Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.1.1. Description of the Study Site
2.1.2. Experimental Design and Treatments
2.2. Modelling Approach
2.2.1. The SIMDualKc Model
2.2.2. Kcb from Fraction of Ground Cover and Height
2.3. Model Setup
2.4. Calibration and Validation of the SIMDualKc Model
3. Results and Discussion
3.1. Parametrization of the SIMDualKc Model
3.2. Performance of the SIMDualKc Model
3.3. SIMDualKc vs. A&P Approach
3.4. Dynamics of Crop Coefficients and the Soil Water Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langgut, D. The citrus route revealed: From southeast Asia into the Mediterranean. HortScience 2017, 52, 814–822. [Google Scholar] [CrossRef]
- Matheyambath, A.C.; Padmanabhan, P.; Paliyath, G. Citrus Fruits. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 136–140. [Google Scholar] [CrossRef]
- Lacirignola, C.; D’Onghia, A.M. The Mediterranean citriculture: Productions and perspectives. In Citrus Tristeza Virus and Toxoptera Citricidus: A Serious Threat to the Mediterranean Citrus Industry; D’Onghia, A.M., Djelouah, K., Roistacher, C.N., Eds.; Options Méditerranéennes: Série B. Etudes et Recherches; n. 65; CIHEAM: Bari, Italy, 2009; pp. 13–17. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Statistics. Available online: https://www.fao.org/statistics/en/ (accessed on 21 January 2022).
- Westlake, M. The citrus sub-sector. Syrian agriculture at the crossroads. In Syrian Agriculture at the Crossroads, FAO Agricultural Policy and Economic Development Series No. 8; Fiorillo, C., Vercueil, J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Chapter 8; pp. 193–216. [Google Scholar]
- Wattenbach, H. Farming Systems of the Syrian Arab Republic; FAO Project GCP/SYR/006/ITA; The National Agricultural Policy Center (NAPC): Damascus, Syria, 2006. [Google Scholar]
- Central Bureau of Statistics. Agriculture, Chapter 4., Tables 7 and 10, Damascus, Syria. Available online: http://cbssyr.sy/index-EN.htm (accessed on 28 December 2021).
- Oweis, T.; Rodrigues, P.N.; Pereira, L.S. Simulation of supplemental irrigation strategies for wheat in Near East to cope with water scarcity. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Kluwer: Dordrecht, The Netherlands, 2003; pp. 259–272. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Sagardoy, J.A. Irrigation water policies in Syria: Current developments and future options. In Syrian Agriculture at the Crossroads; Fiorillo, C., Vercueil, J., Eds.; FAO Agricultural Policy and Economic Development Series No. 8; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Chapter 13; pp. 335–360. [Google Scholar]
- Sadiddin, A. An assessment of policy impact on agricultural water use in the northeast of Syria. Environ. Dev. Sustain. 2013, 2, 74–105. [Google Scholar] [CrossRef] [Green Version]
- Mourad, K.A.; Alshihabi, O. Assessment of future Syrian water resources supply and demand by the WEAP model. Hydrol. Sci. J. 2016, 61, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Abou Zakhem, B.; Al Ain, F.; Hafez, R. Assessment of field water budget components for increasing water productivity under drip irrigation in arid and semiarid areas, Syria. Irrig. Drain. 2019, 68, 452–463. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. Discuss. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Darouich, H.; Gonçalves, J.M.; Muga, A.; Pereira, L.S. Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis. Agric. Water Manag. 2012, 115, 223–231. [Google Scholar] [CrossRef]
