Role of Environmental Variables in the Transport of Microbes in Stormwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. E. coli and Enterococcus spp.
2.3. Dissolved Organic Matter
2.4. Cation Measurement
3. Results
3.1. Faecal Indicator Occurrence during Storm Events
3.2. Dissolved Organic Matter Concentration
3.3. Relationship between DOM, Its Fractions and Microbes
3.4. Relationship between Metal Ions and Microbes
3.5. Relationship between Flow Rate and Microbes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aryal, R.K.; Lee, B.-K. Characteristics of Suspended Solids and Micropollutants in First-Flush Highway Runoff. Water Air Soil Pollut. Focus 2009, 9, 339–346. [Google Scholar] [CrossRef]
- Sidhu, J.P.S.; Ahmed, W.; Gernjak, W.; Aryal, R.; McCarthy, D.; Palmer, A.; Kolotelo, P.; Toze, S. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Sci. Total. Environ. 2013, 463–464, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.P.S.; Ahmed, W.; Hodgers, L.; Toze, S. Occurrence of Virulence Genes Associated with Diarrheagenic Pathotypes in Escherichia coli Isolates from Surface Water. Appl. Environ. Microbiol. 2013, 79, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.P.S.; Skelly, E.; Hodgers, L.; Ahmed, W.; Li, Y.; Toze, S. Prevalence ofEnterococcusSpecies and Their Virulence Genes in Fresh Water Prior to and after Storm Events. Environ. Sci. Technol. 2014, 48, 2979–2988. [Google Scholar] [CrossRef]
- Tiefenthaler, L.; Stein, E.D.; Schiff, K. Origins and Mechanisms of Watershed and Land Use Based Sources of Fecal Indicator Bacteria in Urban Stormwater; Southern California Coastal Water Research Project 2008 Annual Report; SCCWRP: Costa Mesa, CA, USA, 2008; pp. 153–161. [Google Scholar]
- Thériault, A.; Duchesne, S. Quantifying the Fecal Coliform Loads in Urban Watersheds by Hydrologic/Hydraulic Modeling: Case Study of the Beauport River Watershed in Quebec. Water 2015, 7, 615–633. [Google Scholar] [CrossRef] [Green Version]
- Soupir, M.L.; Mostaghimi, S.; Dillaha, T. Attachment of Escherichia coli and Enterococci to Particles in Runoff. J. Environ. Qual. 2010, 39, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Fontes, D.; Mills, A.L.; Hornberger, G.M.; Herman, J.S. Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 1991, 57, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Kim, H.; Tong, M. Influence of humic acid on the transport behavior of bacteria in quartz sand. Colloids Surf. B Biointerfaces 2012, 91, 122–129. [Google Scholar] [CrossRef]
- Fletcher, M.; Marshall, K.C. Are Solid Surfaces of Ecological Significance to Aquatic Bacteria? In Advances in Microbial Ecology; Marshall, K.C., Ed.; Springer: Heidelberg, Germany, 1982; Volume 6, pp. 199–236. [Google Scholar]
- Richardson, R.; Mills, A.; Herman, J.; Hornberger, G. Effect of humic material on interactions between bacterial cells and mineral surfaces. LMECOL Contrib. 2000, 1, 1–7. [Google Scholar]
- Bales, R.C.; Li, S.; Maguire, K.M.; Yahya, M.T.; Gerba, C.P. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations. Water Resour. Res. 1993, 29, 957–963. [Google Scholar] [CrossRef]
- Atherholt, T.B.; Lechevallier, M.W.; Norton, W.D.; Rosen, J.S. Effect of rainfall on Giardia and crypto. J. Am. Water Work. Assoc. 1998, 90, 66–80. [Google Scholar] [CrossRef]
- Lipp, E.K.; Kurz, R.; Vincent, R.; Rodriguez-Palacios, C.; Farrah, S.R.; Rose, J.B. The Effects of Seasonal Variability and Weather on Microbial Fecal Pollution and Enteric Pathogens in a Subtropical Estuary. Estuaries 2001, 24, 266–276. [Google Scholar] [CrossRef]
