Comparison of Different Magnesium Hydroxide Coatings Applied on Concrete Substrates (Sewer Pipes) for Protection against Bio-Corrosion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concrete Specimens
2.2. Surface Coatings
2.2.1. Preparation of Magnesium Hydroxide Powders
2.2.2. Preparation of Coatings
2.3. Scanning Electron Microscopy (SEM) Analysis
2.4. Sulfuric Acid Spraying Tests
2.4.1. First Acid Spraying Test
2.4.2. Second Acid Spraying Test
2.5. X-ray Diffraction (XRD) Analysis
3. Results
3.1. Adhesion Measurements
3.2. SEM Analysis
3.3. Accelerated Acid Spraying Tests
3.3.1. First Acid Spraying Test
3.3.2. Second Acid Spraying Test
3.4. XRD Analysis
3.4.1. First Acid Spraying Test
3.4.2. Second Acid Spraying Test
4. Discussion
4.1. Effect of Particle Size Distribution
4.2. Effect of Specific Surface Area and Purity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roghanian, N.; Banthia, N. Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cem. Concr. Compos. 2019, 100, 99–107. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Camões, A.; Moreira, P.M. Coatings for Concrete Protection against Aggressive Environments. J. Adv. Concr. Technol. 2008, 6, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Berndt, M. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Constr. Build. Mater. 2011, 25, 3893–3902. [Google Scholar] [CrossRef]
- ASCE (American Society of Civil Engineers); WPCF (Water Pollution Control Federation). Gravity Sanitary Sewer Design and Construction; American Society of Civil Engineers: Reston, VA, USA, 2007. [Google Scholar] [CrossRef]
- Parker, C. The corrosion of concrete. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulfide. Aust. J. Exp. Biol. Med. Sci. 1945, 23, 81–90. [Google Scholar] [CrossRef]
- Parker, C. The corrosion of concrete. The function of Thiobacillus Concretivorus in the corrosion of concrete exposed to atmospheres containing hydrogen sulfirde. Aust. J. Exp. Biol. Med. Sci. 1945, 23, 91–98. [Google Scholar] [CrossRef]
- Parker, C.D. Species of Sulphur Bacteria Associated with the Corrosion of Concrete. Nature 1947, 159, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Islander, R.L.; Devinny, J.S.; Mansfeld, F.; Postyn, A.; Shih, H. Microbial Ecology of Crown Corrosion in Sewers. J. Environ. Eng. 1991, 117, 751–770. [Google Scholar] [CrossRef]
- Wu, M.; Wang, T.; Wu, K.; Kan, L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, A.H. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks; CRC Press: Cleveland, OH, USA, 2013. [Google Scholar]
- Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems. Appl. Environ. Microbiol. 2007, 73, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 1992, 26, 29–37. [Google Scholar] [CrossRef]
- Wells, T.; Melchers, R.E. Findings of a 4 Year Study of Concrete Sewer Pipe Corrosion; Australasian Corrosion Association: Preston, VIC, Australia, 2014. [Google Scholar]
- Wells, T.; Melchers, R.E.; Bond, P. Factors Involved in the Long Term Corrosion of Concrete Sewers; Semantic Scholar: Seattle, WA, USA, 2009. [Google Scholar]
- Sydney, R.; Esfandi, E.; Surapaneni, S. Control Concrete Sewer Corrosion via the Crown Spray Process. Water Environ. Res. 1996, 68, 338–347. [Google Scholar] [CrossRef]
- Wang, T.; Wu, K.; Kan, L.; Wu, M. Current understanding on microbiologically induced corrosion of concrete in sewer structures: A review of the evaluation methods and mitigation measures. Constr. Build. Mater. 2020, 247, 118539. [Google Scholar] [CrossRef]
- Araghi, H.J.; Nikbin, I.; Reskati, S.R.; Rahmani, E.; Allahyari, H. An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Constr. Build. Mater. 2015, 77, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Vincke, E.; Van Wanseele, E.; Monteny, J.; Beeldens, A.; De Belie, N.; Taerwe, L.; Van Gemert, D.; Verstraete, W. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int. Biodeterior. Biodegrad. 2002, 49, 283–292. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Vollertsen, J.; Jensen, H.S.; Wium-Andersen, T.; Hvitved-Jacobsen, T. Influence of pipe material and surfaces on sulfide related odor and corrosion in sewers. Water Res. 2008, 42, 4206–4214. [Google Scholar] [CrossRef] [PubMed]
- James, J. Controlling sewer crown corrosion using the crown spray process with magnesium hydroxide. Proc. Water Environ. Fed. 2003, 2003, 259–268. [Google Scholar] [CrossRef]