- Darouich, H.; Pedras, C.M.G.; Gonçalves, J.M.; Pereira, L.S. Drip vs. surface irrigation: A comparison focusing water saving and economic returns using multicriteria analysis applied to cotton. Biosyst. Eng. 2014, 122, 74–90. [Google Scholar] [CrossRef]
- Darouich, H.; Cameira, R.M.; Gonçalves, J.M.; Paredes, P.; Pereira, L.S. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water 2017, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Janat, M. Efficiency of nitrogen fertilizer for potato under fertigation utilizing a nitrogen tracer technique. Commun. Soil Sci. Plant Anal. 2007, 38, 2401–2422. [Google Scholar] [CrossRef]
- Halwani, J.; Baroudi, B.O.; Wartel, M. Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon. Sante 1999, 9, 219–223. [Google Scholar]
- Abou Zakhem, B.; Hafez, R. Environmental isotope study of seawater intrusion in the coastal aquifer (Syria). Environ. Geol. 2007, 51, 1329–1339. [Google Scholar] [CrossRef]
- Kattaa, B.; Al-Fares, W.; Al Charideh, A.R. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method. J. Environ. Manag. 2010, 91, 1103–1110. [Google Scholar] [CrossRef]
- Chard, E.D. An Economic Analysis of the Akkar Plain Project. Ph.D. Thesis, Utah State University, Logan, UT, USA, 1981. Paper 4210. [Google Scholar]
- Castel, J.R. Water use of developing citrus canopies in Valencia, Spain. In Proceedings of the IX Congress of the International Society of Citriculture, Orlando, FL, USA, 3–7 December 2000. [Google Scholar]
- Snyder, R.L.; O’Connell, N.V. Crop coefficients for microsprinkler-irrigated, clean-cultivated, mature citrus in an arid climate. J. Irrig. Drain. Eng. 2007, 33, 43–52. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Testi, L.; Orgaz, F.; García-Tejera, O.; Lopez-Bernal, A.; González-Dugo, M.V.; Ballester-Lurbe, C.; Castel, J.R.; Alarcón-Cabañero, J.J.; Nicolás-Nicolás, E.; et al. Modelling canopy conductance and transpiration of fruit trees in Mediterranean areas: A simplified approach. Agric. Forest Meteorol. 2013, 171–172, 93–103. [Google Scholar] [CrossRef]
- Consoli, S.; Vanella, D. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric. Water Manag. 2014, 143, 71–81. [Google Scholar] [CrossRef]
- Taylor, N.J.; Annandale, J.G.; Vahrmeijer, J.T.; Ibraimo, N.A.; Mahohoma, W.; Gush, M.B.; Allen, R.G. Modelling water use of subtropical fruit crops: The challenges. Acta Hortic. 2017, 1160, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Peddinti, S.R.; Kambhammettu, B.V.N.P. Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques. Agric. Water Manag. 2019, 212, 68–77. [Google Scholar] [CrossRef]
- Rallo, G.; González-Altozano, P.; Manzano-Juárez, J.; Provenzano, G. Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation. Agric. Water Manag. 2017, 180, 136–147. [Google Scholar] [CrossRef]
- Jafari, M.; Kamali, H.; Keshavarz, A.; Momeni, A. Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate. Agric. Water Manag. 2021, 248, 106769. [Google Scholar] [CrossRef]
- García-Tejero, I.; Durán-Zuazo, V.H.; Arriaga-Sevilla, J.; Muriel Fernández, J.L. Impact of water stress on citrus yield. Agron. Sustain. Dev. 2012, 32, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Ezzahar, J.; Khabba, S.; Boulet, G.; Hanich, L. Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates. Plant Biosyst. 2009, 143, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gimeno, M.A.; Bonet, L.; Provenzano, G.; Badal, E.; Intrigliolo, D.S.; Ballester, C. Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agric. Water Manag. 2018, 206, 209–216. [Google Scholar] [CrossRef]
- García Tejero, I.; Durán Zuazo, V.H.; Jiménez Bocanegra, J.A.; Muriel Fernández, J.L. Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Sci. Hort. 2011, 128, 274–282. [Google Scholar] [CrossRef]
