The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review
Abstract
:1. Nitrogen and Phosphorus in Agricultural Runoff
2. Optimum Substrates and Plants of Constructed Wetland to Mitigate Nitrogen and Phosphorus
2.1. Substrates’ Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff
2.2. Plants Identification for Mitigating Nitrogen and Phosphorus from Agricultural Runoff
3. Site Selection of Constructed Wetland to Mitigate Nitrogen and Phosphorus in Agricultural Runoff
4. Structural Design of Constructed Wetland to Mitigate Nitrogen and Phosphorus in Agricultural Runoff
5. Concluding Remarks and Future Outlooks
- (1)
- It is important to conduct more comparative studies on substrates’ performance under the same external conditions in different climatic regions.
- (2)
- The current plant selection focused on the effects of plant species on the mitigation of N and P, ignoring the complexity of plants’ contribution to the performance constructed wetland. It is essential to study the competitive effects between different plant species and the interactions between plants and substrates.
- (3)
- Because the relationship between constructed wetland structure and performance is still debated, more studies on the effect of wetland structure on its performance of removing N and P are largely needed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carmichael, W.W.; Boyer, G.L. Health impacts from cyanobacteria harmful algae blooms: Implications for the north American Great Lakes. Harmful Algae 2016, 54, 194–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xie, P.; Xu, J.; Liu, B.; Yang, H. Spatiotemporal variations of internal P-loading and the related mechanisms in the large shallow Lake Chaohu. Sci. China Ser. D Earth Sci. 2006, 49, 72–81. [Google Scholar] [CrossRef]
- Yang, H.; Yi, C.; Xie, P.; Xing, Y.; Ni, L. Sedimentation rates, nitrogen and phosphorus retentions in the largest urban Lake Donghu, China. J. Radioanal. Nucl. Chem. 2005, 267, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, L.; Yang, H.; Li, N.; Gong, C. Spatiotemporal analysis of water quality using multivariate statistical techniques and the water quality identification index for the Qinhuai River basin, east China. Water 2020, 12, 2764. [Google Scholar] [CrossRef]
- Shakya, R.; Adhikari, S.; Mahadevan, R.; Shanmugam, S.R.; Nam, H.; Hassan, E.B.; Dempster, T.A. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresour. Technol. 2017, 243, 1112–1120. [Google Scholar] [CrossRef]
- Shan, K.; Wang, X.; Yang, H.; Zhou, B.; Song, L.; Shang, M. Use statistical machine learning to detect nutrient thresholds in Microcystis blooms and microcystin management. Harmful Algae 2020, 94, 101807. [Google Scholar] [CrossRef]
- Díaz, P.A.; Álvarez, G.; Varela, D.; Pérez-Santos, I.; Díaz, M.; Molinet, C.; Seguel, M.; Aguilera-Belmonte, A.; Guzmán, L.; Uribe, E.; et al. Impacts of harmful algal blooms on the aquaculture industry: Chile as a case study. Perspect. Phycol. 2019, 6, 39–50. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Yang, H.; Xie, P.; Ni, L.; Flower, R.J. Pollution in the Yangtze. Science 2012, 337, 410. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Flower, R.J.; Thompson, J.R. Sustaining China’s water resources. Science 2013, 339, 141. [Google Scholar] [CrossRef]
- Yang, H.; Wright, J.A.; Gundry, S.W. Boost water safety in rural China. Nat. Cell Biol. 2012, 484, 318. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W. Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Chesap. Sci. 2009, 32, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.P.; Salmaso, N.; Paerl, H.W. Mitigating harmful cyanobacterial blooms: Strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 2016, 50, 351–366. [Google Scholar] [CrossRef]
- Kvakić, M.; Pellerin, S.; Ciais, P.; Achat, D.L.; Augusto, L.; Denoroy, P.; Gerber, J.S.; Goll, D.; Mollier, A.; Mueller, N.D.; et al. Quantifying the limitation to world cereal production due to soil phosphorus status. Glob. Biogeochem. Cycles 2018, 32, 143–157. [Google Scholar] [CrossRef]
- Dawson, C.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, S14–S22. [Google Scholar] [CrossRef]
- Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Shen, X.; Lai, L.; Huang, X.; Zhou, Y. Spatio-temporal variations of health costs caused by chemical fertilizer utilization in China from 1990 to 2012. Sustainability 2017, 9, 1505. [Google Scholar] [CrossRef] [Green Version]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob. Environ. Chang. 2016, 37, 43–55. [Google Scholar] [CrossRef]
- Yang, H. China’s soil plan needs strong support. Nature 2016, 536, 375. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Ortiz, A.; Álvarez, E.; Belohlav, V.; García-Galán, M.J.; Díez-Montero, R.; Álvarez, J.A.; Uggetti, E. Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecol. Eng. 2018, 120, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Yang, H. China must continue the momentum of green law. Nat. Cell Biol. 2014, 509, 535. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to China’s environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef]
- Gregoire, C.; Elsaesser, D.; Huguenot, D.; Lange, J.; Lebeau, T.; Merli, A.; Mose, R.; Passeport, E.; Payraudeau, S.; Schuetz, T.; et al. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems—A review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer International Publishing: Dordrecht, The Netherlands, 2009; pp. 293–338. [Google Scholar]
- Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef]
- Balana, B.B.; Vinten, A.; Slee, B. A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications. Ecol. Econ. 2011, 70, 1021–1031. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef] [PubMed]
- Xiaoyan, T.; Suyu, W.; Yang, Y.; Ran, T.; Yunv, D.; Dan, A.; Li, L. Removal of six phthalic acid esters (PAEs) from domestic sewage by constructed wetlands. Chem. Eng. J. 2015, 275, 198–205. [Google Scholar] [CrossRef]
- Wu, H.; Gao, X.; Wu, M.; Zhu, Y.; Xiong, R.; Ye, S. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment-A case study in Xiantao, China. J. Clean. Prod 1233, 84, 123384. [Google Scholar] [CrossRef]
- Samsó, R.; García, J.; Molle, P.; Forquet, N. Modelling bioclogging in variably saturated porous media and the interactions between surface/subsurface flows: Application to constructed wetlands. J. Environ. Manag. 2016, 165, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J.; Březinová, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bouldin, J.; Farris, J.; Moore, M.; Smith, S.; Cooper, C. Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 2006, 65, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Korkusuz, E.A.; Beklioğlu, M.; Demirer, G.N. Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol. Eng. 2005, 24, 185–198. [Google Scholar] [CrossRef]
- Boyer, A.; Ning, P.; Killey, D.; Klukas, M.; Rowan, D.; Simpson, A.J.; Passeport, E. Strontium adsorption and desorption in wetlands: Role of organic matter functional groups and environmental implications. Water Res. 2018, 133, 27–36. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Magda, K.; Hanna, O.P.; Fabio, M.; Magdalena, G. Possibilities of phoslock® application to remove phosphorus compounds from wastewater treated in hybrid wetlands. Ecol. Eng. 2018, 122, 84–90. [Google Scholar]
- Drizo, A.; Frost, C.A.; Smith, K.A.; Grace, J. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Sci. Technol. 1997, 35, 95–102. [Google Scholar] [CrossRef]
- Harouiya, N.; Rue, S.M.; Prost-Boucle, S.; Liénar, A.; Esser, D.; Molle, P. Phosphorus removal by apatite in horizontal flow constructed wetlands for small communities: Pilot and full-scale evidence. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2011, 63, 1629. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Zhao, Z.; Chang, J.; Han, W.; Wang, M.; Ma, D.; Du, Y.; Qu, Z.; Chang, S.X.; Ge, Y. Effects of plant diversity and sand particle size on methane emission and nitrogen removal in microcosms of constructed wetlands. Ecol. Eng. 2016, 95, 390–398. [Google Scholar] [CrossRef]
- Seo, D.C.; Hwang, S.H.; Kim, H.J.; Cho, J.S.; Lee, H.J.; Delaune, R.D.; Jugsujinda, A.; Lee, S.T.; Seo, J.Y.; Heo, J.S. Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater. Ecol. Eng. 2008, 32, 121–132. [Google Scholar] [CrossRef]
- Wang, H.X.; Xu, J.L.; Sheng, L.X.; Liu, X.J. A review of research on substrate materials for constructed wetlands. Mater. Sci. Forum 2018, 913, 917–929. [Google Scholar] [CrossRef]
- Sharma, P.K.; Minakshi, D.; Rani, A.; Malaviya, P. Treatment efficiency of vertical flow constructed wetland systems operated under different recirculation rates. Ecol. Eng. 2018, 120, 474–480. [Google Scholar] [CrossRef]
