The FLOod Probability Interpolation Tool (FLOPIT): A Simple Tool to Improve Spatial Flood Probability Quantification and Communication
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Strömberg, D. Natural Disasters, Economic Development, and Humanitarian Aid. J. Econ. Perspect. 2007, 21, 199–222. [Google Scholar] [CrossRef]
- (IFRC) International Federation of Red Cross and Red Crescent Societies. World Disasters Report 2016; IFRC: Paris, France, 2016; Available online: https://www.ifrc.org/Global/Documents/Secretariat/201610/WDR 2016-FINAL_web.pdf (accessed on 3 July 2020).
- Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. Available online: http://www.nature.com/nclimate/journal/v3/n9/full/nclimate1979.html%5Cnhttp://www.nature.com/nclimate/journal/v3/n9/pdf/nclimate1979.pdf (accessed on 1 July 2020). [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Godschalk David, R. Urban Hazard Mitigation: Creating Resilient Cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Kjellgren, S. Exploring local risk managers’ use of flood hazard maps for risk communication purposes in Baden-Württemberg. Nat. Hazards Earth Syst. Sci. 2013, 13, 1857–1872. [Google Scholar] [CrossRef]
- Zarekarizi, M.; Srikrishnan, V.; Keller, K. Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- (FEMA) The Federal Emergency Management Agency. Percent Annual Chance Data; FEMA: Washington, DC, USA, 2015. Available online: https://www.fema.gov/media-library-data/1522157767608-ed99f04df13b5b7239922b3e77b7f8ea/FactSheet-PercentAnnualChanceData.pdf (accessed on 3 July 2020).
- Ludy, J.; Kondolf, G.M. Flood risk perception in lands “protected” by 100-year levees. Nat. Hazards 2012, 61, 829–842. [Google Scholar] [CrossRef]
- Smith, D.I. Floodplain management: Problems, issues and opportunities. Floods 2000, 1, 254–267. [Google Scholar]
- Alfieri, L.; Salamon, P.; Bianchi, A.; Neal, J.C.; Bates, P.D.; Feyen, L. Advances in pan-European flood hazard mapping. Hydrol. Process. 2014, 28, 4067–4077. [Google Scholar] [CrossRef]
- Jafarzadegan, K.; Merwade, V.; Saksena, S. A geomorphic approach to 100-year floodplain mapping for the Conterminous United States. J. Hydrol. 2018, 561, 43–58. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Baynes, J.; Panlasigui, S.; Mehaffey, M.; Neale, A. Development of a spatially complete floodplain map of the conterminous United States using random forest. Sci. Total. Environ. 2019, 647, 942–953. [Google Scholar] [CrossRef]
- (FEMA) The Federal Emergency Management Agency. Guidance for Flood Risk Analysis and Mapping; FEMA: Washington, DC, USA, 2018. Available online: https://www.fema.gov/media-library-data/1523562952942-4c54fdae20779bb004857f1915236e6c/Flood_Depth_and_Analysis_Grids_Guidance_Feb_2018.pdf (accessed on 3 July 1998).
- Luke, A.; Sanders, B.F.; Goodrich, K.A.; Feldman, D.L.; Boudreau, D.; Eguiarte, A.; Serrano, K.; Reyes, A.; Schubert, J.E.; AghaKouchak, A.; et al. Going beyond the flood insurance rate map: Insights from flood hazard map co-production. Nat. Hazards Earth Syst. Sci. 2018, 18, 1097–1120. [Google Scholar] [CrossRef]
- Soden, R.; Sprain, L.; Palen, L. Thin Grey Lines. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 2042–2053. [Google Scholar]
- McClelland, G.H.; Schulze, W.D.; Coursey, D.L. Insurance for low-probability hazards: A bimodal response to unlikely events. J. Risk Uncertain. 1993, 7, 95–116. [Google Scholar] [CrossRef]
- Oberholzer-Gee, F. Learning to Bear the Unbearable: Towards an Explanation of Risk Ignorance; Mimeo, Wharton School, University of Pennsylvania: Philadelphia, PA, USA, 1998. [Google Scholar]
- (FEMA) The Federal Emergency Management Agency. Guidance for Flood Risk Analysis and Mapping; FEMA: Washington, DC, USA, 2020. Available online: https://www.fema.gov/sites/default/files/documents/fema_flood-depth-and-analysis-guidance.pdf (accessed on 3 July 2020).
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Fritsch, F.N.; Carlson, R.E. Monotone Piecewise Cubic Interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- Gesch, D.; Oimoen, M.; Greenlee, S.; Nelson, C.; Steuck, M.; Tyler, D. The National Elevation Dataset. Photogramm. Eng. Remote. Sens. 2002, 68, 5–32. [Google Scholar]
- (PAMAP, 2020) Pennsylvania Spatial Data Access. PAMAP Program. Available online: https://www.dcnr.pa.gov/Geology/PAMAP/Pages/default.aspx (accessed on 3 July 2020).