- Ballester, C.; Castel, J.; Introgliolo, D.S.; Castel, J.R. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agric. Water Manag. 2011, 98, 1027–1032. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; Irrigation & Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Rallo, G.; Paço, T.A.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L.S. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- López-Urrea, R.; Martín de Santa Olalla, F.; Montoro, A.; López-Fuster, P. Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions. Agric. Water Manag. 2009, 96, 1031–1036. [Google Scholar] [CrossRef]
- Paço, T.; Ferreira, M.; Rosa, R.; Paredes, P.; Rodrigues, G.; Conceição, N.; Pacheco, C.; Pereira, L. The dual crop coefficient approach using a density factor to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 2012, 30, 115–126. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- González, M.G.; Ramos, T.B.; Carlesso, R.; Paredes, P.; Petry, M.T.; Martins, J.D.; Aires, N.P.; Pereira, L.S. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosyst. Eng. 2015, 132, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Martins, J.D.; Rodrigues, G.C.; Paredes, P.; Carlesso, R.; Oliveira, Z.B.; Knies, A.E.; Petry, M.T.; Pereira, L.S. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosyst. Eng. 2013, 115, 291–310. [Google Scholar] [CrossRef]
- Zhao, N.N.; Liu, Y.; Cai, J.B.; Rosa, R.; Paredes, P.; Pereira, L.S. Dual crop coefficient modelling applied to the winter wheat-summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water Manag. 2013, 117, 93–105. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Paredes, P.; D’Agostino, D.; Assif, M.; Todorovic, M.; Pereira, L.S. Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach. Agric. Water Manag. 2018, 195, 11–24. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, G.; Xu, X.; Xiong, Y.; Huang, Q. Estimating evapotranspiration of processing tomato under plastic mulch using the SIMDualKc model. Water 2018, 10, 1088. [Google Scholar] [CrossRef] [Green Version]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Eid, H.; Ramos, T.B.; Baddour, N.; Moustafa, A.; Assaad, M.I. Modeling zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach. Agric. Water Manag. 2020, 229, 105927. [Google Scholar] [CrossRef]
- Darouich, H.; Karfoul, R.; Ramos, T.B.; Moustafa, A.; Shaheen, B.; Pereira, L.S. Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region. Agric. Water Manag. 2021, 255, 107038. [Google Scholar] [CrossRef]
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1884, 1, 215–226. [Google Scholar]
- FAO; IIASA; ISRIC; ISS-CAS; JRC. Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2014. [Google Scholar]
- Coops, N.; Loughhead, A.; Ryan, P.; Hutton, R. Development of daily spatial heat unit mapping from monthly climatic surfaces for the Australian continent. Int. J. Geogr. Inf. Syst. 2001, 15, 345–361. [Google Scholar] [CrossRef]
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Chang. 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Samaradiwakara, S.D.; Champa, W.A.H.; Eeswara, J.P. Effect of thermal summation on harvest maturity of Citrus aurantifolia Swingle ‘Local’. Acta hortic. 2020, 1278, 53–58. [Google Scholar] [CrossRef]
- González-Altozano, P.; Castel, J.R. Regulated deficit irrigation in ‘Clementina de Nules’ citrus trees. II: Vegetative growth. J. Hortic. Sci. Biotechnol. 2000, 75, 388–392. [Google Scholar] [CrossRef]
