Electroadsorption of Bromide from Natural Water in Granular Activated Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Granular Activated Carbon
2.2. Water Characterization, Bromide and Total Bromine Determination
2.3. Electrochemical Filter-Press Cell
2.4. Operational Conditions
3. Results
3.1. Effect of Voltage in the Anodic Electroadsorption
Energy Consumption of Electrochemical Removal of Bromide
3.2. Effect of the Polarity of the Electrode (Anodic Electroadsorption and Cathodic Electroadsorption)
3.3. Adsorption after an Electrochemical Oxidation Process: Two-Stages Electroadsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopal, K.; Tripathy, S.S.; Bersillon, J.L.; Dubey, S.P. Chlorination byproducts, their toxicodynamics and removal from drinking water. J. Hazard. Mater. 2007, 140, 1–6. [Google Scholar] [CrossRef]
- Symons, J.M.; Stevens, A.; Clark, R.M.; Geldreich, E.E.; Love, O.T., Jr.; DeMarco, J. Treatment Techniques for Controlling Trihalomethanes in Drinking Water; EPA/600/2-81/156 (NTIS PB82163197); U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of disinfection by-products and associated health effects. Curr. Environ. Health Rep. 2015, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Cortés, C.; Marcos, R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature. Mutat. Res./Toxicol. Environ. Mutagenesis 2018, 831, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liviac, D.; Wagner, E.D.; Mitch, W.A.; Altonji, M.J.; Plewa, M.J. Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods. Environ. Sci. Technol. 2010, 44, 3527–3532. [Google Scholar] [CrossRef]
- Plewa, M.J.; Wagner, E.D.; Richardson, S.D.; Thruston, A.D.; Woo, Y.-T.; McKague, A.B. Chemical and biological char-acterization of newly discovered iodoacid drinking water disinfection byproducts. Environ. Sci. Technol. 2004, 38, 4713–4722. [Google Scholar] [CrossRef] [PubMed]
- Plewa, M.; Wagner, E. Risks of Disinfection Byproducts in Drinking Water: Comparative Mammalian Cell Cytotoxicity and Genotoxicity. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; Volume 5, pp. 559–566. [Google Scholar] [CrossRef]
- Beita-Sandí, W.; Selbes, M.; Kim, D.; Karanfil, T. Removal of N-nitrosodimethylamine precursors by cation exchange resin: The effects of pH and calcium. Chemosphere 2018, 211, 1091–1097. [Google Scholar] [CrossRef]
- Soyluoglu, M.; Ersan, M.S.; Ateia, M.; Karanfil, T. Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. Chemosphere 2020, 238, 124583. [Google Scholar] [CrossRef]
- Joseph, L.; Flora, J.R.; Park, Y.-G.; Badawy, M.; Saleh, H.; Yoon, Y. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Sep. Purif. Technol. 2012, 95, 64–72. [Google Scholar] [CrossRef]
- Zainudin, F.M.; Abu Hasan, H.; Abdullah, S.R.S. An overview of the technology used to remove trihalomethane (THM), trihalomethane precursors, and trihalomethane formation potential (THMFP) from water and wastewater. J. Ind. Eng. Chem. 2018, 57, 1–14. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar]
- Ates, N.; Yilmaz, L.; Kitis, M.; Yetis, U. Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. J. Membr. Sci. 2009, 328, 104–112. [Google Scholar] [CrossRef]
- Kristiana, I.; Joll, C.; Heitz, A. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: Application in a Western Australian water treatment plant. Chemosphere 2011, 83, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.C.; Bilyk, K. Enhanced coagulation using a magnetic ion exchange resin. Water Res. 2002, 36, 4009–4022. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Jiao, R.; Liu, H.; Wang, D.; Chow, C.W.K.; Drikas, M. Hybrid treatment process of using MIEX and high per-formance composite coagulant for DOM and bromide removal. J. Environ. Eng. 2013, 139, 79–85. [Google Scholar] [CrossRef]
- Yang, S.; He, M.; Zhi, Y.; Chang, S.X.; Gu, B.; Liu, X.; Xu, J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239. [Google Scholar] [CrossRef] [PubMed]
- Rabiul, M. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J. Clean. Prod. 2019, 228, 1311–1319. [Google Scholar]
