SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study and Input Data
2.1.1. Case Study
2.1.2. Input Data
2.2. Methodology
2.2.1. The SHETRAN Model
2.2.2. The HEC-HMS Model
2.2.3. Intercomparison of the SHETRAN and the HEC HMS Model Characteristics
2.2.4. The Catchment Subdivision
2.2.5. Calibration of the SHETRAN Model
2.2.6. Calibration of the HEC HMS Model
2.2.7. The Methodology Applied for the Comparison of Soil Moisture Estimates
2.2.8. Evaluation of Models Performances
3. Results
3.1. Evaluation and Comparisons of Model Performances in Respect of the Simulations of Streamflow Hydrographs
3.2. Evaluation and Comparisons of Model Performances in Respect of Soil Moisture Estimates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pavlik, F.; Dumbrovský, M. Influence of landscape retention capacity upon flood processes in Jičínka River basin. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Jakeman, A.J.; Hornberger, G.M. How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 1993, 29, 2637–2649. [Google Scholar] [CrossRef]
- Bergström, S.; Lindström, G.; Pettersson, A. Multi-variable parameter estimation to increase confidence in hydrological modelling. Hydrol. Process. 2002, 16, 413–421. [Google Scholar] [CrossRef]
- Kirchner, J.W. Catchments as simple dynamic systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology back-ward. Water Resour. Res. 2009, 45, W02429. [Google Scholar] [CrossRef] [Green Version]
- Đukić, V. Modelling of base flow of the basin of Kolubara river in Serbia. J. Hydrol. 2006, 327, 1–12. [Google Scholar] [CrossRef]
- Modrick Hansen, T.; Georgakakos, K. Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. J. Hydrol. 2006, 329, 174–185. [Google Scholar] [CrossRef]
- De Vos, N.J.; Rientjes, T.H.M.; Gupta, H.V. Diagnostic evaluation of conceptual rainfall-runoff models using temporal clustering. Hydrol. Process. 2010, 24, 2840–2850. [Google Scholar] [CrossRef]
- Mendez, M.; Calvo-Valverde, L. Development of the HBV-TEC hydrological model. Procedia Eng. 2016, 154, 1116–1123. [Google Scholar] [CrossRef] [Green Version]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of lumped hydrological models in data-scarce watersheds using different precipitation forcing data sets: Case study of Northern Ontario, Canada. J. Hydrol. Reg. Stud. 2020, 31, 100730. [Google Scholar] [CrossRef]
- Wijayarathne, D.B.; Coulibaly, P. Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. J. Hydrol. Reg. Stud. 2020, 27, 100646. [Google Scholar] [CrossRef]
- Petroselli, A. A generalization of the EBA4SUB rainfall–runoff model considering surface and subsurface flow. Hydrol. Sci. J. 2020, 65, 2390–2401. [Google Scholar] [CrossRef]
- Srivastava, A.; Deb, P.; Kumari, N. Multi-Model Approach to Assess the Dynamics of Hydrologic Components in a Tropical Ecosystem. Water Resour. Manag. 2020, 1–15, 327–341. [Google Scholar] [CrossRef]
- Suliman, A.H.A.; Jajarmizadeh, M.; Harun, S.; Mat Darus, I.Z. Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment. Water Resour. Manag. 2015, 29, 3095–3110. [Google Scholar] [CrossRef]
- Tegegne, G.; Park, D.K.; Kim, Y.; Kim, Y.-O. Selecting hydrologic modelling approaches for water resource assessment in the Yongdam watershed. J. Hydrol. 2017, 56, 155. [Google Scholar]
- Tegegne, G.; Park, D.K.; Kim, Y.-O. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [Google Scholar] [CrossRef]
- Vansteenkiste, T.; Tavakoli, M.; Van Steenbergen, N.; De Smedt, F.; Batelaan, O.; Pereira, F.; Willems, P. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. J. Hydrol. 2014, 511, 335–349. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, J.; He, C.; Zhang, B.; Zhang, X.; Li, J.; Zhao, C.; Tian, J.; DeMarchi, C. Comparison of SWAT and DLBRM for Hydrological Modeling of a Mountainous Watershed in Arid Northwest China. J. Hydrol. Eng. 2016, 21, 04016007. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andreassian, V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol. 2001, 242, 275–301. [Google Scholar] [CrossRef]