- Thurman, R.; Faulkner, B.; Veal, D.; Cramer, G.; Meiklejohn, M. Water quality in rural Australia. J. Appl. Microbiol. 1998, 84, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Schaldach, C.; Bourcier, W.L.; Shaw, H.F.; Viani, B.E.; Wilson, W. The influence of ionic strength on the interaction of viruses with charged surfaces under environmental conditions. J. Colloid Interface Sci. 2006, 294, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Walshe, G.E.; Pang, L.; Flury, M.; Close, M.E.; Flintoft, M. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Res. 2010, 44, 1255–1269. [Google Scholar] [CrossRef]
- McCarthy, D.; Hathaway, J.; Hunt, W.; Deletic, A. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Res. 2012, 46, 6661–6670. [Google Scholar] [CrossRef] [PubMed]
- Niazi, M.; Obropta, C.; Miskewitz, R. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model. J. Environ. Manag. 2015, 151, 167–177. [Google Scholar] [CrossRef]
- Aryal, R.; Furumai, H.; Nakajima, F.; Boller, M. Dynamic behavior of fractional suspended solids and particle-bound polycyclic aromatic hydrocarbons in highway runoff. Water Res. 2005, 39, 5126–5134. [Google Scholar] [CrossRef]
- Murphy, L.U.; Cochrane, T.A.; O’Sullivan, A. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics. Sci. Total Environ. 2015, 508, 206–213. [Google Scholar] [CrossRef]
- Reitz, A.; Hemric, E.; Hall, K.K. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed. J. Environ. Manag. 2021, 277, 111413. [Google Scholar] [CrossRef]
- Chen, H.J.; Chang, H. Response of discharge, TSS, and E. coli to rainfall events in urban, suburban, and rural watersheds. Environ. Sci. Process. Impacts 2014, 16, 2313–2324. [Google Scholar] [CrossRef]
- Hathaway, J.M.; Hunt, W.F.; McCarthy, D.T. Variability of Intra-event Statistics for Multiple Fecal Indicator Bacteria in Urban Stormwater. Water Resour. Manag. 2015, 29, 3635–3649. [Google Scholar] [CrossRef]
- Zhuang, J.; Jin, Y. Virus Retention and Transport as Influenced by Different Forms of Soil Organic Matter. J. Environ. Qual. 2003, 32, 816–823. [Google Scholar] [CrossRef]
- Anesio, A.M.; Hollas, C.; Granéli, W.; Laybourn-Parry, J. Influence of Humic Substances on Bacterial and Viral Dynamics in Freshwaters. Appl. Environ. Microbiol. 2004, 70, 4848–4854. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.H.; Pachepsky, Y.A.; Oliver, D.M.; Muirhead, R.W.; Park, Y.; Quilliam, R.S.; Shelton, D.R. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Res. 2016, 100, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Guiné, V.; Martins, J.; Gaudet, J.P. Facilitated transport of heavy metals by bacterial colloids in sand columns. In Journal de Physique IV (Proceedings); EDP Sciences: Les Ulis, France, 2003; Volume 107, pp. 593–596. [Google Scholar]
- Stumpf, C.H.; Piehler, M.F.; Thompson, S.; Noble, R.T. Loading of fecal indicator bacteria in North Carolina tidal creek headwaters: Hydrographic patterns and terrestrial runoff relationships. Water Res. 2010, 44, 4704–4715. [Google Scholar] [CrossRef] [PubMed]
- Schillinger, J.E.; Gannon, J.J. Bacterial adsorption and suspended particles in urban stormwater. J. Water Pollut. Control Fed. 1985, 57, 384–389. [Google Scholar]
- Hornberger, G.M.; Mills, A.L.; Herman, J.S. Bacterial transport in porous media: Evaluation of a model using laboratory observations. Water Resour. Res. 1992, 28, 915–923. [Google Scholar] [CrossRef]
- Sidhu, J.; Hodgers, L.; Ahmed, W.; Chong, M.; Toze, S. Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Res. 2012, 46, 6652–6660. [Google Scholar] [CrossRef]
