toulouse, France, 1987.
- Cakir, R.; Sauvage, S.; Gerino, M.; Volk, M.; Sánchez-Pérez, J.M. Assessment of Ecological Function Indicators Related to Nitrate under Multiple Human Stressors in a Large Watershed. Ecol. Indic. 2020, 111, 106016. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Trans. Am. Geophys. Union 1957, 38, 913. [Google Scholar] [CrossRef] [Green Version]
- Guiresse, M.; Yken, E.; Cambou, E.; Rabot, E.; Party, J.P.; Muller, N.; Vauthier, Q.; Rigou, L.; Collin Bellier, C.; Delaunois, A.; et al. Référentiel Régional Pédologique Harmonisé de l’ex Région Midi-Pyrénées; CNRS; Laboratoire Écologie Fonctionnelle et Environnemen, Chambre d’Agriculture du Tarn, MIDIVAL: Albi, France, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Autria, 2013; Available online: https://www.r-project.org/ (accessed on 14 September 2021).
- Chavent, M.; Kuentz, V.; Labenne, A.; Liquet, B.; Saracco, J. PCAmixdata: Multivariate Analysis of Mixed Data. Ithaca, NY, USA, 2017. Available online: https://rdrr.io/cran/PCAmixdata/ (accessed on 29 September 2021).
- Jain, A.K. Data Clustering: 50 Years beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Richter, B.D.; Mathews, R.; Harrison, D.L.; Wigington, R. Ecologically Sustainable Water Management: Managing River Flows for Ecological Integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A Spatial Assessment of Hydrologic Alteration within a River Network. Regul. Rivers Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Santa-María, C.M.; Fernández Yuste, J.A. Índices de Alteración Hidrológica En RíoS—Manual de Referncia Metodológica; Dirección Generald el Agua (Ministerio de Medio Ambiente), Mediante Convenio con el CEDEX: Madrid, Spain, 2008.
- Billen, G.; Garnier, J.; Rousseau, V. Nutrient Fluxes and Water Quality in the Drainage Network of the Scheldt Basin over the Last 50 Years. Hydrobiologia 2005, 540, 47–67. [Google Scholar] [CrossRef]
- Shi, C.Y.; Long, W.Y.; Meng, A.C.; Raajeevan, K.S. Biological Nitrogen Removal Activated Sludge Process in Warm Climates; IWA Publishing: London, UK, 2008; ISBN 978-1-84339-187-6. [Google Scholar]
- Dynesius, M.; Nilsson, C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Baker, M.A. Dynamics of Nitrate Production and Removal as a Function of Residence Time in the Hyporheic Zone. J. Geophys. Res. Biogeosci. 2011, 116, G01025. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, C. La Mémoire des Fleuves et des Rivières—Lévêque; Ulmer: Paris, France, 2019; ISBN 978-2-84138-968-1. [Google Scholar]
- Iglesias, A.; Assimacopoulos, D.; Lanen, H.A.J.V. Drought: Science and Policy; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-01721-9. [Google Scholar]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tockner, K.; Ward, J.V.; Edwards, P.J.; Kollmann, J. Riverine Landscapes: An Introduction. Freshw. Biol. 2002, 47, 497–500. [Google Scholar] [CrossRef]
- Wu, J. Landscape Sustainability Science: Ecosystem Services and Human Well-Being in Changing Landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; Bund, W. van de Human Pressures and Ecological Status of European Rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Grizzetti, B.; Passy, P.; Billen, G.; Bouraoui, F.; Garnier, J.; Lassaletta, L. The Role of Water Nitrogen Retention in Integrated Nutrient Management: Assessment in a Large Basin Using Different Modelling Approaches. Environ. Res. Lett. 2015, 10, 065008. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of Changes in Climate and Landscape Pattern on Ecosystem Services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N.B.; Hamilton, S.K.; McDowell, W.H.; O’Brien, J.M.; Tank, J.L.; et al. Nitrate Removal in Stream Ecosystems Measured by 15N Addition Experiments: Denitrification. Limnol. Oceanogr. 2009, 54, 666–680. [Google Scholar] [CrossRef]
- Dai, L.; Vorselen, D.; Korolev, K.S.; Gore, J. Generic Indicators for Loss of Resilience Before a Tipping Point Leading to Population Collapse. Science 2012, 336, 1175–1177. [Google Scholar] [CrossRef] [Green Version]
- Drummond, J.D.; Bernal, S.; von Schiller, D.; Martí, E. Linking In-Stream Nutrient Uptake to Hydrologic Retention in Two Headwater Streams. Freshw. Sci. 2016, 35, 1176–1188. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Comín, F.A. Ecosystem Services–Biodiversity Relationships Depend on Land Use Type in Floodplain Agroecosystems. Land Use Policy 2015, 46, 201–210. [Google Scholar] [CrossRef]