- Grimaldi, S.; Nardi, F.; Piscopia, R.; Petroselli, A.; Apollonio, C. Continuous hydrologic modelling for design simulation in small and ungauged basins: A step forward and some tests for its practical use. J. Hydrol. 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.J.; Wang, Y.Q.; Li, D.; Wang, X. The effect of watershed scale on HEC-HMS calibrated parameters: A case study in the Clear Creek watershed in Iowa, US. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 965–998. [Google Scholar] [CrossRef] [Green Version]
- Walega, A.; Leszek, K. The effect of a hydrological model structure and rainfall data on the accuracy of flood description in an upland catchment. Ann. Wars. Univ. Life Sci. Land Reclam. 2015, 47, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.P.; Raghuwanshi, N.S.; Rao, G.P. Effect of watershed subdivision on simulation of water balance components. Hydrol. Process 2006, 20, 1137–1156. [Google Scholar] [CrossRef]
- Muleta, M.K.; Nicklow, J.W.; Bekele, E.G. Sensitivity of a distributed watershed simulation model to spatial scale. J. Hydrol. Eng. 2007, 12, 163–172. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V. Impact of watershed subdivision and soil data resolution on model calibration and parameter uncertainty. J. Am. Water Resour. Assoc. 2009, 45, 1179–1195. [Google Scholar] [CrossRef]
- Chen, F.; Xie, J.; Chen, X. Effects of spatial scale on distributed flood simulation based on HEC-HMS Model: A Case of Jinjiang Watershed, Fujian, China. In Proceedings of the 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–5. [Google Scholar]
- Cleveland, T.G.; Luong, T.; Thompson, D.B. Watershed subdivision for modeling. In Proceedings of the World Environmental and Water Resources Congress, Great Rivers, Kansas City, MO, USA, 17–21 May 2009; pp. 6527–6536. [Google Scholar]
- Li, H.; Xu, C.; Beldring, S. How much can we gain with increasing model complexity with the same model concepts? J. Hydrol. 2015, 389, 858–871. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.; Staudinger, M.; Seneviratne, S.I.; Seibert, J.; Zappa, M. Does model performance improve with complexity? A case study with three hydrological models. J. Hydrol. 2015, 523, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Molnár, D.; Julien, P. Grid-Size Effects on Surface Runoff Modeling. J. Hydrol. Eng. 2000, 5, 8–16. [Google Scholar] [CrossRef]
- Đukić, V.; Erić, R.; Dumbrovsky, M.; Sobotkova, V. Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic. J. Hydrol. Hydromech. 2021, 69, 1–12. [Google Scholar] [CrossRef]
- Gallart, F.; Latron, J.; Llorens, P.; Beven, K. Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. Adv. Water Resour. 2007, 30, 808–823. [Google Scholar] [CrossRef]
- Fenicia, F.; McDonnell, J.J.; Savenije, H.H.G. Learning from model improvement: On the contribution of complementary data to process understanding. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. On doing better hydrological science. Hydrol. Process. 2008, 22, 3549–3553. [Google Scholar] [CrossRef]
- Parajka, J.; Naeimi, V.; Bioschl, G.; Wagner, W.; Merz, R.; Scipal, K. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol. Earth Syst. Sci. 2006, 10, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Yang, H.; Zeng, L.; Xu, C. Evaluating Consistency between the Remotely Sensed Soil Moisture and the Hydrological Model-Simulated Soil Moisture in the Qujiang Catchment of China. Water 2018, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Resour. Manag. 2020, 34, 1–16. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martinez-Fernandez, J.; Llorens, P.; et al. Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Wanders, N.; Bierkens, M.F.P.; De Jong, S.; Roo, A.; Karssenberg, D. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resour. Res. 2014, 50, 10215. [Google Scholar] [CrossRef] [Green Version]
- López López, P.; Sutanudjaja, E.H.; Schellekens, J.; Sterk, G.; Bierkens, M.F.P. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci. 2017, 21, 3125–3144. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial downscaling of satellite soil moisture data using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens. 2017, 54, 558–566. [Google Scholar] [CrossRef]
