How Do Ground Litter and Canopy Regulate Surface Runoff?—A Paired-Plot Investigation after 80 Years of Broadleaf Forest Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatment and Data Collection
2.3. Data Processing and Analysis
2.3.1. Storm Event Surface Runoff
2.3.2. Effects of Antecedent Precipitation on Surface Runoff
2.3.3. Rainfall Threshold
3. Results
3.1. Overall Surface Runoff and Precipitation
3.2. Event-Scale Surface Runoff in Different Phases
3.3. Surface Runoff and Antecedent Precipitation Index (API)
3.4. Rainfall Threshold for Surface Runoff Generation
4. Discussion
4.1. No-Treatment Phase
4.2. Litter Removed, before Clearcutting Phase
4.3. After Clearcutting Phase
4.4. Additional Consideration and Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Forestry Agency Annual Report on Forest and Forestry in Japan Fiscal Year 2018 (Summary). Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/30hakusyo/index.html (accessed on 13 April 2020).
- Forestry Agency. Annual Report on Forest and Forestry in Japan—Fiscal Year 2017. Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/29hakusyo/attach/pdf/index-1.pdf (accessed on 18 April 2021).
- Food and Agricultural Organization of the United Nations. World Deforestation Slows Down as More Forests Are Better Managed. 2015. Available online: http://www.fao.org/news/story/en/item/326911/icode/ (accessed on 18 April 2021).
- Forestry Agency. Annual Report on Forest and Forestry in Japan Fiscal Year 2015. Available online: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/27hakusyo/attach/pdf/index-1.pdf (accessed on 18 April 2021).
- The Japanese Forest Society. Forest Science; Special Issue—Possibilities of Conversion to Broadleaf Forests. 2010, Volume 59. Available online: https://www.forestry.jp/publish/ForSci/BackNo/sk59/59.pdf (accessed on 26 April 2021).
- Tanaka, N.; Kuraji, K.; Shiraki, K.; Suzuki, M.; Suzuki, M.; Ohta, T.; Suzuki, M. Throughfall, stemflow and rainfall interception at mature Cryptomeria japonica and Chamaecyparis obtusa stands in Fukuroyamasawa watershed. Bull. Tokyo Univ. For. 2005, 113, 197–240. (In Japanese) [Google Scholar]
- Miyata, S.; Kosugi, K.; Gomi, T.; Onda, Y.; Mizuyama, T. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrol. Process. 2007, 21, 2365–2376. [Google Scholar] [CrossRef]
- Sidle, R.C.; Hirano, T.; Gomi, T.; Terajima, T. Hortonian overland flow from Japanese forest plantations—an aberration, the real thing, or something in between? Hydrol. Process. 2007, 21, 3237–3247. [Google Scholar] [CrossRef]
- Murakami, S.; Tsuboyama, Y.; Shimizu, T.; Fujieda, M.; Noguchi, S. Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. J. Hydrol. 2000, 227, 114–127. [Google Scholar] [CrossRef]
- Saito, T.; Kumagai, T.; Tateishi, M.; Kobayashi, N.; Otsuki, K.; Giambelluca, T.W. Differences in seasonality and temperature dependency of stand transpiration and canopy conductance between Japanese cypress (Hinoki) and Japanese cedar (Sugi) in a plantation. Hydrol. Process. 2017, 31, 1952–1965. [Google Scholar] [CrossRef]
- Sun, X.; Onda, Y.; Otsuki, K.; Kato, H.; Gomi, T. The effect of strip thinning on forest floor evaporation in a Japanese cypress plantation. Agric. For. Meteorol. 2016, 216, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Kuraji, K.; Gomyo, M.; Nainar, A. Thinning of cypress forest increases subsurface runoff but reduces peak storm-runoff: A lysimeter observation. Hydrol. Res. Lett. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Gomyo, M.; Kuraji, K. Effect of the litter layer on runoff and evapotranspiration using the paired watershed method. J. For. Res. 2016, 21, 306–313. [Google Scholar] [CrossRef]