- Rabiul, M.; Munjur, M.; Asiri, A.; Rahma, M. Cleaning the arsenic (V) contaminated water for safe-guarding the public health using novel composite material. Compos. Part B Eng. 2019, 171, 294–301. [Google Scholar]
- Phetrak, A.; Lohwacharin, J.; Sakai, H.; Murakami, M.; Oguma, K.; Takizawa, S. Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products. J. Environ. Sci. 2014, 26, 1294–1300. [Google Scholar] [CrossRef]
- Boyer, T.H.; Singer, P.C. Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res. 2005, 39, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.; Singer, P.C. Removal of bromide and natural organic matter by anion exchange. Water Res. 2010, 44, 2133–2140. [Google Scholar] [CrossRef]
- Neale, P.; Schäfer, A. Magnetic ion exchange: Is there potential for international development? Desalination 2009, 248, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.M.; Boyer, T.H. Long-term performance of bicarbonate-form anion exchange: Removal of dissolved organic matter and bromide from the St. Johns River, FL, USA. Water Res. 2011, 45, 2875–2886. [Google Scholar] [CrossRef]
- Rabiul, M.; Jyo, A.; El-Safty, S.; Tamada, M.; Seko, N. A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. J. Hazard. Mater. 2011, 188, 164–171. [Google Scholar]
- Derbyshire, F.; Jagtoyen, M.; Andrews, R.; Rao, A.; Martín-Gullón, I.; Grulke, E. Carbon materials in environmental applications. In Chemistry and Physics of Carbon; Radovic, L.R., Ed.; Marcel Dekker: New York, NY, USA, 2001; Volume 27, pp. 1–66. [Google Scholar]
- Radovic, L.R.; Moreno-Castilla, C.; Rivero Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 2000, 27, 227–405. [Google Scholar]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Hassler, J.W.; Cheremisinoff, P.N. Carbon Adsorption Handbook; Ann Arbor Science: Ann Arbor, MI, USA, 1980. [Google Scholar]
- Yang, R.T. Adsorbents: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Monser, L.; Adhoum, N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 2002, 26, 137–146. [Google Scholar] [CrossRef]
- Owen, D.M. Removal of DBP Precursors by GAC Adsorption; American Water Works Association: Denver, CO, USA, 1998. [Google Scholar]
- Watson, K.; Farré, M.J.; Knight, N. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal. Sci. Total. Environ. 2016, 542, 672–684. [Google Scholar] [CrossRef]
- Pattanayak, J.; Mondal, K.; Mathew, S.; Lalvani, S.B. Aparametric eval-cuation of the removal of As(V) and As(III) by carbon based adsorbents. Carbon 2000, 38, 589–596. [Google Scholar] [CrossRef]
- Babic, B.M.; Milonjic, S.K.; Polovina, M.J.; Cupic, S.; Kaludjerovic, B.V. Adsorption of zinc, cadmium and mercury ions from aqueous solution sonan activated carbon cloth. Carbon 2002, 40, 1109–1115. [Google Scholar] [CrossRef]
- Zhang, C.; Maness, J.C.; Cuthbertson, A.A.; Kimura, S.Y.; Liberatore, H.K.; Richardson, S.D.; Stanford, B.D.; Sun, M.; Knappe, D.R. Treating water containing elevated bromide and iodide levels with granular activated carbon and free chlorine: Impacts on disinfection byproduct formation and calculated toxicity†. Environ. Sci. Water Res. Technol. 2020, 6, 3460. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kadirvelu, K. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agri-cultural solid by-product: Coirpith. Carbon 1999, 37, 79–84. [Google Scholar] [CrossRef]
- Rabiul, M. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 2015, 266, 368–375. [Google Scholar]
- Bailey, S.E.; Olin, T.J.; Bricka, R.; Adrian, D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals up take from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from a pricot stone. Bioresour. Technol. 2005, 96, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Ban, A.; Schäfer, A.; Wendt, H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents. J. Appl. Electrochem. 1998, 28, 227–236. [Google Scholar] [CrossRef]
- López-Bernabeu, S.; Ruiz-Rosas, R.; Quijada, C.; Montilla, F.; Morallón, E. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution. Chemosphere 2016, 144, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Lee, Y.H. Carbon-Based Electrochemical Capacitors. ChemSusChem 2012, 5, 480–499. [Google Scholar] [CrossRef]