- Park, W.; Polprasert, C. Roles of oyster shells in an integrated constructed wetland system designed for P removal. Ecol. Eng. 2008, 34, 50–56. [Google Scholar] [CrossRef]
- Cherukumilli, K.; Delaire, C.; Amrose, S.; Gadgil, A.J. Factors governing the performance of bauxite for fluoride remediation of groundwater. Environ. Sci. Technol. 2017, 51, 2321–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Wang, Y.; Sun, L.; Jiang, J.; Zhang, Y. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions. Ecol. Eng. 2016, 88, 77–81. [Google Scholar] [CrossRef]
- Gupta, V.K.; Carrott, P.J.M.; Carrott, M.M.L.R.; Suhas. Low-cost adsorbents: Growing approach to wastewater treatment—A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 783–842. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, B.; Zhen, L.; Jin, W. Optimization of four kinds of constructed wetlands substrate combination treating domestic sewage. Wuhan Univ. J. Nat. Sci. 2007, 12, 1136–1142. [Google Scholar] [CrossRef]
- Kizito, S.; Lv, T.; Wu, S.; Ajmal, Z.; Luo, H.; Dong, R. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation. Sci. Total Environ. 2017, 592, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Gandy, C.J.; Davis, J.E.; Orme, P.H.; Potter, H.A.; Jarvis, A.P. Metal removal mechanisms in a short hydraulic residence time subsurface flow compost wetland for mine drainage treatment. Ecol. Eng. 2016, 97, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. Performance evaluation of light-weight aggregates-based horizontal flow constructed wetlands for domestic wastewater treatment. CLEAN Soil Air Water 2014, 43, 217–222. [Google Scholar] [CrossRef]
- Li, C.; Dong, Y.; Lei, Y.; Wu, D.; Xu, P. Removal of low concentration nutrients in hydroponic wetlands integrated with zeolite and calcium silicate hydrate functional substrates. Ecol. Eng. 2015, 82, 442–450. [Google Scholar] [CrossRef]
- Tatoulis, T.; Akratos, C.S.; Tekerlekopoulou, A.G.; Vayenas, D.V.; Stefanakis, A.I. A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk. Chemosphere 2017, 186, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Li, Q.; Su, Z.; Sheng, S.; Fu, J. Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands. J. Clean. Prod. 2018, 175, 572–581. [Google Scholar] [CrossRef]
- Blanco, I.; Molle, P.; De Miera, L.E.S.; Ansola, G. Basic oxygen furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands. Water Res. 2016, 89, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.S.; Rozenwald, M.N.; Geohring, L.D.; Lion, L.W.; Steenhuis, T.S. Phosphorus removal by wollastonite: A constructed wetland substrate. Ecol. Eng. 2000, 15, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhao, Y.; Zhao, X.; Kumar, J.L.G. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland. Environ. Sci. Technol. 2012, 46, 4583–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateus, D.M.; Vaz, M.M.; Capela, I.; Pinho, H.J. Sugarcane as constructed wetland vegetation: Preliminary studies. Ecol. Eng. 2014, 62, 175–178. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A comparative study on the removal of nutrients and organic matter in wetland reactors employing organic media. Chem. Eng. J. 2011, 171, 439–447. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Wang, Y.; Ruan, C. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment. Sci. Rep. 2015, 5, 15146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Fan, J.; Zhang, J.; Shen, Y. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes. Environ. Sci. Pollut. Res. 2017, 24, 22524–22534. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, L.; Wei, C.; Wu, W.; Zhao, X.; Lu, T. Enhanced nitrogen removal using solid carbon source in constructed wetland with limited aeration. Bioresour. Technol. 2018, 248, 98–103. [Google Scholar] [CrossRef]
- Yanzhong, L.; Changjun, L.; Zhaokun, L.; Xianjia, P.; Chunlei, Z.; Zhaoyang, C.; Zhongguo, Z.; Jinghua, F.; Zhiping, J. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J. Hazard. Mater. 2006, 137, 374–383. [Google Scholar]
- Dordio, A.V.; Carvalho, A.J.P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J. Hazard. Mater. 2013, 272–292. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Tu, Y.; Chiang, P.; Chen, S.; Kao, C. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan. J. Hydrol. 2015, 525, 400–408. [Google Scholar] [CrossRef]
