Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
Field Experiments
3. Results and Discussion
3.1. Spatial Variation Characteristics of Preferential Flow
3.2. Effect of Preferential Flow on Solute Transport
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Zhang, R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine. J. Hydrol. 2011, 397, 105–117. [Google Scholar] [CrossRef]
- Nimmo, J.R. Preferential flow occurs in unsaturated conditions. Hydrol. Process. 2012, 26, 786–789. [Google Scholar] [CrossRef]
- Sheng, F.; Liu, H.; Kang, W.; Zhang, R.; Tang, Z. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model. J. Hydrol. 2014, 508, 137–146. [Google Scholar] [CrossRef]
- Legout, A.; Legout, C.; Nys, C.; Dambrine, E. Preferential flow and slow convective chloride transport through the soil of a forested landscape (Fougères, France). Geoderma 2009, 151, 179–190. [Google Scholar] [CrossRef]
- Heijdena, G.d.; Legouta, A.; Polliera, B.; Bréchetb, C.; Rangera, J.; Dambrinec, E. Tracing and modeling preferential flow in a forest soil—Potential impact on nutrient leaching. Geoderma 2013, 195–196, 12–22. [Google Scholar] [CrossRef]
- Jarvis, N.J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 2007, 58, 523–546. [Google Scholar] [CrossRef]
- Forsmann, D.M.; Kjaergaard, C. Phosphorus release from anaerobic peat soils during convective discharge—Effect of soil Fe:P molar ratio and preferential flow. Geoderma 2014, 223–225, 21–32. [Google Scholar] [CrossRef]
- Alaoui, A. Modelling susceptibility of grassland soil to macropore flow. J. Hydrol. 2015, 525, 536–546. [Google Scholar] [CrossRef]
- Yi, J.; Yang, Y.; Liu, M.; Hu, W.; Zhang, D. Characterising macropores and preferential flow of mountainous forest soils with contrasting human disturbances. Soil Res. 2019, 57, 601–614. [Google Scholar] [CrossRef]
- Vidon, P.; Cuadra, P.E. Impact of precipitation characteristics on soil hydrology in tile-drained landscapes. Hydrol. Process. 2010, 24, 1821–1833. [Google Scholar] [CrossRef]
- Sheng, F.; Kang, W.; Zhang, R.; Liu, H. Characterizing soil preferential flow using iodine–starch staining experiments and the active region model. J. Hydrol. 2009, 367, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cheng, J. Application of Landscape Pattern Analysis to Quantitatively Evaluate the Spatial Structure Characteristics of PreferentialFlow Paths in Farmland. Appl. Eng. Agric. 2016, 32, 203–215. [Google Scholar] [CrossRef]
- Grant, K.N.; Macrae, M.L.; Ali, G.A. Differences in preferential flow with antecedent moisture conditions and soil texture: Implications for subsurface P transport. Hydrol. Process. 2019, 33, 2068–2079. [Google Scholar] [CrossRef]
- Murielle, G.; Sidle, R.C.; Alexia, S. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability. BioScience 2011, 61, 869–879. [Google Scholar] [CrossRef]
- Yao, J.; Cheng, J.; Sun, L.; Zhang, X.; Zhang, H. Effect of Antecedent Soil Water on Preferential Flow in Four Soybean Plots in Southwestern China. Soil Sci. 2017, 182, 1. [Google Scholar] [CrossRef]
- Mooney, S.J.; Morris, C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography. Catena 2008, 73, 204–211. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Lian, J.; Fu, Z.; Nie, Y. Preferential Flow in Different Soil Architectures of a Small Karst Catchment. Vadose Zone J. 2018, 17, 2–10. [Google Scholar] [CrossRef]
- Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resour. Res. 2014, 50, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, X.; Cheng, J.; Hou, F. Response of Preferential Soil Flow to Different Infiltration Rates and Vegetation Types in the Karst Region of Southwest China. Water 2020, 12, 1778. [Google Scholar] [CrossRef]
- Hardie, M.; Doyle, R.; Cotching, W.; Holz, G.; Lisson, S. Hydropedology and Preferential Flow in the Tasmanian Texture-Contrast Soils. Vadose Zone J. 2013, 12, 108–112. [Google Scholar] [CrossRef]
- Markus, W.; Felix, N. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol. Process. 2003, 17, 477–493. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, W. Characteristics of preferential flow during simulated rainfall events in an arid region of China. Environ. Earth Sci. 2016, 75, 566. [Google Scholar] [CrossRef]