- Verhoest, N.E.C.; van den Berg, M.J.; Martens, B.; Lievens, H.; Wood, E.F.; Pan, M.; Kerr, Y.H.; Al Bitar, A.; Tomer, S.K.; Drusch, M.; et al. Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3507–3521. [Google Scholar] [CrossRef]
- Lievens, H.; Tomer, S.K.; Al Bitar, A.; De Lannoy, G.; Drusch, M.; Dumedah, G.; Franssen, H.J.; Kerr, Y.; Martens, B.; Pan, M. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ. 2015, 168, 146–162. [Google Scholar] [CrossRef]
- Danhelka, J.; Kubat, J.; Šercl, P.; Čekal, R. (Eds.) Floods in the Czech Republic in June 2013; Czech Hydrometeorological Institute: Prague, Czech Republic, 2014. [Google Scholar]
- Dorigo, W.A.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Ewen, J.; Parkin, G.; O’Connell, P.E. SHETRAN: Distributed River Basin Flow and Transport Modelling System. ASCE J. Hydrol. Eng. 2000, 5, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Saint-Venant, A. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. C. R. Hebd. Séances Acad. Sci. 1871, 73, 147–154. [Google Scholar]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar] [CrossRef]
- USACE. HEC Hydrologic Modelling System (HEC-HMS) v4.3 User’s Manual; US Army Corps of Engineers: Washington, DC, USA; Hydrologic Engineering Center: Davis, CA, USA, 2018. Available online: https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.3.pdf (accessed on 20 June 2020).
- Petroselli, A.S.; Grimaldi, S.; Romano, N. Curve-Number/Green—Ampt mixed procedure for net rainfall estimation: A case study of the Mignone watershed, IT. Procedia Environ. Sci. 2013, 19, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1988; Available online: http://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf (accessed on 20 January 2021).
- Woodward, D.E.; Hawkins, R.H.; Hjelmfelt, A.T.J.; Quan, Q.D. Runoff Curve Number Method: Examination of the Initial Abstraction Ratio. In Proceedings of the World Water & Environmental Resources Congress 2003, Philadelphia, PA, USA, 23–26 June 2003; ASCE: Philadelphia, PA, USA, 2003; pp. 1–10. Available online: http://ponce.sdsu.edu/hawkins_initial_abstraction.pdf (accessed on 20 January 2021).
- Clark, C.O. Storage and the unit hydrograph. Trans. ASCE 1945, 110, 1419–1488. [Google Scholar]
- Haan, C.T.; Barfield, B.J.; Hayes, J.C. Design Hydrology and Sedimentology for Small Catchments; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Green, W.H.; Ampt, G.A. Studies in soil physics. Part 1. The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Todini, E. Rainfall-runoff modeling—past, present and future. J. Hydrol. 1988, 100, 341–352. [Google Scholar] [CrossRef]
- Todini, E. Hydrological catchment modelling: Past, present, and future. Hydrol. Earth Syst. Sci. 2007, 11, 468–482. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Bloschl, G. Hydrological modelling in a changing world. Prog. Phys. Geogr. 2011, 35, 249e261. [Google Scholar] [CrossRef]
- Paul, P.; Kumari, N.; Panigrahy, N.; Mishra, A.; Singh, R. Implementation of cell-to-cell routing scheme in a large scale conceptual hydrological model. Environ. Model. Softw. 2018, 101, 23–33. [Google Scholar] [CrossRef]
- Młyński, D.; Walega, A.; Ciupak, M.; Petroselli, A. New approach for determining the quantiles of maximum annual flows in ungauged catchments using the EBA4SUB model. J. Hydrol. 2020, 589, 125198. [Google Scholar] [CrossRef]
- Ponce, V.M.; Li, R.M.; Simons, D.B. Applicability of kinematic and diffusion models. J. Hydraul. Div. 1978, 104, 353–360. [Google Scholar] [CrossRef]
- Đukić, V.; Radić, Z. GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia. Water Resour. Manage. 2014, 28, 4567–4581. [Google Scholar] [CrossRef]
- Đukić, V.; Radić, Z. Sensitivity Analysis of a Physically Based Distributed Model. Water Resour. Manag. 2016, 3, 1669–1684. [Google Scholar] [CrossRef]
- USDA; NRSC. National Engineering Handbook of Hydrology; United States Department of Agriculture: Washington, DC, USA; Natural Resources Conservation Service: Washington, DC, USA, 2007. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/manage/hydrology/?cid=stelprdb1043063 (accessed on 15 January 2021).
- Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civil Eng. 1940, 6, 362. [Google Scholar]
- Qu, W.; Bogena, H.R.; Huisman, J.A.; Vanderborght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part I. A discussion of principles. J. Hydrol. 1970, 27, 282–290. [Google Scholar] [CrossRef]
- Chiew, F.; McMahon, T. Application of the daily rainfall–runoff model MODHYDROLOG to 28 Australian catchments. J. Hydrol. 1994, 153, 383–416. [Google Scholar] [CrossRef]
- Ye, W.; Bates, B.C.; Viney, N.R.; Silvapan, M.; Jakeman, A.J. Performance of conceptual rainfall–runoff models in low-yielding ephemeral catchments. Water Resour. Res. 1997, 33, 153–166. [Google Scholar] [CrossRef]
- Pereira, A.R.; Pruitt, W.O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
The Number of Rain Event | The Simulation Period | Ptot (mm) | Vp (103 m3) | Qmax (m3/s) | Vr (103 m3) |
---|---|---|---|---|---|
1 | 5 September 2007 (10:00)–7 September 2007(10:00) | 190.13 | 14429.9 | 98 | 6387.5 |
2 | 22 June 2009 (05:00)–29 June 2009 (7:00) | 150.2 | 11403 | 264 | 5805.5 |
3 | 11 May 2010(13:00)–29 May 2010 (3:00) | 232.8 | 17670.4 | 75.6 | 15666.4 |
4 | 30 May 2010 (11:00)–2 June 2010 (14:00) | 46.2 | 3502.2 | 43.1 | 4429.9 |
Type of Input Data | Input Parameters | Source of Input Data | |
---|---|---|---|
Meteorological | Hourly precipitation | Czech Hydrometeorological Institute | |
Hydrological | Registered streamflow hydrographs | ||
Topographic | Digital elevation model (DEM) of the resolution: 10 m × 10 m | T.G. Masaryk Water Research Institute | |
SHETRAN: | HEC HMS | ||
Land use/vegetation distribution | Strickler’s coefficient for overland flow (St) and for channel flow (StR) | Hydrologic soil group CN values Imperviousness | Corine Land Cover Databases https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 20 June 2019) |
Soil types | Hydraulic soil/rock properties (porosity and specific storage, residual water content (θr), saturated water content (θs), conductivity in unsaturated soil (kvs) saturated conductivity in saturated soil (khs) vanGenuchten-α, vanGenuchten-n | https://www.spucr.cz/bpej/celostatni-databaze-bpej (accessed on 20 June 2019) | |
Geological type | “Czech Geological Survey”—ArcGIS online |
Depth (m) | Texture | kvs (mday−1) | khs (mday−1) | Θs (-) | Θr (-) | α (-) | N (-) | St (m1/3s−1) | StR(m1/3s−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Dystric Cambisol | 0–0.7 | Sandy clay loam | 0.223–0.5814 (0.300) | 0.223–0.5814 (0.300) | 0.419–0.695 (0.480) | 0.047 | 0.014 | 1.317 | Forest | 4–8 (7) | 15–40 (30) |
8–20 (18) | |||||||||||