- Younger, P.L.; Henderson, R. Synergistic wetland treatment of sewage and mine water: Pollutant removal performance of the first full-scale system. Water Res. 2014, 55, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.; Chang, N.-B.; Wanielista, M.P. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions. Sci. Total Environ. 2015, 502, 434–447. [Google Scholar] [CrossRef]
- Sethia, G.; Somani, R.S.; Bajaj, H.C. Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: Structure, cation position and adsorption relationship. RSC Adv. 2015, 5, 12773–12781. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Akratos, C.S.; Gikas, G.D.; Tsihrintzis, V.A. Effluent quality improvement of two pilot-scale, horizontal subsurface flow constructed wetlands using natural zeolite (clinoptilolite). Microporous Mesoporous Mater. 2009, 124, 131–143. [Google Scholar] [CrossRef]
- He, H.; Duan, Z.; Wang, Z.; Yue, B. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment. Environ. Sci. Pollut. Res. 2017, 24, 17547–17555. [Google Scholar] [CrossRef]
- Han, W.; Shi, M.; Chang, J.; Ren, Y.; Xu, R.; Zhang, C.; Ge, Y. Plant species diversity reduces N2O but not CH4 emissions from constructed wetlands under high nitrogen levels. Environ. Sci. Pollut. Res. 2017, 24, 5938–5948. [Google Scholar] [CrossRef] [PubMed]
- De Rozari, P.; Greenway, M.; El Hanandeh, A. Phosphorus removal from secondary sewage and septage using sand media amended with biochar in constructed wetland mesocosms. Sci. Total Environ. 2016, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Jong, V.S.W.; Tang, F.E. The use of palm kernel shell (PKS) as substrate material in vertical-flow engineered wetlands for septage treatment in Malaysia. Water Sci. Technol. 2015, 72, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dutta, V. Efficiency of Constructed Wetland Microcosms (CWMs) for the treatment of domestic wastewater using aquatic macrophytes. In Environmental Biotechnology: For Sustainable Future; Springer International Publishing: Singapore, 2019; pp. 287–307. [Google Scholar]
- Luo, P.; Liu, F.; Liu, X.; Wu, X.; Yao, R.; Chen, L.; XinLiang, L.; Xiao, R.; Wu, J. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum. Sci. Total Environ. 2017, 576, 490–497. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, S.-H.; Delaune, R.D.; Kang, B.-H.; Kang, S.-W.; Cho, J.-S.; Ok, Y.S.; Seo, D.-C. Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecol. Eng. 2016, 95, 612–621. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, X.; Zheng, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment. Environ. Sci. Pollut. Res. 2015, 22, 12982–12991. [Google Scholar] [CrossRef]
- Ballantine, D.J.; Tanner, C.C. Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review. N. Z. J. Agric. Res. 2010, 53, 71–95. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Pedrocchi, C.; Comín, F.A.; García-Antón, M.; Cabezas, A. Creating wetlands for the improvement of water quality and landscape restoration in semi-arid zones degraded by intensive agricultural use. Ecol. Eng. 2007, 30, 103–111. [Google Scholar] [CrossRef]
- Raisin, G.; Mitchell, D.; Croome, R. The effectiveness of a small constructed wetland in ameliorating diffuse nutrient loadings from an Australian rural catchment. Ecol. Eng. 1997, 9, 19–35. [Google Scholar] [CrossRef]
- Lu, S.; Wu, F.; Lu, Y.; Xiang, C.; Zhang, P.; Jin, C. Phosphorus removal from agricultural runoff by constructed wetland. Ecol. Eng. 2009, 35, 402–409. [Google Scholar] [CrossRef]
- Maillard, E.; Payraudeau, S.; Faivre, E.; Grégoire, C.; Gangloff, S.; Imfeld, G. Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci. Total Environ. 2011, 409, 2317–2324. [Google Scholar] [CrossRef] [PubMed]
- Obarska, P.; Ozimek, T. Comparison of usefulness of three emergent macrophytes for surface water protection against pollution and eutrophication: Case study, Bielkowo, Poland. In Proceedings of the 4th Workshop on Nutrient Cycling and Retention in Natural and Constructed Wetlands, Trebon, Czech Republic, 26–29 September 2001. [Google Scholar]