- Luo, Z.; Niu, J.; Xie, B.; Zhang, L.; Zhu, S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests 2019, 10, 986. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Xu, Y.; Liu, Y.; Gao, L.; Yao, X. Quantitative determination of preferential flow characteristics of loess based on nonuniformity and fractional dimension. Trans. CSAE 2017, 33, 140–147. [Google Scholar] [CrossRef]
- Schaik, N.L.M.B.V. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena 2009, 78, 36–47. [Google Scholar] [CrossRef]
- Makowski, V.; Julich, S.; Feger, K.H.; Breuer, L.; Julich, D. Leaching of dissolved and particulate phosphorus via preferential flow pathways in a forest soil: An approach using zero-tension lysimeters. J. Plant. Nutr. Soil Sci. 2020, 183, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, J.; Lin, W.; Wang, G. Appling dyeing tracer to investigate patterns of soil water flow and quantify preferential flow in soil columns. Trans. CSAE 2014, 30, 82–90. [Google Scholar] [CrossRef]
- Ghafoor, A.; Koestel, J.; Larsbo, M.; Moeys, J.; Jarvis, N. Soil properties and susceptibility to preferential solute transport in tilled topsoil at the catchment scale. J. Hydrol. 2013, 492, 190–199. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Li, M.; Cheng, J.; Lu, W. Infiltration characteristics of water in forest soils in the Simian mountains, Chongqing City, southwestern China. Front. For. China 2009, 4, 338–343. [Google Scholar] [CrossRef]
- Kramers, G.; Richards, K.G.; Holden, N.M. Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma 2009, 153, 362–371. [Google Scholar] [CrossRef]
Depth (cm) | Sand Content (%) (2–0.02 mm) | Silt Content (%) (0.02–0.002 mm) | Clay Content (%) (≤0.002 mm) | Bulk Density (g·cm3) | Total Porosity (%) | Organic Matter Content (%) |
---|---|---|---|---|---|---|
0–10 | 66.33 ± 6.03 | 28.76 ± 1.03 | 4.91 ± 0.09 | 1.05 ± 0.07 | 60.30 ± 8.83 | 4.78 ± 0.23 |
10–20 | 59.34 ± 3.34 | 30.67 ± 0.78 | 9.99 ± 0.23 | 1.13 ± 0.03 | 58.15 ± 3.08 | 4.33 ± 0.12 |
20–30 | 45.32 ± 2.92 | 42.19 ± 2.26 | 12.49 ± 0.43 | 1.22 ± 0.06 | 50.95 ± 1.98 | 3.21 ± 0.13 |
30–40 | 44.32 ± 3.00 | 43.18 ± 2.23 | 12.50 ± 0.48 | 1.30 ± 0.02 | 52.20 ± 1.89 | 2.56 ± 0.13 |
40–50 | 43.21 ± 4.25 | 46.03 ± 1.30 | 10.76 ± 0.92 | 1.29 ± 0.03 | 49.36 ± 1.23 | 2.01 ± 0.12 |
50–60 | 40.45 ± 3.74 | 49.06 ± 3.24 | 10.49 ± 0.45 | 1.27 ± 0.05 | 49.71 ± 0.89 | 1.54 ± 0.11 |
Level | Plots | Sequence of Matrix Solution Application | Total Applied Solution Amount (mm) | Period of Mixture Solution Infiltration (min) |
---|---|---|---|---|
P20 | Plot 1 | KI + KBr | 20 | 13 |
Plot 2 | KI + KNO3 | 20 | 15 | |
P40 | Plot 3 | KI + KBr → KI + KBr | 40 | 17 → 44 |
Plot 4 | KI + KBr → KI + KNO3 | 40 | 20 → 39 | |
P60 | Plot 5 | KI + KBr → KI + KBr → KI + KBr | 60 | 14 → 38 → 35 |
Plot 6 | KI + KBr → KI + KBr → KI + KNO3 | 60 | 15 → 45 → 40 |
Soil Depth (cm) | Root Diameter | ||||
---|---|---|---|---|---|
<1 mm | 1–3 mm | 3–5 mm | 5–10 mm | >10 mm | |
0–5 | 2549 ± 322 | 1284 ± 211 | 499 ± 142 | 125 ± 23 | 19 ± 12 |
5–10 | 1504 ± 97 | 528 ± 200 | 139 ± 53 | 54 ± 8 | 20 ± 11 |
10–15 | 2058 ± 88 | 426 ± 44 | 149 ± 40 | 138 ± 22 | 38 ± 10 |
15–20 | 2068 ± 282 | 394 ± 86 | 189 ± 40 | 104 ± 58 | 23 ± 10 |
20–25 | 720 ± 182 | 476 ± 112 | 111 ± 62 | 87 ± 54 | 38 ± 13 |
25–30 | 565 ± 300 | 212 ± 0 | 243 ± 13 | 44 ± 0 | 0 ± 0 |
30–35 | 373 ± 58 | 396 ± 58 | 158 ± 31 | 27 ± 1 | 0 ± 0 |
35–40 | 366 ± 21 | 122 ± 6 | 48 ± 6 | 0 ± 0 | 0 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yao, J.; Yan, R.; Cheng, J. Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water 2021, 13, 1301. https://doi.org/10.3390/w13091301
Li M, Yao J, Yan R, Cheng J. Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water. 2021; 13(9):1301. https://doi.org/10.3390/w13091301
Chicago/Turabian StyleLi, Mingfeng, Jingjing Yao, Ru Yan, and Jinhua Cheng. 2021. "Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China" Water 13, no. 9: 1301. https://doi.org/10.3390/w13091301
APA StyleLi, M., Yao, J., Yan, R., & Cheng, J. (2021). Effects of Infiltration Amounts on Preferential Flow Characteristics and Solute Transport in the Protection Forest Soil of Southwestern China. Water, 13(9), 1301. https://doi.org/10.3390/w13091301