- García-Tejero, I.; Romero-Vicente, R.; Jiménez-Bocanegra, J.A.; Martínez-García, G.; Durán-Zuazo, V.H.; Muriel-Fernández, J.L. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity. Agric. Water Manag. 2010, 97, 689–699. [Google Scholar] [CrossRef]
- Merriam, J.L.; Keller, I. Farm Irrigation System Evaluation: A Guide for Management; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Jovanovic, N. Updates and advances to the FAO56 crop water requirements and methods. Agric. Water Manag. 2021, 248, 106697. [Google Scholar] [CrossRef]
- Liu, Y.; Pereira, L.S.; Fernando, R.M. Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation. Agric. Water Manag. 2006, 84, 27–40. [Google Scholar] [CrossRef]
- Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288. [Google Scholar]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop coefficients and transpiration of a super intensive Arbequina olive orchard using the dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water use and soil water balance of Mediterranean vineyards under rainfed and drip irrigation management. Evapotranspiration partition, soil management and resource conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S. Estimating crop coefficients from fraction of ground cover and height. Irrig. Sci. 2009, 28, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancela, J.J.; Allen, R. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 240, 106197. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Melton, F.; Johnson, L.; Mota, M.; Wang, T. Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field, and fruit crops with focus on parameterization. Agric. Water Manag. 2021, 252, 106663. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.; McCabe, G. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Fandiño, M.; Cancela, J.J.; Rey, B.J.; Martínez, E.M.; Rosa, R.G.; Pereira, L. Using the dual-Kc approach to model evapotranspiration of Albariño vineyards (Vitis vinifera L. cv. Albariño) with consideration of active ground cover. Agric. Water Manag. 2012, 112, 75–87. [Google Scholar] [CrossRef]
- Cancela, J.J.; Fandiño, M.; Rey, B.J.; Martínez, E.M. Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía). Agric. Water Manag. 2015, 151, 52–63. [Google Scholar] [CrossRef]
- Silva, S.P.; Valín, M.I.; Mendes, S.; Araujo-Paredes, C.; Cancela, J.J. Dual crop coefficient approach in Vitis vinifera L. cv. Loureiro. Agronomy 2021, 11, 2062. [Google Scholar] [CrossRef]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.L.; Paredes, P.; Pereira, L.S. Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Puig-Sirera, À.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S. Transpiration and water use of an irrigated traditional olive grove with sap-flow observations and the FAO56 dual crop coefficient approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
Experiment | Years | Tree Age | Plot | Irrigation Method |
---|---|---|---|---|
E1 | 2007–2011 | 10–14 | E1.1 | Drip |
E1.2 | Bubblers | |||
E1.3 | Micro-sprinklers | |||
E1.4 | Ring basins | |||
E2 | 2015–2017 | 18–20 | E2.1 | Drip, moderate deficit |
E2.2 | Drip, mild deficit | |||
E2.3 | Drip, full irrigation |
Depth (m) | Soil Texture (%) | ρb (g cm−3) | OM (%) | Soil Water Contents | TAW (mm) | ||||
---|---|---|---|---|---|---|---|---|---|
Sand (2–0.05 mm) | Silt (0.05–0.002 mm) | Clay (<0.002 mm) | θs (m3 m−3) | θFC (m3 m−3) | θWP (m3 m−3) | ||||
0.0–0.15 | 15 | 28 | 57 | 1.24 | 2.2 | 0.53 | 0.51 | 0.23 | 42 |
0.15–0.30 | 16 | 32 | 52 | 1.25 | 2.0 | 0.53 | 0.47 | 0.24 | 35 |
0.30–0.45 | 20 | 30 | 50 | 1.30 | 1.9 | 0.51 | 0.48 | 0.24 | 35 |
0.45–0.60 | 19 | 28 | 53 | 1.43 | - | 0.53 | 0.51 | 0.30 | 32 |
0.60–0.75 | 22 | 28 | 50 | 1.26 | - | 0.52 | 0.42 | 0.24 | 27 |