- Forbes, E.G.A.; Foy, R.H.; Mulholland, M.V.; Brettell, J.L. Performance of a constructed wetland for treating farm-yard dirty water. Water Sci. Technol. 2011, 64, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Maniquiz, M.C.; Lee, S.Y.; Choi, J.Y.; Jeong, S.M.; Kim, L.H. Treatment performance of a constructed wetland during storm and non-storm events in Korea. Water Sci. Technol. 2012, 65, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Díaz, F.J.; O′geen, A.T.; Dahlgren, R.A. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agric. Water Manag. 2012, 104, 171–183. [Google Scholar] [CrossRef]
- Koskiaho, J.; Ekholm, P.; Räty, M.; Riihimäki, J.; Puustinen, M. Retaining agricultural nutrients in constructed wetlands—Experiences under boreal conditions. Ecol. Eng. 2003, 20, 89–103. [Google Scholar] [CrossRef]
- Sovik, A.K.; Klove, B. Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Sci. Total Environ. 2007, 380, 28–37. [Google Scholar] [CrossRef]
- Johannesson, K.M.; Andersson, J.L.; Tonderski, K.S. Efficiency of a constructed wetland for retention of sediment-associated phosphorus. Hydrobiologia 2011, 674, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Stentström, T.; Carlander, A. Occurrence and die-off of indicator organisms in the sediment in two constructed wetlands. Water Sci. Technol. 2001, 44, 223–230. [Google Scholar] [CrossRef]
- Vymazal, J. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Li, P.; Zhang, J.; Xie, H.; Zhang, B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng. 2011, 37, 560–568. [Google Scholar] [CrossRef]
- Jamshidi, S.; Akbarzadeh, A.; Woo, K.-S.; Valipour, A. Wastewater treatment using integrated anaerobic baffled reactor and bio-rack wetland planted with Phragmites sp. and Typha sp. J. Environ. Health Sci. Eng. 2014, 12, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weragoda, S.K.; Jinadasa, K.B.S.N.; Zhang, D.Q.; Gersberg, R.M.; Tan, S.K.; Tanaka, N.; Jern, N.W. Tropical application of floating treatment wetlands. Wetlands 2012, 32, 955–961. [Google Scholar] [CrossRef]
- Jinadasa, K.B.S.N.; Tanaka, N.; Sasikala, S.; Werellagama, D.R.I.B.; Mowjood, M.I.M.; Ng, W.J. Impact of harvesting on constructed wetlands performance—A comparison between Scirpus grossus and Typha angustifolia. J. Environ. Sci. Health Part A 2008, 43, 664–671. [Google Scholar] [CrossRef] [PubMed]
- White, S.A.; Cousins, M.M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol. Eng. 2013, 61, 207–215. [Google Scholar] [CrossRef]
- Chang, N.-B.; Xuan, Z.; Marimon, Z.; Islam, K.; Wanielista, M.P. Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecol. Eng. 2013, 54, 66–76. [Google Scholar] [CrossRef]
- Sim, C.H.; Eikaas, H.S.; Chan, S.H.; Gan, J. Nutrient removal and plant biomass of 5 wetland plant species in Singapore. Water Pract. Technol. 2011, 6, 1–2. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Hernández-Crespo, C.; Oliver, N.; Bixquert, J.; Gargallo, S.; Martin, M.A. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 2015, 774, 183–192. [Google Scholar] [CrossRef]
- Yousefi, Z.; Mohseni-Bandpei, A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecol. Eng. 2010, 36, 777–782. [Google Scholar] [CrossRef]
- Sung, K.; Lee, G.J.; Munster, C. Effects of Eichhornia crassipes and Ceratophyllum demersum on soil and water environments and nutrient removal in wetland microcosms. Int. J. Phytoremediat. 2015, 17, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Gu, B. Environmental conditions and phosphorus removal in Florida lakes and wetlands inhabited by Hydrilla verticillata (Royle): Implications for invasive species management. Biol. Invasions 2006, 8, 1569–1578. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Bankoti, N.; Rai, U. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation. J. Environ. Manag. 2016, 169, 285–292. [Google Scholar] [CrossRef]
- Xing, X.; Ding, S.; Liu, L.; Chen, M.; Yan, W.; Zhao, L.; Zhang, C. Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: A case study on Vallisneria natans. Sci. Total Environ. 2018, 616, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.-Q.; Zhou, J.-B.; Bao, W.-H.; Chen, J.; Li, D.-D.; Li, Y. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes. Environ. Sci. 2017, 38, 156–161. [Google Scholar]