- Lange, B.; Strathmann, M.; Oßmer, R. Performance validation of chromogenic coliform agar for the enumeration of Escherichia coli and coliform bacteria. Lett. Appl. Microbiol. 2013, 57, 547–553. [Google Scholar] [CrossRef]
- Tiefenthaler, L.L.; Stein, E.D.; Lyon, G.S. Fecal indicator bacteria (FIB) levels during dry weather from Southern California reference streams. Environ. Monit. Assess. 2009, 155, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.M.; Rifai, H.S. Variability of Escherichia coli Concentrations in an Urban Watershed in Texas. J. Environ. Eng. 2010, 136, 1347–1359. [Google Scholar] [CrossRef]
- Tiefenthaler, L.; Stein, E.D.; Schiff, K.C. Levels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds. J. Water Health 2010, 9, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Zsolnay, Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, C.-C.; Li, J.-Q.; Wang, C.-Y.; Wang, P.; Pei, Z.-J. Dissolved organic matter in urban stormwater runoff at three typical regions in Beijing: Chemical composition, structural characterization and source identification. RSC Adv. 2015, 5, 73490–73500. [Google Scholar] [CrossRef]
- Aryal, R.; Grinham, A.; Beecham, S. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef]
- Zazouli, M.; Nasseri, S.; Mahvi, A.; Mesdaghinia, A.; Younecian, M.; Gholami, M. Determination of hydrophobic and hy-drophilic fractions of natural organic matter in raw water of Jalalieh and Tehranspars water treatment plants (Tehran). J. Appl. Sci. 2007, 7, 2651–2655. [Google Scholar] [CrossRef]
- Provenzano, M.R.; Cilenti, A.; Gigliotti, G.; Senesi, N. Spectroscopic Investigation on Hydrophobic and Hydrophilic Fractions of Dissolved Organic Matter Extracted from Soils at Different Salinities. CLEAN Soil Air Water 2008, 36, 748–753. [Google Scholar] [CrossRef]
- Mozes, N.; Marchal, F.; Hermesse, M.P.; Van Haecht, J.L.; Reuliaux, L.; Léonard, A.J.; Rouxhet, P.G. Immobilization of microorganisms by adhesion: Interplay of electrostatic and nonelectrostatic interactions. Biotechnol. Bioeng. 1987, 30, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Schijven, J.F.; Hassanizadeh, S.; de Bruin, R.H. Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. J. Contam. Hydrol. 2002, 57, 259–279. [Google Scholar] [CrossRef]
- Scholl, M.A.; Mills, A.L.; Herman, J.S.; Hornberger, G.M. The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. J. Contam. Hydrol. 1990, 6, 321–336. [Google Scholar] [CrossRef]
- Mills, A.L.; Herman, J.S.; Hornberger, G.M.; DeJesús, T.H. Effect of Solution Ionic Strength and Iron Coatings on Mineral Grains on the Sorption of Bacterial Cells to Quartz Sand. Appl. Environ. Microbiol. 1994, 60, 3300–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pringle, J.H.; Fletcher, M. Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. Appl. Environ. Microbiol. 1986, 51, 1321–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bales, R.C.; Hinkle, S.R.; Kroeger, T.W.; Stocking, K.; Gerba, C.P. Bacteriophage adsorption during transport through porous media: Chemical perturbations and reversibility. Environ. Sci. Technol. 1991, 25, 2088–2095. [Google Scholar] [CrossRef]
- Baughman, G.L.; Paris, D.F.; Hodson, R.E. Microbial Bioconcentration of Organic Pollutants from Aquatic Systems—A Critical Review. CRC Crit. Rev. Microbiol. 1981, 8, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, K. Hydrophobic interaction--a mechanism of bacterial binding. Scand. J. Infect. Dis. Suppl. 1982, 33, 32–36. [Google Scholar]