- Taheri, S.; Briggs, I.; Burtscher, M.; Gopalakrishnan, G. DiffTrace: Efficient Whole-Program Trace Analysis and Diffing for Debugging. In Proceedings of the 2019 IEEE International Conference on Cluster Computing (CLUSTER), Albuquerque, NM, USA, 23–26 September 2019; pp. 1–12. [Google Scholar]
- Taheri, S.; Devale, S.; Gopalakrishnan, G.; Burtscher, M. ParLoT: Efficient Whole-Program Call Tracing for HPC Applications. In Computer Vision; Springer International Publishing: Dallas, TX, USA, 2019; pp. 162–184. [Google Scholar]
- Kron, W. Flood Risk = Hazard ×·Values ×·Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Schumann, G.; Hostache, R.; Puech, C.; Hoffmann, L.; Matgen, P.; Pappenberger, F.; Pfister, L. High-Resolution 3-D Flood Information From Radar Imagery for Flood Hazard Management. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 1715–1725. [Google Scholar] [CrossRef]
- Cohen, S.; Brakenridge, G.R.; Kettner, A.; Bates, B.; Nelson, J.; McDonald, R.; Huang, Y.-F.; Munasinghe, D.; Zhang, J. Estimating Floodwater Depths from Flood Inundation Maps and Topography. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 847–858. [Google Scholar] [CrossRef]
- Scorzini, A.R.; Radice, A.; Molinari, D. A New Tool to Estimate Inundation Depths by Spatial Interpolation (RAPIDE): Design, Application and Impact on Quantitative Assessment of Flood Damages. Water 2018, 10, 1805. [Google Scholar] [CrossRef]
- Frazier, T.; Boyden, E.E.; Wood, E. Socioeconomic implications of national flood insurance policy reform and flood insurance rate map revisions. Nat. Hazards 2020, 1–18. [Google Scholar] [CrossRef]
- Karamouz, M.; Fereshtehpour, M.; Ahmadvand, F.; Zahmatkesh, Z. Coastal Flood Damage Estimator: An Alternative to FEMA’s HAZUS Platform. J. Irrig. Drain. Eng. 2016, 142, 04016016. [Google Scholar] [CrossRef]
- Kousky, C.; Kunreuther, H.; LaCour-Little, M.; Wachter, S. Flood Risk and the U.S. Housing Market. J. Hous. Res. 2020, 29, S3–S24. [Google Scholar] [CrossRef]
- Thaler, T.; Hartmann, T. Justice and flood risk management: Reflecting on different approaches to distribute and allocate flood risk management in Europe. Nat. Hazards 2016, 83, 129–147. [Google Scholar] [CrossRef]
Log-Linear | Log-Spline | Linear | Spline |
---|---|---|---|
0.766 | 0.729 | 1.414 | 1.313 |
Study Area | Sims Bayou | Muncy | Selinsgrove | |
---|---|---|---|---|
Resolution (Total Area) | 10 m (18 km2) | 16 m (400 km2) | 6 m (100 km2) | |
Interpolation Method | Log-Linear | 12.55 | 119.75 | 233.13 |
Spline | 21.61 | 117.40 | 311.67 | |
Log-Spline | 25.04 | 140.97 | 364.26 | |
Linear | 10.07 | 97.92 | 179.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarekarizi, M.; Roop-Eckart, K.J.; Sharma, S.; Keller, K. The FLOod Probability Interpolation Tool (FLOPIT): A Simple Tool to Improve Spatial Flood Probability Quantification and Communication. Water 2021, 13, 666. https://doi.org/10.3390/w13050666
Zarekarizi M, Roop-Eckart KJ, Sharma S, Keller K. The FLOod Probability Interpolation Tool (FLOPIT): A Simple Tool to Improve Spatial Flood Probability Quantification and Communication. Water. 2021; 13(5):666. https://doi.org/10.3390/w13050666
Chicago/Turabian StyleZarekarizi, Mahkameh, K. Joel Roop-Eckart, Sanjib Sharma, and Klaus Keller. 2021. "The FLOod Probability Interpolation Tool (FLOPIT): A Simple Tool to Improve Spatial Flood Probability Quantification and Communication" Water 13, no. 5: 666. https://doi.org/10.3390/w13050666
APA StyleZarekarizi, M., Roop-Eckart, K. J., Sharma, S., & Keller, K. (2021). The FLOod Probability Interpolation Tool (FLOPIT): A Simple Tool to Improve Spatial Flood Probability Quantification and Communication. Water, 13(5), 666. https://doi.org/10.3390/w13050666