Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles
Abstract
:1. Introduction
2. Description of the Cases of Study
2.1. Validation: Case 1
2.2. Validation: Case 2
2.3. Comparison between Square and Circular Obstacles
3. Methodologies
3.1. Experimental Methods
3.2. Numerical Methods
3.3. Numerical Grids
3.4. Stage-Discharge Analysis
3.5. Quadrant Analysis
4. Results
4.1. Validation: Case 1
4.2. Validation: Case 2
4.3. Comparison between Square and Circular Obstacles
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Slope S (%) | Discharge Q (m/s) | Mean Water Depth h (m) |
---|---|---|
1 | 0.01 | 0.077 |
1 | 0.02 | 0.120 |
1 | 0.03 | 0.151 |
1 | 0.04 | 0.169 |
2 | 0.01 | 0.064 |
2 | 0.02 | 0.103 |
2 | 0.03 | 0.134 |
2 | 0.04 | 0.160 |
2 | 0.05 | 0.170 |
3 | 0.01 | 0.056 |
3 | 0.02 | 0.092 |
3 | 0.03 | 0.126 |
3 | 0.04 | 0.150 |
3 | 0.05 | 0.169 |
4 | 0.01 | 0.053 |
4 | 0.02 | 0.081 |
4 | 0.03 | 0.109 |
4 | 0.04 | 0.137 |
4 | 0.05 | 0.152 |
4 | 0.06 | 0.175 |
5 | 0.01 | 0.045 |
5 | 0.02 | 0.071 |
5 | 0.03 | 0.100 |
5 | 0.04 | 0.127 |
5 | 0.05 | 0.146 |
5 | 0.06 | 0.161 |
6 | 0.01 | 0.04 |
6 | 0.02 | 0.067 |
6 | 0.03 | 0.093 |
6 | 0.04 | 0.120 |
6 | 0.05 | 0.140 |
6 | 0.06 | 0.152 |
7 | 0.02 | 0.062 |
7 | 0.03 | 0.089 |
7 | 0.04 | 0.112 |
7 | 0.05 | 0.132 |
7 | 0.06 | 0.145 |
Slope S (%) | Initial Water Depth h (m) | Discharge Q (m/s) |
---|---|---|
5 | 0.060 | |
5 | 0.100 | |
5 | 0.130 | |
5 | 0.158 | 0.051 |
5 | 0.200 |
References
- Chorda, J.; Cassan, L.; Laurens, P. Modeling Steep-Slope Flow across Staggered Emergent Cylinders: Application to Fish Passes. J. Hydraul. Eng. 2019, 145, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cassan, L.; Tien, T.; Courret, D.; Laurens, P.; Dartus, D. Hydraulic resistance of emergent macroroughness at large Froude numbers: Design of nature-like fishpasses. J. Fluids Struct. 2014, 140, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Mean Flow Characteristics in a Rock-Ramp-Type Fish Pass. J. Hydraul. Eng. 2014, 140, 156–168. [Google Scholar] [CrossRef]
- Tritico, H.M.; Cotel, A.J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Tao, L.; Gao, Z.; Dai, H.; Shi, X. Modeling Fish Movement Trajectories in Relation to Hydraulic Response Relationships in an Experimental Fishway. Water 2018, 10, 1511. [Google Scholar] [CrossRef] [Green Version]
- Cotel, A.J.; Webb, P.W. Living in a Turbulent World—A New Conceptual Framework for the Interactions of Fish and Eddies. Integr. Comp. Biol. 2015, 55, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Oertel, M.; Peterseim, S.; Schlenkhoff, A. Drag coefficients of boulders on a block ramp due to interaction processes. J. Hydraul. Eng. 2011, 49, 372–377. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Turbulence Characteristics in a Rock-Ramp-Type Fish Pass. J. Hydraul. Eng. 2015, 141, 1–14. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Flow Structures in the Vicinity of a Submerged Boulder within a Boulder Array. J. Hydraul. Eng. 2016, 143, 1–13. [Google Scholar] [CrossRef]
- Golpira, A.; Huang, F.; Baki, A.B.M. The Effect of Habitat Structure Boulder Spacing on Near-Bed Shear Stress and Turbulent Events in a Gravel Bed Channel. Water 2020, 12, 1423. [Google Scholar] [CrossRef]
- Golpira, A.; Baki, A.B.; Zhu, D.Z. Higher-order Velocity Moments, Turbulence Scales and Energy Dissipation Rate around a Boulder in a Rock-ramp Fish Passage. Sustainability 2020, 12, 5385. [Google Scholar] [CrossRef]
- Baki, A.B.M.; Zhu, D.Z.; Rajaratnam, N. Flow Simulation in a Rock-Ramp Fish Pass. J. Hydraul. Eng. 2016, 142, 1–12. [Google Scholar] [CrossRef]
- Tseng, M.H.; Yen, C.L.; Song, C.C.S. Computation of three-dimensional flow around square and circular piers. Int. J. Numer. Methods Fluids 2000, 34, 207–227. [Google Scholar] [CrossRef]
- Tran, T.D.; Chorda, J.; Laurens, P.; Cassan, L. Modelling nature-like fishway flow around unsubmerged obstacles using a 2D shallow water model. Environ. Fluid Mech. 2016, 16, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Larinier, M.; Courret, D.; Gomes, P. Technical Guide to the Concept on Nature-Like Fishways. Rapport GHAAPPE RA.06.05-V1. 2006. Available online: http://www.trameverteetbleue.fr/sites/default/files/references_bibliographiques/guide_passes_poissons.pdf (accessed on 23 April 2021).
