Projection of Hydro-Climatic Extreme Events under Climate Change in Yom and Nan River Basins, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of the Soil and Water Assessment (SWAT) Model
2.3. Methods
2.3.1. Data Collection
2.3.2. Model Calibration and Validation
2.3.3. Climate Change Impacts and Extreme Events Analysis
3. Results and Discussion
3.1. Model Performance Assessment
3.2. Impact of Climate Change Assessment
3.3. Projection of Hydro-Climatic Extreme Events
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Science of the Total Environment Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2013, 544, 238–250. [Google Scholar] [CrossRef]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Extreme precipitation events under climate change in the Iberian Peninsula. Int. J. Climatol. 2019, 1–24. [Google Scholar] [CrossRef]
- Zeng, S.; Xia, J.; She, D.; Du, H.; Zhang, L. Impacts of climate change on water resources in the Luan River basin in North China. Water Int. 2012, 37, 552–563. [Google Scholar] [CrossRef]
- Nkomozepi, T.; Chung, S.O. The effects of climate change on the water resources of the Geumho River Basin, Republic of Korea. J. Hydro-Environ. Res. 2014, 8, 358–366. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F. Contributions of climate change and human activities to runoff change in seven typical catchments across China. Sci. Total Environ. 2017, 605–606, 219–229. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef]
- Horton, P.; Schaefli, B.; Mezghani, A.; Hingray, B.; Musy, A. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol. Process. 2006, 20, 2091–2109. [Google Scholar] [CrossRef]
- Herreara, M.P.; Hiscock, K.M. The effects of climate change on potential groundwater recharge in Great Britain. Hydrol. Process. 2018, 22, 73–86. [Google Scholar] [CrossRef]
- Rehana, S.; Mujumdar, P.P. Regional impacts of climate change on irrigation water demands. Hydrol. Process. 2012, 27, 2918–2933. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Z.; Jones, P.D. A Decision-Tree Approach to Seasonal Prediction of Extreme Precipitation in Eastern China. Int. J. Climatol. 2020, 40, 255–272. [Google Scholar] [CrossRef]
- Janes, T.; McGrath, F.; Macadam, I.; Jones, R. High-Resolution Climate Projections for South Asia to Inform Climate Impacts and Adaptation Studies in the Ganges-Brahmaputra-Meghna and Mahanadi Deltas. Sci. Total Environ. 2019, 650, 1499–1520. [Google Scholar] [CrossRef]
- Sperotto, A.; Torresan, S.; Gallina, V.; Coppola, E.; Critto, A.; Marcomini, A. A Multi-Disciplinary Approach to Evaluate Vulnerability and Risks of Pluvial Floods under Changing Climate: The Case Study of the Municipality of Venice (Italy). Sci. Total Environ. 2016, 562, 1031–1046. [Google Scholar] [CrossRef]
- Forestieri, A.; Arnone, E.; Blenkinsop, S.; Candela, A.; Fowler, H.; Noto, L.V. The impact of climate change on extreme precipitation in Sicily, Italy. Hydrol. Process. 2017, 32, 332–348. [Google Scholar] [CrossRef] [Green Version]
- Wagena, M.B.; Collick, A.S.; Ross, A.C.; Najjar, R.G.; Rau, B.; Sommerlot, A.R.; Fuka, D.R.; Kleinman, P.J.A.; Easton, Z.M. Impact of Climate Change and Climate Anomalies on Hydrologic and Biogeochemical Processes in an Agricultural Catchment of the Chesapeake Bay Watershed, USA. Sci. Total Environ. 2018, 637–638, 1443–1454. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Kavvas, M.L.; Chen, Z.Q.R.; Dib, A.; Diaz, A.J.; Anderson, M.L.; Trinh, T. Physically based maximum precipitation estimation under future climate change conditions. Hydrol. Process. 2018, 32, 3188–3201. [Google Scholar] [CrossRef]
- Brunner, M.I.; Sikorska, A.E.; Seibert, J. Bivariate analysis of floods in climate impact assessments. Sci. Total Environ. 2018, 616–617, 1392–1403. [Google Scholar] [CrossRef]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.J.H.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- Karamouz, M.; Noori, N.; Moridi, A.; Ahmadi, A. Evaluation of floodplain variability considering impacts of climate change. Hydrol. Process. 2011, 25, 90–103. [Google Scholar] [CrossRef]
- Wilson, C.O.; Weng, Q. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci. Total Environ. 2011, 409, 4387–4405. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452, 181–195. [Google Scholar] [CrossRef]
- Anache, J.A.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ. 2018, 622–623, 140–151. [Google Scholar] [CrossRef]
- Lu, W.; Wang, W.; Shao, Q.; Yu, Z.; Hao, Z.; Xing, W.; Yong, B.; Li, J. Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: A comprehensive assessment by coupling RegCM4 and VIC model. Hydrol. Process. 2018, 32, 2096–2117. [Google Scholar] [CrossRef]