- Abe, Y.; Gomi, T.; Nakamura, N.; Kagawa, N. Field estimation of interception in a broadleaf forest under multi-layered structure conditions. Hydrol. Res. Lett. 2017, 11, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Onda, Y.; Gomi, T.; Mizugaki, S.; Nonoda, T.; Sidle, R.C. An overview of the field and modelling studies on the effects of forest devastation on flooding and environmental issues. Hydrol. Process. 2010, 24, 527–534. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Xie, B. Study on Hydrological functions of litter layers in North China. PLoS ONE 2013, 8, e70328. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhou, X.; Luo, Y.; Cai, M. The effects of litter layer and topsoil on surface runoff during simulated rainfall in Guizhou Province, China: A plot scale case study. Water 2018, 10, 915. [Google Scholar] [CrossRef] [Green Version]
- Miyata, S.; Kosugi, K.; Gomi, T.; Mizuyama, T. Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Walsh, R.P.D.; Voigt, P.J. Vegetation litter: An underestimated variable in hydrology and geomorphology. J. Biogeogr. 1977, 4, 253. [Google Scholar] [CrossRef]
- Sun, X.; Onda, Y.; Kato, H.; Gomi, T.; Komatsu, H. Effect of strip thinning on rainfall interception in a Japanese cypress plantation. J. Hydrol. 2015, 525, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Nainar, A.; Tanaka, N.; Sato, T.; Kuraji, K. Comparing runoff characteristics between an evergreen cypress forest and a mixed-broadleaf forest during different phenological periods in central Japan. Geophys. Res. Abstr. 2019, 21, 2019–4671. Available online: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-4671.pdf (accessed on 26 April 2021).
- Ecohydrology Research Institute. Available online: http://www.uf.a.u-tokyo.ac.jp/eri/ (accessed on 7 April 2021).
- Nainar, A.; Tanaka, N.; Sato, T.; Kishimoto, K.; Kuraji, K. A comparison of the baseflow recession constant (K) between a Japanese cypress and mixed-broadleaf forest via six estimation methods. Sustain. Water Resour. Manag. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Gomyo, M.; Kuraji, K. Long-term variation of annual loss and annual evapotranspiration in small watershed with the forest restoration and succession on denuded hills. J. Jpn. For. Soc. 2013, 95, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Gomyo, M.; Kuraji, K. Effect of litter layer on water balance and runoff at the watershed scale. Water Sci. 2016, 60, 31–45. [Google Scholar] [CrossRef]
- Ecohydrology Research Institute. Map of Ananomiya Experimental Forest; Ecohydrology Research Institute (Archive): Seto, Japan; Available online: https://www.a.u-tokyo.ac.jp/english/institute_e/ai-uforests.html (accessed on 19 April 2021).
- United States Department of Agriculture Soil Texture Calculator|NRCS Soils. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 (accessed on 22 April 2020).
- Putuhena, W.M.; Cordery, I. Estimation of interception capacity of the forest floor. J. Hydrol. 1996, 180, 283–299. [Google Scholar] [CrossRef]
- Li, X.; Niu, J.; Xie, B. The effect of leaf litter cover on surface runoff and soil erosion in Northern China. PLoS ONE 2014, 9, e107789. [Google Scholar] [CrossRef] [Green Version]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2005, 81. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Onda, Y.; Kim, M.S.; Yang, D.Y. Plot-scale study of surface runoff on well-covered forest floors under different canopy species. Quat. Int. 2014, 344, 75–85. [Google Scholar] [CrossRef]