0.7–1.2 | Sandy clay loam | 0.223–0.5814 (0.300) | 0.223–0.5814 (0.300) | 0.419–0.695 (0.480) | 0.047 | 0.014 | 1.317 | Arable land | 7–18 (16) | ||
Geol. substrate | 1.2–4 | schists | 4 | 0.01–5 (4) | 0.6 | 0.1 | 0.001 | 1.1 | Natural grasslands | 30–50 (42) | |
Rendzina | 0–0.5 | Clay loam | 0.217–0.4105 (0.270) | 0.217–0.4105 (0.270) | 0.437–0.442 (0.440) | 0.075 | 0.013 | 1.415 | Scarce vegetation | 4–8 (7) | |
Geol. substrate | 1.2–4 | schists | 4 | 0.01–5 (4) | |||||||
Eutric cambisol | 0- 0.5 | Clay loam | 0.217–0.4105 (0.270) | 0.217–0.4105 (0.270) | 0.426–0.469 (0.44) | 0.075 | 0.013 | 1.415 | |||
0.5–1.05 | loam | 0.128–0.192 (0.15) | 0.15 | 0.426–0.469 (0.430) | 0.078 | 0.036 | 1.56 | ||||
Geological substrate | 1.2–4 | schists | 4 | 0.01–5 (4) | |||||||
Fluvisol | 0–0.40 | Clay loam | 0.217–0.4105 (0.255) | 0.217–0.4105 (0.255) | 0.426–0.469 (0.430) | 0.075 | 0.013 | 1.415 | |||
0.40–1.0 | Silty loam | 0.130–0.196 (0.163) | 0.163 | 0.452 | 0.093 | 0.005 | 1.68 | ||||
1.0–1.25 | Sandy clay loam | 0.223–0.5814 (0.300) | 0.223–0.5814 (0.300) | 0.419–0.695 (0.480) | 0.047 | 0.014 | 1.317 | ||||
Geologic substrate | 1.25–4 | schists | 4 | 0.01–5 (4) | 0.6 | 0.1 | 0.001 | 1.1 |
Configuration | Loss Model | Transformation of Eff. Precip. in Direct Runoff | Baseflow | |||
---|---|---|---|---|---|---|
Ia (mm) | CN (-) | tc (h) | R (h) | k (-) | Ratio (-) | |
S | 65.1 | 70.9 | 2 | 3 | 0.80 | 0.03 |
S1 | 59 | 67 | 0.32 | 2 | 0.80 | 0.03 |
S2 | 56 | 70 | 0.31 | |||
S3 | 62 | 70 | 0.28 | |||
S4 | 87.5 | 66 | 0.80 | |||
S5 | 56 | 68 | 0.30 | |||
S6 | 48 | 74 | 0.18 | |||
S1 | 68.4 | 76 | 0.32 | 2 | 0.80 | 0.03 |
S2 | 65.9 | 73 | 0.31 | |||
S3 | 83 | 72 | 0.28 | |||
S4 | 84 | 72 | 0.28 | |||
S5 | 68 | 65.7 | 0.40 | |||
S6 | 73 | 75.1 | 0.30 | |||
S7 | 65 | 69.1 | 0.30 | |||
S8 | 60 | 62.1 | 0.40 | |||
S9 | 80 | 64.2 | 0.40 |
Configuration | Rain Event | CR1 | CR2 | CR3 | CR4 | RMSE | MAE | R | d |
---|---|---|---|---|---|---|---|---|---|
Lumped | 7 September | 0.95 | 0.80 | 0.67 | 0.83 | 3.30 | 2.40 | 0.98 | 0.99 |
9 June | 0.75 | 0.49 | 0.23 | 0.57 | 11.90 | 5.90 | 0.91 | 0.94 | |
10 May | 0.68 | 0.63 | 0.45 | 0.99 | 8.20 | 5.10 | 0.86 | 0.92 | |
10 June | 0.60 | 0.21 | 0.21 | 0.42 | 4.10 | 3.00 | 0.91 | 0.86 | |
6 sub-catchments | 7 September | 0.94 | 0.83 | 0.72 | 0.98 | 3.70 | 2.10 | 0.97 | 0.98 |
9 June | 0.58 | 0.39 | 0.22 | 0.49 | 15.30 | 5.90 | 0.93 | 0.93 | |
10 May | 0.61 | 0.51 | 0.80 | 0.94 | 9.00 | 5.80 | 0.83 | 1.00 | |
10 June | 0.53 | 0.07 | 0.15 | 0.37 | 4.40 | 3.20 | 0.88 | 0.84 | |
9 sub-catchments | 7 September | 0.93 | 0.80 | 0.68 | 0.97 | 3.80 | 2.40 | 0.97 | 0.98 |