- Al-Safi, H.I.J.; Ranjan, P.S. The application of conceptual modelling to assess the impacts of future climate change on the hydrological response of the Harvey River catchment. J. Hydro-Environ. Res. 2018, 28, 22–33. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, Z.; Sun, X.; Li, W.; Li, L. How well do climate models simulate regional atmospheric circulation over East Asia? Int. J. Climatol. 2019, 40, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Ekkawatpanit, C.; Pratoomchai, W.; Khemngoen, C.; Srivihok, P. Climate change impact on water resources in Klong Yai River Basin, Thailand. PIAHS 2020, 383, 355–365. [Google Scholar] [CrossRef]
- Petpongpan, C.; Ekkawatpanit, C.; Kositgittiwong, D. Climate Change Impact on Surface Water and Groundwater Recharge in Northern Thailand. Water 2020, 12, 1029. [Google Scholar] [CrossRef] [Green Version]
- Ekkawatpanit, C.; Kazama, S.; Sawamoto, M.; Ranjan, P. Assessment of water conflict in mae chaem river basin, northern Thailand. Water Int. 2009, 34, 242–263. [Google Scholar] [CrossRef]
- Climate Change Impacts on Water Resources: Key Challenges to Thailand CC Adaptation. Available online: https://www.rid.go.th/thaicid/_5_article/7symposium/7th-13.pdf (accessed on 1 December 2020).
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ Intention and Decision to Adapt to Climate Change: A Case Study in the Yom and Nan Basins, Phichit Province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Shrestha, S. Assessment of Water Availability under Climate Change Scenarios in Thailand. J. Earth Sci. Clim. Chang. 2014, 5, 184–190. [Google Scholar] [CrossRef]
- ARCC Climate Change Impact and Adaptation Study for the Lower Mekong Basin (2013–2014). Available online: https://www.usaid.gov/asia-regional/documents/usaid-mekong-climate-change-study-main-report-2013 (accessed on 1 December 2020).
- Climate Change Adaptation Plan Project for Watersheds Management in Northern Thailand. Available online: http://www.onep.go.th/climatechange/index.php/about-north-5. (accessed on 1 December 2020).
- Bejranonda, W.; Koontanakulvong, S.; Koch, M. Surface and Groundwater Dynamic Interactions in the Upper Great Chao Phraya Plain of Thailand: Semi-Coupling of SWAT and MODFLOW; IAH-2007 Groundwater and Ecosystems: Lisbon, Portugal, 2008. [Google Scholar]
- Pratoomchai, W.; Kazama, S.; Hanasaki, N.; Ekkawatpanit, C.; Komori, D. A Projection of Groundwater Resources in the Upper Chao Phraya River Basin in Thailand. Hydrol. Res. Lett. 2014, 8, 20–26. [Google Scholar] [CrossRef]
- Koontanakulvong, S.; Suthidhummajit, C. The role of groundwater to mitigate the drought and as an adaptation to climate change in the Phitsanulok Irrigation Project, in the Nan basin, Thailand. J. Teknol. (Sci. Eng.) 2015, 76, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Seeboonruang, U. Impact assessment of climate change on groundwater and vulnerability to drought of areas in Eastern Thailand. Environ. Earth Sci. 2016, 75, 42. [Google Scholar] [CrossRef]
- Assessing of Future Climate Change in Thailand, Climate Change Impact and Vulnerability Assessment in Selected Sectors. Available online: http://project-wre.eng.chula.ac.th/watercu_th/?q=node/2 (accessed on 1 December 2020).
- Suthidhummajit, C.; Koontanakulvong, S. Flow Budget Change of Groundwater System under Climate Change in the Upper Central Plain, Thailand. Eng. J. 2018, 22, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Pholkern, K.; Saraphirom, P.; Srisuk, K. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Sci. Total Environ. 2018, 633, 1518–1535. [Google Scholar] [CrossRef] [PubMed]
- Hunukumbura, P.B.; Tachikawa, Y. River Discharge Projection under Climate Change in the Chao Phraya River Basin, Thailand, Using the MRI-GCM3.1S Dataset. J. Meteorol. Soc. Jpn. 2012, 90A, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Champathong, A.; Komori, D.; Kiguchi, M.; Sukhapunnaphan, T.; Oki, T.; Nakaegawa, T. Future projection of mean river discharge climatology for the Chao Phraya River basin. Hydrol. Res. Lett. 2013, 7, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Information of 25 Main Basins in Thailand. Available online: http://www.thaiwater.net/web/index.php/knowledge/128-hydro-and-weather/663-25basinreports.html (accessed on 30 October 2019).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.R.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Soil and Water Assessment Tool, Theoretical Documentation Version 2005. Available online: https://swat.tamu.edu/media/1292/SWAT2005theory.pdf (accessed on 30 October 2019).