- Butzen, V.; Seeger, M.; Marruedo, A.; de Jonge, L.; Wengel, R.; Ries, J.B.; Casper, M.C. Water repellency under coniferous and deciduous forest—Experimental assessment and impact on overland flow. Catena 2015, 133, 255–265. [Google Scholar] [CrossRef]
- Deguchi, A.; Hattori, S.; Daikoku, K.; Park, H.-T. Measurement of evaporation from the forest floor in a deciduous forest throughout the year using microlysimeter and closed-chamber systems. Hydrol. Process. 2008, 22, 3712–3723. [Google Scholar] [CrossRef]
- Benyon, R.G.; Doody, T.M. Comparison of interception, forest floor evaporation and transpiration in Pinus radiata and Eucalyptus globulus plantations. Hydrol. Process. 2015, 29, 1173–1187. [Google Scholar] [CrossRef]
- Crockford, R.H.; Richardson, D.P. Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate. Hydrol. Process. 2000, 14, 2903–2920. [Google Scholar] [CrossRef]
- Levia, D.F.; Nanko, K.; Amasaki, H.; Giambelluca, T.W.; Hotta, N.; Iida, S.; Mudd, R.G.; Nullet, M.A.; Sakai, N.; Shinohara, Y.; et al. Throughfall partitioning by trees. Hydrol. Process. 2019, 33, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, H.; Shinohara, Y.; Kume, T.; Otsuki, K. Relationship between annual rainfall and interception ratio for forests across Japan. For. Ecol. Manag. 2008, 256, 1189–1197. [Google Scholar] [CrossRef]
- Vernimmen, R.R.E.; Bruijnzeel, L.A.; Romdoni, A.; Proctor, J. Rainfall interception in three contrasting lowland rain forest types in Central Kalimantan, Indonesia. J. Hydrol. 2007, 340, 217–232. [Google Scholar] [CrossRef]
- Chappell, N.A.; Bidin, K.; Tych, W. Modelling rainfall and canopy controls on net-precipitation beneath selectively-logged tropical forest. Plant. Ecol. 2001, 153, 215–229. [Google Scholar] [CrossRef]
- Reid, L.M.; Lewis, J. Rates, timing, and mechanisms of rainfall interception loss in a coastal redwood forest. J. Hydrol. 2009, 375, 459–470. [Google Scholar] [CrossRef]
- Nanko, K.; Onda, Y.; Ito, A.; Ito, S.; Mizugaki, S.; Moriwaki, H. Variability of surface runoff generation and infiltration rate under a tree canopy: Indoor rainfall experiment using Japanese cypress (Chamaecyparis obtusa). Hydrol. Process. 2010, 24, 567–575. [Google Scholar] [CrossRef]
- Oishi, A.C.; Oren, R.; Stoy, P.C. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 2008, 148, 1719–1732. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Jia, L. Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology 2020, 13, e2186. [Google Scholar] [CrossRef] [Green Version]
- Vesala, T.; Suni, T.; Rannik, Ü.; Keronen, P.; Markkanen, T.; Sevanto, S.; Grönholm, T.; Smolander, S.; Kulmala, M.; Ilvesniemi, H.; et al. Effect of thinning on surface fluxes in a boreal forest. Global Biogeochem. Cycles 2005, 19, GB2001. [Google Scholar] [CrossRef]
- Ishii, H.T.; Maleque, M.A.; Taniguchi, S. Line thinning promotes stand growth and understory diversity in Japanese cedar (Cryptomeria japonica D. Don) plantations. J. For. Res. 2008, 13, 73–78. [Google Scholar] [CrossRef]
- Daikoku, K.; Hattori, S.; Deguchi, A.; Aoki, Y.; Miyashita, M.; Matsumoto, K.; Akiyama, J.; Iida, S.; Toba, T.; Fujita, Y.; et al. Influence of evaporation from the forest floor on evapotranspiration from the dry canopy. Hydrol. Process. 2008, 22, 4083–4096. [Google Scholar] [CrossRef]
- Germer, S.; Werther, L.; Elsenbeer, H. Have we underestimated stemflow? Lessons from an open tropical rainforest. J. Hydrol. 2010, 395, 169–179. [Google Scholar] [CrossRef]