9 June | 0.54 | 0.34 | 0.26 | 0.55 | 16.20 | 5.60 | 0.86 | 0.91 | |
10 May | 0.61 | 0.51 | 0.38 | 0.94 | 9.00 | 5.80 | 0.83 | 0.90 | |
10 June | 0.53 | 0.08 | 0.15 | 0.37 | 4.40 | 3.20 | 0.88 | 0.84 |
Grid Size (m) | Rain Event | CR1 | CR2 | CR3 | CR4 | RMSE | MAE | R | d |
---|---|---|---|---|---|---|---|---|---|
400 | 7 September | 0.92 | 0.79 | 0.66 | 0.90 | 4.04 | 2.53 | 0.97 | 0.99 |
9 June | 0.73 | 0.59 | 0.33 | 0.75 | 12.56 | 5.07 | 0.90 | 0.94 | |
10 May | 0.81 | 0.75 | 0.58 | 0.94 | 6.01 | 3.64 | 0.91 | 0.95 | |
10 June | 0.75 | 0.54 | 0.42 | 0.96 | 2.82 | 1.84 | 0.94 | 0.95 | |
500 | 7 September | 0.94 | 0.89 | 0.75 | 0.99 | 3.72 | 1.89 | 0.97 | 0.99 |
9 June | 0.91 | 0.75 | 0.53 | 0.79 | 7.38 | 3.55 | 0.96 | 0.98 | |
10 May | 0.81 | 0.80 | 0.60 | 0.91 | 6.04 | 3.41 | 0.91 | 0.95 | |
10 June | 0.87 | 0.76 | 0.58 | 0.93 | 2.04 | 1.35 | 0.97 | 0.97 | |
600 | 7 September | 0.93 | 0.83 | 0.69 | 0.92 | 3.82 | 2.28 | 0.98 | 0.99 |
9 June | 0.85 | 0.62 | 0.41 | 0.88 | 9.38 | 4.51 | 0.93 | 0.95 | |
10 May | 0.81 | 0.76 | 0.57 | 0.98 | 6.02 | 3.72 | 0.91 | 0.95 | |
10 June | 0.81 | 0.45 | 0.43 | 0.81 | 2.49 | 1.81 | 0.94 | 0.96 | |
800 | 7 September | 0.88 | 0.74 | 0.68 | 0.80 | 5.20 | 2.39 | 0.94 | 0.96 |
9 June | 0.64 | 0.62 | 0.37 | 0.97 | 14.4 | 4.80 | 0.85 | 0.92 | |
10 May | 0.83 | 0.72 | 0.59 | 0.97 | 5.70 | 3.51 | 0.92 | 0.96 | |
10 June | 0.89 | 0.62 | 0.54 | 0.82 | 1.91 | 1.46 | 0.95 | 0.97 |
Configuration | Rain Event | CR4 | MAE | RMSE | R | d |
---|---|---|---|---|---|---|
Lumped model | 7 September | 0.92 | 0.04 | 0.07 | 0.96 | 0.46 |
9 June | 0.81 | 0.08 | 0.10 | 0.79 | 0.49 | |
10 May | 0.77 | 0.14 | 0.14 | 0.48 | 0.45 | |
10 June | 0.68 | 0.16 | 0.15 | 0.32 | 0.32 | |
6 sub-catchments | 7 September | 0.90/0.94/0.97 | 0.05/0.06/0.08 | 0.05/0.06/0.09 | 0.3/0.58/0.69 | 0.44/0.66/0.73 |
9 June | 0.87/0.95/0.99 | 0.05/0.06/0.09 | 0.07/0.08/0.10 | 0.15/0.20/0.33 | 0.40/0.44/0.50 | |
10 May | 0.74/0.85/0.91 | 0.04/0.06/0.12 | 0.05/0.07/0.13 | 0.78/0.81/0.90 | 0.48/0.54/0.58 | |
10 June | 0.65/0.81/0.88 | 0.05/0.07/0.16 | 0.05/0.08/0.17 | 0.26/0.57/0.67 | 0.49/0.54/0.59 | |
9 sub-catchments | 7 September | 0.64/0.89/0.99 | 0.04/0.08/0.19 | 0.06/0.09/0.196 | 0.65/0.86/0.99 | 0.32/0.39/0.48 |
9 June | 0.54/0.80/0.992 | 0.05/0.09/0.22 | 0.06/0.11/0.23 | 0.69/0.78/0.85 | 0.34/0.46/0.51 | |
10 May | 0.47/0.73/0.95 | 0.05/0.12/0.25 | 0.06/0.13/0.26 | 0.03/0.48/0.58 | 0.27/0.395/0.47 | |
10 June | 0.401/0.67/0.89 | 0.04/0.13/0.27 | 0.05/0.14/0.27 | 0.89/0.94/0.97 | 0.19/0.34/0.51 |