- Noked, M.; Avraham, E.; Soffer, A.; Aurbach, D. The rate determining step of electroadsorption processes into na-noporous carbon electrodes related to water desalination. J. Phys. Chem. C 2009, 113, 21319–21327. [Google Scholar] [CrossRef]
- Eisinger, R.S.; Alkire, R.C. Electrosorption of β-naphthol on graphite. J. Electroanal. Chem. 1980, 112, 327–337. [Google Scholar] [CrossRef]
- Alkire, R.C.; Eisinger, R.S. Separation by Electrosorption of Organic Compounds in a Flow-Through Porous Electrode: I. Mathematical Model for One-Dimensional Geometry. J. Electrochem. Soc. 1983, 130, 85–93. [Google Scholar] [CrossRef]
- Gabelich, C.J.; Tran, T.D.; Suffet, I.H. “Mel” Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels. Environ. Sci. Technol. 2002, 36, 3010–3019. [Google Scholar] [CrossRef]
- Afkhami, A. Adsorption and electrosorption of nitrate and nitrite on high-area carbon cloth: An approach to purification of water and waste-water samples. Carbon 2003, 41, 1309–1328. [Google Scholar] [CrossRef]
- Cazorla-Amorós, D.; Alcañiz-Monge, J.; De La Casa-Lillo, M.A.; Linares-Solano, A. CO2As an Adsorptive to Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir 1998, 14, 4589–4596. [Google Scholar] [CrossRef]
- Berenguer, R.; Marco-Lozar, J.; Quijada, C.; Cazorla-Amorós, D.; Morallón, E. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium. Carbon 2010, 48, 2734–2745. [Google Scholar] [CrossRef]
- Beralus, J.-M.; Ruiz-Rosas, R.; Cazorla-Amorós, D.; Morallón, E. Electroadsorption of Arsenic from Natural Water in Granular Activated Carbon. Front. Mater. 2014, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, R.; Lozar, J.P.M.; Quijada, C.; Cazorla-Amorós, D.; Morallon, E. Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon 2009, 47, 1018–1027. [Google Scholar] [CrossRef]
- Moon, H.; KookLee, W. Intraparticle diffusion inliquid phase adsorp tion of phenols with activated carbon infinite batch adsorber. J. Colloid Interface Sci. 1983, 96, 162–171. [Google Scholar] [CrossRef]
- Yang, X.; Al-Duri, B. Kinetic model in gof liquid phase adsorption bofre active dyeson activated carbon. J. Colloid Interface Sci. 2005, 287, 25–34. [Google Scholar] [CrossRef] [PubMed]
SBET (m2/g) | VN2 (cm3/g) | VCO2 (cm3/g) |
---|---|---|
865 | 0.36 | 0.25 |
Parameters | Value | Units |
---|---|---|
Bromine | 470 | µg L−1 |
Total Organic Carbon | <0.5 | mg L−1 |
Conductivity (20 °C) | 562 | µS cm−1 |
pH | 8.6 | U. pH |
Bromate | 25 | µg L−1 |
Bromide | 345 | µg L−1 |
Voltage (V) | [Br-] Final (µg L−1) | % Removal | q (μg/g) |
---|---|---|---|
Open Circuit | 244 | 29 | 9.5 |
2 V | 205 | 41 | 14.0 |
3 V | 186 | 46 | 15.9 |
4 V | 202 | 41 | 14.4 |
Voltage (V) | [Br] Final (µg L−1) | % Removal | q (μg/g) |
---|---|---|---|
Open Circuit | 255 | 46 | 20.0 |
2 V | 248 | 47 | 20.7 |
3 V | 252 | 46 | 20.3 |
4 V | 198 | 58 | 25.7 |
[Br-] Final (µg L−1) | % Removal | q (μg/g) | |
---|---|---|---|
2 Stages | 185 | 46 | 16.0 |
[Br] Final(µg L−1) | % Removal | q (μg/g) | |
2 Stages | 194 | 59 | 25.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribes, D.; Morallón, E.; Cazorla-Amorós, D.; Osorio, F.; García-Ruiz, M.J. Electroadsorption of Bromide from Natural Water in Granular Activated Carbon. Water 2021, 13, 598. https://doi.org/10.3390/w13050598
Ribes D, Morallón E, Cazorla-Amorós D, Osorio F, García-Ruiz MJ. Electroadsorption of Bromide from Natural Water in Granular Activated Carbon. Water. 2021; 13(5):598. https://doi.org/10.3390/w13050598
Chicago/Turabian StyleRibes, David, Emilia Morallón, Diego Cazorla-Amorós, Francisco Osorio, and María J. García-Ruiz. 2021. "Electroadsorption of Bromide from Natural Water in Granular Activated Carbon" Water 13, no. 5: 598. https://doi.org/10.3390/w13050598
APA StyleRibes, D., Morallón, E., Cazorla-Amorós, D., Osorio, F., & García-Ruiz, M. J. (2021). Electroadsorption of Bromide from Natural Water in Granular Activated Carbon. Water, 13(5), 598. https://doi.org/10.3390/w13050598