- Su, L.; Xu, W.; Zhao, C.; Xie, Z.; Ju, H. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest. J. Hydrol. 2016, 537, 1–9. [Google Scholar] [CrossRef]
- Kuraji, K.; Tanaka, Y.; Tanaka, N.; Karakama, I. Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrol. Process. 2001, 15, 1967–1978. [Google Scholar] [CrossRef]
- Tanaka, N.; Levia, D.; Igarashi, Y.; Yoshifuji, N.; Tanaka, K.; Tantasirin, C.; Nanko, K.; Suzuki, M.; Kumagai, T. What factors are most influential in governing stemflow production from plantation-grown teak trees? J. Hydrol. 2017, 544, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Dung, B.X.; Gomi, T.; Miyata, S.; Sidle, R.C.; Kosugi, K.; Onda, Y. Runoff responses to forest thinning at plot and catchment scales in a headwater catchment draining Japanese cypress forest. J. Hydrol. 2012, 444–445, 51–62. [Google Scholar] [CrossRef]
- Dung, B.X.; Miyata, S.; Gomi, T. Effect of forest thinning on overland flow generation on hillslopes covered by Japanese cypress. Ecohydrology 2011, 4, 367–378. [Google Scholar] [CrossRef]
- Mu, W.; Yu, F.; Li, C.; Xie, Y.; Tian, J.; Liu, J.; Zhao, N. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water 2015, 7, 2990–3008. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Liu, H.; Zhao, Y.; Wang, Q.; Wu, Z.; Deng, L.; Gao, H. Effects of rainfall intensity, slope angle, and vegetation coverage on the erosion characteristics of Pisha sandstone slopes under simulated rainfall conditions. Environ. Sci. Pollut. Res. 2020, 27, 17458–17467. [Google Scholar] [CrossRef]
- Dos Santos, J.C.N.; de Andrade, E.M.; Medeiros, P.H.A.; Guerreiro, M.J.S.; de Queiroz Palácio, H.A. Effect of rainfall characteristics on runoff and water erosion for different land uses in a tropical semiarid region. Water Resour. Manag. 2017, 31, 173–185. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, L.; Xia, Z.; Xu, W.; Xia, L.; Liang, Y.; Xia, D. Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Adv. Civ. Eng. 2019, 2019, 7043428. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
Parameter | No Treatment | Litter Removal before Clearcut | After Clearcut | |||
---|---|---|---|---|---|---|
Plot A | Plot B | Plot A | Plot B | Plot A | Plot B | |
Rainfall, P (mm) | 519.0 | 1993.5 | 1194.0 | |||
Total runoff, Q (mm) | 22.4 | 12.3 | 33.0 | 88.8 | 10.1 | 113.7 |
Runoff ratio, C | 0.043 | 0.024 | 0.017 | 0.045 | 0.008 | 0.095 |
Normalised runoff ratio, CN | 0.558 | 2.647 | 11.875 | |||
n | 20 | 54 | 42 | |||
min (mm) | 0.135 | 0.074 | 0.054 | 0.049 | 0.054 | 0.123 |
max (mm) | 4.027 | 2.420 | 3.568 | 14.840 | 1.162 | 11.235 |
mean (mm) | 1.120 | 0.615 | 0.612 | 1.644 | 0.241 | 2.707 |
SD (mm) | 1.102 | 0.708 | 0.635 | 2.264 | 0.243 | 2.430 |
Freq. QB: Freq. QA, TB/A | 0.977 | 2.292 | 7.250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nainar, A.; Kishimoto, K.; Takahashi, K.; Gomyo, M.; Kuraji, K. How Do Ground Litter and Canopy Regulate Surface Runoff?—A Paired-Plot Investigation after 80 Years of Broadleaf Forest Regeneration. Water 2021, 13, 1205. https://doi.org/10.3390/w13091205
Nainar A, Kishimoto K, Takahashi K, Gomyo M, Kuraji K. How Do Ground Litter and Canopy Regulate Surface Runoff?—A Paired-Plot Investigation after 80 Years of Broadleaf Forest Regeneration. Water. 2021; 13(9):1205. https://doi.org/10.3390/w13091205
Chicago/Turabian StyleNainar, Anand, Koju Kishimoto, Koichi Takahashi, Mie Gomyo, and Koichiro Kuraji. 2021. "How Do Ground Litter and Canopy Regulate Surface Runoff?—A Paired-Plot Investigation after 80 Years of Broadleaf Forest Regeneration" Water 13, no. 9: 1205. https://doi.org/10.3390/w13091205