Configuration | Rain Event | CR4 | MAE | RMSE | R | d |
---|---|---|---|---|---|---|
Lumped | 7 September | 0.97 | 0.05 | 0.07 | 0.30 | 0.19 |
configuration | 9 June | 0.82 | 0.08 | 0.11 | 0.35 | 0.41 |
10 May | 0.80 | 0.13 | 0.13 | 0.34 | 0.43 | |
10 June | 0.72 | 0.14 | 0.14 | 0.26 | 0.26 | |
Grid cell size: | 7 September | 0.56/0.81/0.9 | 0.053/0.09/0.12 | 0.09/0.10/0.21 | 0.06/0.798/0.99 | 0.18/0.52/0.64 |
400 m | 9 June | 0.67/0.77/0.95 | 0.071/0.13/0.53 | 0.102/0.19/0.25 | 0.004/0.59/0.92 | 0.14/0.49/0.87 |
10 May | 0.586/0.79/0.99 | 0.053/0.12/0.17 | 0.05/0.12/0.18 | 0.12/0.68/0.99 | 0.24/0.49/0.68 | |
10 June | 0.599/0.74/0.999 | 0.06/0.15/0.34 | 0.07/0.18/0.24 | 0.19/0.69/0.96 | 0.15/0.40/0.52 | |
Grid cell size: | 7 September | 0.62/0.89/0.99 | 0.04/0.07/0.09 | 0.08/0.096/0.196 | 0.06/0.8/0.995 | 0.18/0.55/0.66 |
500m | 9 June | 0.71/0.81/0.999 | 0.05/0.09/0.37 | 0.06/0.11/0.15 | 0.004/0.63/0.99 | 0.15/0.51/0.91 |
10 May | 0.56/0.76/0.99 | 0.05/0.11/0.16 | 0.05/0.12/0.18 | 0.12/0.68/0.99 | 0.24/0.51/0.68 | |
10 June | 0.58/0.75/0.999 | 0.04/0.11/0.25 | 0.05/0.10/0.17 | 0.196/0.71/0.99 | 0.15/0.41/0.53 | |
Grid cell size: | 7 September | 0.58/0.83/0.92 | 0.048/0.09/0.11 | 0.08/0.099/0.20 | 0.06/0.8/0.995 | 0.18/0.55/0.66 |
600 m | 9 June | 0.71/0.81/0.99 | 0.06/0.11/0.47 | 0.08/0.14/0.19 | 0.004/0.61/0.96 | 0.15/0.496/0.89 |
10 May | 0.604/0.82/0.99 | 0.06/0.12/0.17 | 0.05/0.12/0.18 | 0.12/0.68/0.99 | 0.24/0.49/0.68 | |
10 June | 0.508/0.63/0.87 | 0.054/0.15/0.34 | 0.06/0.16/0.208 | 0.19/0.694/0.97 | 0.15/0.41/0.52 | |
Grid cell size: | 7 September | 0.50/0.72/0.80 | 0.05/0.09/0.11 | 0.11/0.13/0.27 | 0.06/0.77/0.96 | 0.18/0.54/0.65 |
800 m | 9 June | 0.87/0.99/1.22 | 0.07/0.12/0.500 | 0.117/0.21/0.29 | 0.004/0.56/0.88 | 0.141/0.48/0.85 |
10 May | 0.597/0.71/0.99 | 0.051/0.11/0.16 | 0.047/0.11/0.17 | 0.12/0.68/0.99 | 0.24/0.49/0.68 | |
10 June | 0.52/0.64/0.88 | 0.04/0.12/0.27 | 0.05/0.12/0.16 | 0.19/0.70/0.98 | 0.15/0.41/0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đukić, V.; Erić, R. SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic). Water 2021, 13, 872. https://doi.org/10.3390/w13060872
Đukić V, Erić R. SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic). Water. 2021; 13(6):872. https://doi.org/10.3390/w13060872
Chicago/Turabian StyleĐukić, Vesna, and Ranka Erić. 2021. "SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic)" Water 13, no. 6: 872. https://doi.org/10.3390/w13060872
APA StyleĐukić, V., & Erić, R. (2021). SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic). Water, 13(6), 872. https://doi.org/10.3390/w13060872