- Root Mean Square Error RMSE in GIS. Available online: https://geographyontherocks.wordpress.com/2016/01/31/what-is-root-mean-square-error-rmse-in-gis/ (accessed on 30 October 2019).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Onyutha, C.; Tabari, H.; Rutkowska, A.; Nyeko-Ogiramoi, P. Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. J. Hydro-environ. Res. 2016, 12, 31–45. [Google Scholar] [CrossRef]
- Padulano, R.; Reder, A.; Rianna, G. An ensemble approach for the analysis of extreme rainfall under climate change in Naples (Italy). Hydrol. Process. 2019, 33, 2020–2036. [Google Scholar] [CrossRef]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A Global Water Scarcity Assessment under Shared Socio-Economic Pathways—Part 2: Water Availability and Scarcity. Hydrol. Earth Syst. Sci. 2013, 17, 2393–2413. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Flörke, M.; Märker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Analysis Techniques: Flow Duration Analysis. Available online: https://streamflow.engr.oregonstate.edu/analysis/flow/index.htm (accessed on 30 October 2019).
- Standardized Precipitation Index. Available online: https://public.wmo.int/en/resources/library/standardized-precipitation-index-user-guide (accessed on 30 October 2019).
- Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Available online: https://mountainscholar.org/handle/10217/170176 (accessed on 30 October 2019).
- Guenang, G.M.; Kamga, F.M. Computation of the Standardized Precipitation Index (SPI) and Its Use to Assess Drought Occurrences in Cameroon over Recent Decades. J. Appl. Meteorol. Clim. 2012, 53, 2310–2324. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar] [CrossRef]
- Simulating Future Climate Scenarios for Thailand and Surrounding Countries. Available online: http://startcc.iwlearn.org/project/copy9_of_hydro-agronomic-economic-model-for-mekong-river-basin-and-local-adaptation-in-thailand-model-development (accessed on 30 October 2019).
- Ponpang-Nga, P.; Techamahasaranont, J. Effects of climate and land use changes on water balance in upstream in the Chao Phraya River basin, Thailand. Agric. Nat. Resour. 2016, 50, 310–320. [Google Scholar] [CrossRef] [Green Version]
Index Value | Category |
---|---|
Higher than 2.0 | Extremely wet |
1.5–1.99 | Very wet |
1.0–1.49 | Moderately wet |
−0.99–0.99 | Near normal |
−1.0–1.49 | Moderately dry |
−1.5–1.99 | Very dry |
Less than–2.0 | Extremely dry |
Index | Station | |||||||
---|---|---|---|---|---|---|---|---|
Y.1C | Y.6 | Y.16 | Y.5 | Inflow of Sirikit Dam | N.60 | N.7A | N.8A | |
NSE | 0.824 | 0.836 | 0.934 | - | 0.794 | 0.682 | 0.890 | 0.889 |
RMSE (m3/s) | 54.505 | 77.813 | 61.404 | - | 121.875 | 85.556 | 95.118 | 99.477 |
Index | Station | |||||||
---|---|---|---|---|---|---|---|---|
Y.1C | Y.6 | Y.16 | Y.5 | Inflow of Sirikit Dam | N.60 | N.7A | N.8A | |
NSE | 0.815 | 0.775 | 0.876 | 0.873 | 0.825 | 0.828 | 0.805 | 0.861 |
RMSE (m3/s) | 53.178 | 88.687 | 74.624 | 96.313 | 108.178 | 79.083 | 128.737 | 118.385 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petpongpan, C.; Ekkawatpanit, C.; Visessri, S.; Kositgittiwong, D. Projection of Hydro-Climatic Extreme Events under Climate Change in Yom and Nan River Basins, Thailand. Water 2021, 13, 665. https://doi.org/10.3390/w13050665
Petpongpan C, Ekkawatpanit C, Visessri S, Kositgittiwong D. Projection of Hydro-Climatic Extreme Events under Climate Change in Yom and Nan River Basins, Thailand. Water. 2021; 13(5):665. https://doi.org/10.3390/w13050665
Chicago/Turabian StylePetpongpan, Chanchai, Chaiwat Ekkawatpanit, Supattra Visessri, and Duangrudee Kositgittiwong. 2021. "Projection of Hydro-Climatic Extreme Events under Climate Change in Yom and Nan River Basins, Thailand" Water 13, no. 5: 665. https://doi.org/10.3390/w13050665
APA StylePetpongpan, C., Ekkawatpanit, C., Visessri, S., & Kositgittiwong, D. (2021). Projection of Hydro-Climatic Extreme Events under Climate Change in Yom and Nan River Basins, Thailand. Water, 13(5), 665. https://doi.org/10.3390/w13050665