- Smagorinsky, J. General circulation experiments with the primitive equations, 1. the basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Hirt, C.W.; Hirt, B.N. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Greenshields, C.J. OpenFOAM User Guide. OpenFOAM Foundation Ltd., 2020. Available online: http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf (accessed on 23 April 2021).
- Cassan, L.; Laurens, P. Design of emergent and submerged rock-ramp fish passes. Knowl. Manag. Aquat. Ecosyst. 2016, 417, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ducrocq, T.; Cassan, L.; Chorda, J.; Roux, H. Flow and drag force around a free surface piercing cylinder for environmental applications. Environ. Fluid Mech. 2017, 17, 629–645. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.W.J.; Roy, A.G. Fine-Scale Characterization of the Turbulent Shear Layer of an Instream Pebble Cluster. J. Hydraul. Eng. 2008, 134, 925–936. [Google Scholar] [CrossRef]
- Pope, S. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 2004, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.W.J.; Rennie, C.D. Laboratory Investigation of Turbulent Flow Structure around a Bed-Mounted Cube at Multiple Flow Stages. J. Hydraul. Eng. 2012, 71, 71–84. [Google Scholar] [CrossRef]
- Martinuzzi, R.; Tropea, C. Flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. J. Fluids Eng. 1993, 115, 85–92. [Google Scholar] [CrossRef]
- Larousse, A.; Martinuzzi, R.; Tropea, C. Flow Around Surface-Mounted, Three-Dimensional Obstacles. In Proceedings of the 8th Symposium on Turbulent Shear Flows, Munich, Germany, 9–11 September 1991. [Google Scholar]
- Lu, S.S.; Willmarth, W.W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluids Mech. 1973, 60, 481–511. [Google Scholar] [CrossRef]
- Nosier, M.A.; Elbaz, A.R.; Fetouh, T.N.A.; El-Gabry, L.A. Characteristics of turbulent wakes generated by twin parallel cylinders. J. Fluids Eng. 2012, 134, 121201–121210. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Triantafyllou, G.S.; Triantafyllou, M.S.; Grosenbaugh, M.A. Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion. J. Fluids Struct. 1993, 7, 205–224. [Google Scholar] [CrossRef]
Experiment | Simulation | |
---|---|---|
Discharge Q () | 0.040 | 0.038 |
Water depth h (m) | 0.137 | 0.137 |
Velocity between blocks () | 0.49 | 0.46 |
Reynolds number | 56,000 | 53,000 |
Froude number | 0.42 | 0.40 |
Circular * | Square | |
---|---|---|
Discharge Q () | 0.052 | 0.051 |
Initial water depth h (m) | 0.1 | 0.158 |
Velocity between blocks (m/s) | 0.83 | 0.53 |
Reynolds number | 95,000 | 61,000 |
Froude number | 0.83 | 0.42 |
Characteristics | Values |
---|---|
Size of the domain (mm) | 570 × 1000 × 220 |
Maximum cell size (mm) | 5 |
Local cell size (mm) | 2 |
Cell height (mm) | 2 |
Total number of volumes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, F.C.; Cassan, L.; Laurens, P.; Tran, T.D. Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles. Water 2021, 13, 1175. https://doi.org/10.3390/w13091175
Miranda FC, Cassan L, Laurens P, Tran TD. Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles. Water. 2021; 13(9):1175. https://doi.org/10.3390/w13091175
Chicago/Turabian StyleMiranda, Flavia Cavalcanti, Ludovic Cassan, Pascale Laurens, and Tien Dung Tran. 2021. "Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles" Water 13, no. 9: 1175. https://doi.org/10.3390/w13091175
APA StyleMiranda, F. C., Cassan, L., Laurens, P., & Tran, T. D. (2021). Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles. Water, 13(9), 1175. https://doi.org/10.3390/w13091175