- Iatrou, E.I.; Stasinakis, A.S.; Aloupi, M. Cultivating duckweed Lemna minor in urine and treated domestic wastewater for simultaneous biomass production and removal of nutrients and antimicrobials. Ecol. Eng. 2015, 84, 632–639. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Zhao, R.; Gao, R.; Yun, Y.; Saino, M.; Wang, X. Experimental comparisons of three submerged plants for reclaimed water purification through nutrient removal. Desalination Water Treat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B.D. Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol. Eng. 2014, 62, 48–53. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.-E.; Li, T.-Q.; Fang, Y.-Y. Study on purified efficiency of phosphorus and nitrogen from eutrophicated sight water by several floating macrophytes. J. Soil Water Conserv. 2007, 5, 128–132. [Google Scholar]
- Lu, X.M.; Lu, P.Z.; Chen, J.J. Nitrogen and phosphorus removal and morphological and physiological response in Nymphaea tetragona under various planting densities. Toxicol. Environ. Chem. 2012, 94, 1319–1330. [Google Scholar] [CrossRef]
- Tian, K.; Liu, G.; Xiao, D.; Sun, J.; Lu, M.; Huang, Y.; Lin, P. Ecological effects of dam impoundment on closed and half-closed wetlands in China. Wetlands 2015, 35, 889–898. [Google Scholar] [CrossRef]
- Tripathi, B.D.; Srivastava, J.; Misra, K. Nitrogen and phosphorus removal-capacity of four chosen aquatic macrophytes in tropical freshwater ponds. Environ. Conserv. 1991, 18, 143–147. [Google Scholar] [CrossRef]
- Zhao, F.; Xi, S.; Yang, X.; Yang, W.; Li, J.; Gu, B.; He, Z. Purifying eutrophic river waters with integrated floating island systems. Ecol. Eng. 2012, 40, 53–60. [Google Scholar] [CrossRef]
- Greenway, M. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia. Water Sci. Technol. 2003, 48, 121–128. [Google Scholar] [CrossRef]
- Marion, L.C.; Paillisson, J.-M. A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquat. Bot. 2003, 75, 249–260. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, J. Improving winter performance of constructed wetlands for wastewater treatment in northern China: A review. Wetlands 2014, 34, 243–253. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Zhang, X. GIS-based geo-environmental evaluation for urban land-use planning: A case study. Eng. Geol. 2001, 61, 257–271. [Google Scholar] [CrossRef]
- Baker, C.; Lawrence, R.; Montagne, C.; Patten, D. Mapping wetlands and riparian areas using landsat ETM+ imagery and decision-tree-based models. Wetlands 2006, 26, 465–474. [Google Scholar] [CrossRef]
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 2012, 75, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Min, K.; Kang, H.; Lee, D. Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biol. Biochem. 2011, 43, 2461–2469. [Google Scholar] [CrossRef]
- Sims, A.; Zhang, Y.; Gajaraj, S.; Brown, P.B.; Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 2013, 47, 1711–1725. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Chen, L. Environmental assessment of land use planning based on remote-sensing technique and geographic information system in Zoucheng County. In Proceedings of the International Conference on Biology, Environment and Chemistry(ICBEC), Hong Kong, China, 28–30 December 2010. [Google Scholar]
- Reif, M.; Frohn, R.C.; Lane, C.R.; Autrey, B. Mapping isolated wetlands in a karst landscape: GIS and remote sensing methods. GISci. Remote Sens. 2009, 46, 187–211. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Mander, U.; Pedrocchi, C. Optimal location of created and restored wetlands in mediterranean agricultural catchments. Water Resour. Manag. 2010, 24, 2485–2499. [Google Scholar] [CrossRef] [Green Version]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Nepf, H.; Marion, A. Effects of vegetation density and wetland aspect ratio variation on hydraulic efficiency of wetlands. Found. Convect. Density Stratif. 2016, 101–113. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Shuang, L.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Wang, J.; Pei, L. Impacts of different media on constructed wetlands for rural household sewage treatment. J. Clean. Prod. 2016, 127, 325–330. [Google Scholar] [CrossRef]
- Joan, G.; Aguirre, P.; Mujeriego, R.; Huang, Y.; Ortiz, L.; Bayona, J.M. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. Water Res. 2004, 38, 1669–1678. [Google Scholar] [CrossRef]