- Kefford, B.; Marshall, K.C. The role of bacterial surface and substratum hydrophobicity in adhesion of Leptospira biflexa serovarpatoc 1 to inert surfaces. Microb. Ecol. 1986, 12, 315–322. [Google Scholar] [CrossRef]
- Sadler, W.R.; Trudinger, P.A. The inhibition of microorganisms by heavy metals. Miner. Deposita 1967, 2, 158–168. [Google Scholar] [CrossRef]
- Loveless, J.E.; Painter, H.A. The Influence of Metal Ion Concentrations and pH Value on the Growth of a Nitrosomonas Strain Isolated from Activated Sludge. J. Gen. Microbiol. 1968, 52, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.S.; So, Y.K.; Ji, Y.K.; Hee, W.R. Quantification of inhibitory impact of heavy metals on the growth of Escherichia Coli. Korean J. Microbiol. Biotechnol. 2004, 32, 341–346. [Google Scholar]
- Elzinga, E.J.; Huang, J.-H.; Chorover, J.; Kretzschmar, R. ATR-FTIR Spectroscopy Study of the Influence of pH and Contact Time on the Adhesion ofShewanella putrefaciensBacterial Cells to the Surface of Hematite. Environ. Sci. Technol. 2012, 46, 12848–12855. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, J.; Hong, Z.; Xu, R. Adhesion of Escherichia coli and Bacillus subtilis to amorphous Fe and Al hydroxides and their effects on the surface charges of the hydroxides. J. Soils Sediments 2015, 15, 2293–2303. [Google Scholar] [CrossRef]
- Jewett, D.G.; Hilbert, T.A.; Logan, B.E.; Arnold, R.G.; Bales, R.C. Bacterial transport in laboratory columns and filters: Influence of ionic strength and pH on collision efficiency. Water Res. 1995, 29, 1673–1680. [Google Scholar] [CrossRef]
- Gannon, J.; Tan, Y.H.; Baveye, P.; Alexander, M. Effect of sodium chloride on transport of bacteria in a saturated aquifer material. Appl. Environ. Microbiol. 1991, 57, 2497–2501. [Google Scholar] [CrossRef] [Green Version]
- Yee, N.; Fein, J.B.; Daughney, C.J. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochim. Cosmochim. Acta 2000, 64, 609–617. [Google Scholar] [CrossRef]
- Cho, K.H.; Cha, S.M.; Kang, J.-H.; Lee, S.W.; Park, Y.; Kim, J.-W.; Kim, J.H. Meteorological effects on the levels of fecal indicator bacteria in an urban stream: A modeling approach. Water Res. 2010, 44, 2189–2202. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, P.; Soulsby, C.; Hunter, C.; Petry, J. Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland. Sci. Total Environ. 2003, 314-316, 289–302. [Google Scholar] [CrossRef]
DOC | HOC | CDOC | Humic Acid | |
---|---|---|---|---|
E. coli | 0.34 | – | 0.35 | 0.46 (p = 0.0300) |
Enterococcus spp. | 0.36 | – | 0.46 | 0.39 (p = 0.0007) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryal, R.; Sidhu, J.P.S.; Chong, M.N.; Toze, S.; Gernjak, W.; Mainali, B. Role of Environmental Variables in the Transport of Microbes in Stormwater. Water 2021, 13, 1146. https://doi.org/10.3390/w13091146
Aryal R, Sidhu JPS, Chong MN, Toze S, Gernjak W, Mainali B. Role of Environmental Variables in the Transport of Microbes in Stormwater. Water. 2021; 13(9):1146. https://doi.org/10.3390/w13091146
Chicago/Turabian StyleAryal, Rupak, Jatinder P. S. Sidhu, Meng Nan Chong, Simon Toze, Wolfgang Gernjak, and Bandita Mainali. 2021. "Role of Environmental Variables in the Transport of Microbes in Stormwater" Water 13, no. 9: 1146. https://doi.org/10.3390/w13091146
APA StyleAryal, R., Sidhu, J. P. S., Chong, M. N., Toze, S., Gernjak, W., & Mainali, B. (2021). Role of Environmental Variables in the Transport of Microbes in Stormwater. Water, 13(9), 1146. https://doi.org/10.3390/w13091146