- Meli, P.; Rey Benayas, J.M.; Balvanera, P.; Martínez Ramos, M. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Alcamo, J.; Al, E. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003; ISBN 978-1-55963-403-8. [Google Scholar]
- Tapia, J.; Bielsa, J.; Martínez, Y.; Sauvage, S.; Cakir, R.; Raimonet, M.; Gerino, M.; Sánchez-Pérez, J.M. Economic Valuation of the Natural Service of Nitrate Regulation Provided by Rivers Including Dilution Effects: Application to a Semiarid Region, the Ebro Basin (Spain). Ecol. Indic. 2020, 117, 106608. [Google Scholar] [CrossRef]
Variables | Description | Units |
---|---|---|
Agr | Percentage of the agricultural areas in the subsystem | % |
Area_ha | Area of the dominant land use of the subsystem | ha |
Area_tot_ha | Area of the subsystem | ha |
BA | Wetted area in the subsystem | m2 |
Code_swat | Subsystem number | - |
Depth | River depth | m |
DNIT | Denitrification rate | kg yr−1 |
Drainage_A | Drained area | ha |
Elev | Average elevation of the subsystem | m |
ElevMax | Maximal elevation in the subsystem | m |
FLOW_OUT | Streamflow | m3 s−1 |
For | Percentage of the forest and seminatural areas in the subsystem | % |
Length | River length | km |
LNO3 | Amount of nitrate in lateral flow in subsystem for the day | kg ha−1 yr−1 |
LULC | Type of dominant land use in the subsystem | - |
N_APP | Average mount of N fertilizer applied in crops in the subsystem | kg ha−1 yr−1 |
NLATQ | Nitrate contributed by subsystems in lateral flow to reach | kg ha−1 yr−1 |
NNB | Nitrate net balance | |
NO3_OUT | Nitrate load | kg yr−1 |
NO3GW | Nitrate contributed by subsystems in groundwater flow to reach | kg ha−1 yr−1 |
NO3L | Nitrate leached below the soil profile | kg ha−1 yr−1 |
NR | Annual amount of nitrate eliminated in the subsystem | kgN yr−1 |
NSURQ | Nitrate contributed by subsystems in surface runoff to reach | kg ha−1 yr−1 |
Percen_LU | Percentage of dominant land use in the subsystem | % |
Pop | Population density | hab km−2 |
Project | Part of SUDOE territory (Figure 1) | - |
Riparian | Percentage of riparian area in the subsystem | % |
Slope | Average slope of rivers in the subsystem | % |
Urb | Percentage of the artificial areas in the subsystem | % |
Wetl | Percentage of the wetland areas in the subsystem | % |
Width | River width | m |
Wtr | Percentage of the water body areas in the subsystem | % |
Mean | NP (Maximum) | NR (Maximum) | Mean | NP (Maximum) | NR (Maximum) | Mean | NP (Maximum) | NR (Maximum) | |
---|---|---|---|---|---|---|---|---|---|
unit: gN m−2 day−1 | NNB | NNB (physical processes) | NNB (biological processes) | ||||||
Autumn | −1.9 | 27.3 | −86.1 | −2.1 | 0.0 | −86.1 | 0.2 | 27.4 | −9.9 |
Spring | −3.5 | 54.6 | −131.6 | −3.7 | 0.0 | −131.6 | 0.2 | 55.0 | −32.8 |
Summer | −2.8 | 43.9 | −148.1 | −3.2 | 0.0 | −148.1 | 0.4 | 44.3 | −4.8 |
Winter | −2.3 | 28.2 | −77.3 | −2.4 | 0.0 | −77.3 | 0.1 | 28.4 | −12.8 |
unit: km−2 day−1 | NNBR | NNBR (physical processes) | NNBR (biological processes) | ||||||
Autumn | −426.5 | 17.3 | −12,414 | −418.3 | 0.0 | −12,411 | −8264 | 19,179 | −369,624 |
Spring | −534.1 | 7.0 | −17,772 | −528.7 | 0.0 | −17,772 | −5428 | 26,976 | −216,660 |
Summer | −631.5 | 30.0 | −18,618 | −626.5 | 0.0 | −18,618 | −5002 | 30,790 | −203,614 |
Winter | −413.0 | 4.7 | −13,737 | −409.6 | 0.0 | −13,736 | −3319 | 58,963 | −113,717 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakir, R.; Raimonet, M.; Sauvage, S.; Walcker, R.; Gerino, M.; Sánchez-Pérez, J.M. Assessment of Water Quality Regulation Functions in Southwestern Europe Watersheds. Water 2021, 13, 2980. https://doi.org/10.3390/w13212980
Cakir R, Raimonet M, Sauvage S, Walcker R, Gerino M, Sánchez-Pérez JM. Assessment of Water Quality Regulation Functions in Southwestern Europe Watersheds. Water. 2021; 13(21):2980. https://doi.org/10.3390/w13212980
Chicago/Turabian StyleCakir, Roxelane, Mélanie Raimonet, Sabine Sauvage, Romain Walcker, Magali Gerino, and José Miguel Sánchez-Pérez. 2021. "Assessment of Water Quality Regulation Functions in Southwestern Europe Watersheds" Water 13, no. 21: 2980. https://doi.org/10.3390/w13212980