- Seo, D.C.; Cho, J.S.; Lee, H.J.; Heo, J.S. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 2005, 39, 2445–2457. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.P.; Renman, A.; Renman, G.; Poll, K. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Res. 2008, 42, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Margit, K.I.; Ulo, M.; Riho, M.T.; Christina, V.; Kalle, K.T. Active filtration of phosphorus on Ca-rich hydrated oil shale ash: Does longer retention time improve the process? Environ. Sci. Technol. 2009, 43, 3809–3814. [Google Scholar]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-L.; Nakano, K.; Taniguchi, T.; Nomura, M.; Nishimura, O. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresour. Technol. 2009, 100, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Aguirre, P.; Barragán, J.; Mujeriego, R.; Matamoros, V.; Bayona, J.M. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecol. Eng. 2005, 25, 405–418. [Google Scholar] [CrossRef]
- Crites, R.W. Design criteria and practice for constructed wetlands. Water Sci. Technol. 1994, 29, 1–6. [Google Scholar] [CrossRef]
- Jenkins, G.A.; Greenway, M. The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecol. Eng. 2005, 25, 61–72. [Google Scholar] [CrossRef]
- Liu, J.; Kattel, G.R.; Arp, H.P.H.; Yang, H. Towards threshold-based management of freshwater ecosystems in the context of climate change. Ecol. Model. 2015, 318, 265–274. [Google Scholar] [CrossRef] [Green Version]
Type of substrates | Characteristics | References |
---|---|---|
Natural material | ||
Gravel | Widespread and common; good adsorption; low cost; phosphorus and nitrate removal is not good. | [35] |
Clay | Plentiful and cheap; excellent effect, green environmental protection; high adsorption of organic compounds; low removal rate of COD, NH3-N, and TN. | [36] |
Marble | High removal ability of phosphorus and ammonia nitrogen; economic accessibility; susceptible to weathering and dissolution. | [37] |
Bentonite | Natural adsorbents with strong adsorption capacity; good coordination with the environment. | [38] |
Shale | High removal ability of phosphorus and ammonia; good overall performance; derived from the lower limestone group of the Carboniferous system; high content of acid; higher specific surface area. | [39] |
Apatite material | Lasting effect on the adoption of P; high economic cost of quality apatite. | [40] |
Zeolite | High displacement ability to target ions; high porosity; high surface ratio; provide the environment for wetland system microorganisms; super to gravel in removing biodegradable-organics and nitrides; environmental damage caused by zeolite mining. | [41] |
Sand | Widely distributed; low adsorption capacity and weak cation exchange capacity. | [42] |
Calcite | Efficient removal of phosphorus and ammonium nitrogen; inefficient removal of nitrate. | [43] |
Vermiculite | Good adsorption and ion exchange performance; selective adsorption for ammonia nitrogen; high ammonia nitrogen saturation adsorption capacity; low price. | [44] |
Dolomite | Composed of calcium carbonate and magnesium carbonate; high phosphorus removal rate; low adsorption capacity and cation exchange capacity. | [45] |
Shell | A sea-culture by-product or agriculture by-product; waste reuse; good adsorption capacity of P and N. | [46] |
Bauxite | Excellent source of Al and Fe oxides; strong p-combining ability; high efficient adsorption capacity for toxic metals; high alkalinity treated water. | [47] |
Rice straw | Agricultural waste; carbon source removal of nitrogen compounds; low cost; no secondary pollution; availability limited to harvest time. | [48] |
Peat | Complex material composition; large amount; strong phosphorus adsorption capacity; lack of research on species. | [49] |
Artificial products | ||
Activated carbon | Environmentally friendly; high cost and low adsorbing effect; complex production process. | [50] |
Biochar | Wide source of raw materials; realize recycling; high porosity, high CES, and high surface area ratio; high efficiency of organic matter and nutrient removal; emission reduction N2O; high energy consumption of pyrolysis. | [51] |
Compost | Low investment; simple technology; recycling of resources; not environmental-friendly. | [52] |
Ceramsite | Made of coal fly ash, sediment, etc., with drying and heating; high mechanical strength and developed microporous structures; re-utilization of waste; efficient in N and P removal; high preparation cost. | [48] |