- Merachtsaki, D.; Fytianos, G.; Papastergiadis, E.; Samaras, P.; Yiannoulakis, H.; Zouboulis, A. Properties and Performance of Novel Mg(OH)2-Based Coatings for Corrosion Mitigation in Concrete Sewer Pipes. Materials 2020, 13, 5291. [Google Scholar] [CrossRef] [PubMed]
- Monteny, J.; De Belie, N.; Vincke, E.; Verstraete, W.; Taerwe, L. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem. Concr. Res. 2001, 31, 1359–1365. [Google Scholar] [CrossRef]
- Wells, T.; Melchers, R. An observation-based model for corrosion of concrete sewers under aggressive conditions. Cem. Concr. Res. 2014, 61–62, 1–10. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Brenna, A.; Bolzoni, F.; Berra, M.; Pastore, T.; Ormellese, M. Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Constr. Build. Mater. 2013, 49, 720–728. [Google Scholar] [CrossRef]
- European Committee for Standarization. ΕΝ 1542:1999: Products and Systems for the Protection and Repair of Concrete Structures—Test Methods —Measurement of Bond Strength by Pull-Off; BSI: London, UK, 1999. [Google Scholar]
- European Committee for Standarization. ΕΝ 13578:2003: Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Compatibility on Wet Concrete; BSI: London, UK, 2003. [Google Scholar]
Powder | CCM | Hydration | ||||
---|---|---|---|---|---|---|
Grade | MgO Content Nominal (%) | SSA (m2/g) | MgCl2 (M) | MgAc (M) | Hours at 90 °C | |
C1 | Low | 82.34 | 17.7 | 0.015 | 0 | 3 |
C2 | Low | 82.34 | 17.7 | 0.015 | 0 | 3 |
C3 | Medium, low reactivity | 91.77 | 17.2 | 0.015 | 0 | 4 |
C4 | Low | 82.34 | 17.7 | 0 | 0.05 | 5 |
C5 | Medium, high reactivity | 90.30 | 46.8 | 0.015 | 0 | 3 |
Material | MgO | SiO2 | CaO | Fe2O3 | Al2O3 | SO3 | LOI |
---|---|---|---|---|---|---|---|
C1 | 63.49 | 8.77 | 2.30 | 0.15 | 0.15 | 0.11 | 25.03 |
C2 | 63.15 | 8.73 | 2.29 | 0.15 | 0.15 | 0.11 | 25.42 |
C3 | 66.54 | 3.05 | 1.48 | 0.07 | 0.07 | 0.09 | 28.70 |
C4 | 61.91 | 8.80 | 2.31 | 0.15 | 0.15 | 0.11 | 26.57 |
C5 | 65.00 | 3.32 | 1.52 | 0.08 | 0.05 | 0.14 | 29.90 |
Material | Total Alkalinity (%) | SSA (m2/g) | PSD (μm) | |
---|---|---|---|---|
d50 | d90 | |||
C1 | 58.2 | 13.1 | 17.80 | 69.1 |
C2 | 59.0 | 18.7 | 8.40 | 29.5 |
C3 | 63.5 | 11.2 | 10.54 | 39.9 |
C4 | 59.8 | 13.2 | 9.54 | 40.8 |
C5 | 62.6 | 32.3 | 9.90 | 38.1 |
Coating | fh (MPa) | SD (MPa) | Type of Failure | |
---|---|---|---|---|
A/B (%) 1 | B (%) 2 | |||
C1 | 0.36 | 0.054 | 27.5 | 72.5 |
C2 | 0.31 | 0.052 | 32.5 | 67.5 |
C3 | 0.42 | 0.055 | 96 | 4 |
C4 | 0.24 | 0.031 | 0 | 100 |
C5 | 0.13 | 0.029 | 4 | 96 |
Weight % | |||
---|---|---|---|
Elements | Spectrum 1 | Spectrum 2 | Spectrum 3 |
Mg | 89.92 | 1.56 | 3.37 |
Si | 5.93 | 1.36 | 16.00 |
Ca | 4.14 | 97.09 | 80.63 |
Mg(OH)2 Powder | Coated Specimens | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SSA | PSD a | A/B (%) b | B (%) c | pH1 d | pH2 (Dry) d | pH2 (Wet) d | Hardness2 | Thickness1 (%) e | Hexahydrite1 | |
C1 | low | high | √ | x | >8.5 | 6.4 | 6.2 | - | −26.0 | - |
C2 | low | low | √ | x | >8.0 | 5.2 | 5.9 | x | −30.8 | + |
C3 | low | medium | x | √ | >8.0 | 7.4 | 8.2 | √ | −45.1 | ++ |
C4 | low | medium | √ | x | >8.0 | 8.0 | 7.9 | √ | −30.1 | +++ |
C5 | high | medium | √ | x | >8.0 | 9.0 | 8.7 | - | −13.6 | +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merachtsaki, D.; Tsardaka, E.-C.; Anastasiou, E.K.; Yiannoulakis, H.; Zouboulis, A. Comparison of Different Magnesium Hydroxide Coatings Applied on Concrete Substrates (Sewer Pipes) for Protection against Bio-Corrosion. Water 2021, 13, 1227. https://doi.org/10.3390/w13091227
Merachtsaki D, Tsardaka E-C, Anastasiou EK, Yiannoulakis H, Zouboulis A. Comparison of Different Magnesium Hydroxide Coatings Applied on Concrete Substrates (Sewer Pipes) for Protection against Bio-Corrosion. Water. 2021; 13(9):1227. https://doi.org/10.3390/w13091227
Chicago/Turabian StyleMerachtsaki, Domna, Eirini-Chrysanthi Tsardaka, Eleftherios K. Anastasiou, Haris Yiannoulakis, and Anastasios Zouboulis. 2021. "Comparison of Different Magnesium Hydroxide Coatings Applied on Concrete Substrates (Sewer Pipes) for Protection against Bio-Corrosion" Water 13, no. 9: 1227. https://doi.org/10.3390/w13091227
APA StyleMerachtsaki, D., Tsardaka, E. -C., Anastasiou, E. K., Yiannoulakis, H., & Zouboulis, A. (2021). Comparison of Different Magnesium Hydroxide Coatings Applied on Concrete Substrates (Sewer Pipes) for Protection against Bio-Corrosion. Water, 13(9), 1227. https://doi.org/10.3390/w13091227