Lightweight aggregate | Hydraulic performance; light and handy; high cost; low intensity. | [53] |
Calcium silicate hydrate | Porous; Large specific surface area; strong surface activity; lightweight; poor compatibility with organic polymers. | [54] |
Polyethylene plastic | High porosity; no in-depth study. | [55] |
Industrial by-product | ||
Fly ash | Solid waste discharged from coal-fired boilers such as coal-fired power plants; plentiful and cheap; large specific surface area; high activation energy, abundant pore structure, and strong adsorption; not environmental-friendly. | [56] |
Slag | Made from smelting industry waste; low cost; abundant raw material; recycling waste; high P adsorption capacity of arc furnace steel slag; different physicochemical properties of different slags. | [57] |
Hollow brick crumbs | Active nitrogen and phosphorus adsorb abilities; construction waste; utilization of waste. | [50] |
Wollastonite tailing | Efficient phosphorus removal; general adsorbability. | [58] |
Alum sludge | A waste of waterworks; abundant; waste reuse; high transportation cost; high efficiency of phosphorus removal; low efficiency of nitrogen removal. | [59] |
Moleanos limestone | Low cost and good usability; good performance in phosphorus removal. | [60] |
Wood mulch | By-products of wood industry; waste reuse; abundant; Organic carbon source of heterotrophic denitrification; Strong ability to remove nitrogen compounds; no practical application. | [61] |
Anthracite | High-density coal; long-lasting and efficient phosphorus removal effect; mining anthracite destroying the environment. | [62] |
Calcite | Crushed stone and brick mixed; good for the growth of plants and microorganisms; ability to absorb phosphorus; facilitate microorganisms and plant growth; effective in P adsorption. | [63] |
PHBV and PLA blend | A polymer biodegraded by microorganisms; improving nitrogen removal ability as a carbon source. | [64] |
Red mud | A waste of aluminum industry; abundant; cheap; reuses waste; strong alkalinity; having ability to remove phosphorus. | [65] |
Vegetation | Country | References |
---|---|---|
Phragmites sp. (australis) | Australia, China, Poland, Spain, UK, Ukraine, France, Slovenia | [83,84,85,86,87,88] |
Phragmites sp. (japonica) | Korea | [89] |
Phragmites sp. (karka) | Singapore | [90] |
Scirpus sp. (californicus) | USA | [91] |
Scirpus sp. (bulrush) | USA | [91] |
Scirpus sp. (validus) | Australia | [84] |
Scirpus sp. (sylvaticus) | Finland | [92] |
Scirpus sp. (mucronatus) | Singapore | [90] |
Typha sp. (latifolia) | Finland, Norway, Poland, Sweden, UK, USA, France | [86,87,88,92,93,94,95] |
Typha domingensis | USA | [91] |
Typha sp. (Cattail) | USA | [91] |
Typha sp. (angustifolia) | Singapore, Korea | [89,90] |
Iris sp. (pseudacorus) | Finland, Norway, UK | [88,92,93] |
Phalaris sp. (arundinaces) | Finland, Norway | [92,93] |
Alisma sp. (plantago-aquatica) | Finland | [92] |
Filipendula sp. (ulmaria) | Finland | [92] |
Juncus sp. (conglomeratus) | Finland | [92] |
Carex sp. (riparia) | UK | [88] |
Juncus sp. (effuses) | Korea | [89] |
Miscanthus sp. (sinensis) | Korea | [89] |
Eleocharis sp. (dulcis) | Singapore | [90] |
Lepironia sp. (articulate) | Singapore | [90] |
Sparganium sp. (erectum) | Norway, UK | [88,93] |
Zizania sp. (caduciflora) | China, Korea | [85,89] |
Glyceria maxima | Poland | [87] |
Typha orientalis | China, Korea | [85,89] |
Cyperus malaccensis | China | [85] |
Juncus effusus | Korea | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, B.; Chen, X.; Li, Z.; Xia, Q.; Wang, H.; Yang, Y.; Zhou, Y.; Yang, H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water 2021, 13, 476. https://doi.org/10.3390/w13040476
Li J, Zheng B, Chen X, Li Z, Xia Q, Wang H, Yang Y, Zhou Y, Yang H. The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water. 2021; 13(4):476. https://doi.org/10.3390/w13040476
Chicago/Turabian StyleLi, Jiayu, Bohong Zheng, Xiao Chen, Zhe Li, Qi Xia, Hua Wang, Yuan Yang, Yaoyu Zhou, and Hong Yang. 2021. "The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review" Water 13, no. 4: 476. https://doi.org/10.3390/w13040476
APA StyleLi, J., Zheng, B., Chen, X., Li, Z., Xia, Q., Wang, H., Yang, Y., Zhou, Y., & Yang, H. (2021). The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water, 13(4), 476. https://doi.org/10.3390/w13040476