0.75–0.90 | 22 | 28 | 50 | 1.26 | - | 0.55 | 0.45 | 0.24 | 31 |
0.90–1.05 | 20 | 28 | 52 | 1.26 | - | 0.55 | 0.45 | 0.25 | 30 |
Crop Growth Stages | ||||||||
---|---|---|---|---|---|---|---|---|
Year | Non-Growing | Initial | Crop Development | Mid-Season | Late-Season | End-of-Season | Non-Growing | Total GDDs |
Experiment 1 | ||||||||
2007 | 1 January | 3 February | 18 February | 8 June | 1 October | 8 December | 31 December | - |
GDDs | - | 40 | 574 | 1561 | 554 | - | - | 2728 |
2008 | 1 January | 10 February | 10 March | 1 June | 22 September | 9 December | 31 December | - |
GDDs | - | 56 | 565 | 1568 | 655 | - | - | 2844 |
2009 | 1 January | 26 January | 26 February | 9 June | 1 October | 4 December | 31 December | - |
GDDs | - | 35 | 508 | 1559 | 546 | - | - | 2648 |
2010 | 1 January | 1 February | 1 March | 26 May | 21 September | 12 December | 31 December | - |
GDDs | - | 58 | 542 | 1681 | 689 | - | - | 2971 |
2011 | 1 January | 13 February | 4 March | 25 May | 24 September | 19 November | 31 December | - |
GDDs | - | 71 | 527 | 1685 | 460 | - | - | 2743 |
Experiment 2 | ||||||||
2015 | 1 January | 6 February | 8 March | 5 June | 1 October | 9 December | 31 December | - |
GDDs | - | 35 | 503 | 1648 | 527 | - | - | 2714 |
2016 | 1 January | 31 January | 16 February | 24 May | 5 October | 30 November | 31 December | - |
GDDs | - | 29 | 638 | 1857 | 449 | - | - | 2973 |
2017 | 1 January | 3 February | 3 March | 1 June | 25 September | 5 December | 31 December | - |
GDDs | - | 14 | 540 | 1688 | 578 | - | - | 2820 |
Year | Number of Events | Depth (mm) | Total (mm) |
---|---|---|---|
2007 | 16 | 49 | 780 |
2008 | 16 | 49 | 780 |
2009 | 16 | 50 | 792 |
2010 | 16 | 51 | 816 |
2011 | 15 | 52 | 784 |
Year | E2.1 | E2.2 | E2.3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of Events | Depth (mm) | Total (mm) | Number of Events | Depth (mm) | Total (mm) | Number of Events | Depth (mm) | Total (mm) | |
2015 | 20 | 15–21 | 368 | 17 | 33–34 | 535 | 13 | 41–43 | 502 |
2016 | 21 | 17–30 | 490 | 18 | 34–37 | 608 | 14 | 33–49 | 588 |
2017 | 20 | 21–30 | 493 | 16 | 29–44 | 620 | 13 | 30–54 | 590 |
Parameter | E1 | E2 | ||||||
---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | 2011 | 2015 | 2016 | 2017 | |
Pruning | Yes | No | No | No | Yes | Yes | No | No |
fc (-) | 0.46 | 0.47 | 0.50 | 0.50 | 0.48 | 0.75 | 0.77 | 0.77 |
h (m) | 2.5 | 2.8 | 2.8 | 3.0 | 2.8 | 3.8 | 4.0 | 4.0 |
Parameter | Experiment 1 (2007–2011) | Experiment 2 (2015–2017) | ||
---|---|---|---|---|
Default | Calibration | Default | Calibration | |
Kcb non-growing | - | 0.54 | - | 0.64 |
Kcb ini | 0.55 | 0.54 | 0.65 | 0.64 |
Kcb mid | 0.55 | 0.55 | 0.65 | 0.64 |
Kcb end | 0.55 | 0.54 | 0.65 | 0.64 |
pini | 0.50 | 0.60 | 0.50 | 0.60 |
pmid | 0.50 | 0.60 | 0.50 | 0.60 |
pend | 0.50 | 0.60 | 0.50 | 0.60 |
TEW (mm) | 40 | 40 | 40 | 40 |
REW (mm) | 8 | 8 | 8 | 8 |
Ze (m) | 0.10 | 0.10 | 0.10 | 0.10 |
aD | - | 490 | - | 490 |
bD | −0.0173 | −0.02 | −0.0173 | −0.02 |
CN | 70 | 80 | 70 | 80 |
Year | Treatment | b0 (-) | R2 (-) | RMSE (m3 m−3) | NRMSE (-) | PBIAS (%) | NSE (-) |
---|---|---|---|---|---|---|---|
Experiment 1 | |||||||
2007 | E1.1 | 1.02 | 0.60 | 0.002 | 0.004 | −1.99 | 0.41 |
E1.2 | 1.01 | 0.54 | 0.001 | 0.003 | −0.75 | 0.52 | |
E1.3 | 1.01 | 0.47 | 0.002 | 0.004 | −0.89 | 0.44 | |
E1.4 | 1.02 | 0.69 | 0.001 | 0.003 | −1.74 | 0.57 | |
2008 | E1.1 | 1.02 | 0.62 | 0.002 | 0.004 | −1.77 | 0.52 |
E1.2 | 0.99 | 0.55 | 0.002 | 0.006 | 0.69 | 0.24 | |
E1.3 | 0.98 | 0.55 | 0.004 | 0.008 | 1.84 | 0.32 | |
E1.4 | 0.99 | 0.63 | 0.002 | 0.006 | 1.22 | 0.40 | |
2009 | E1.1 | 1.02 | 0.60 | 0.002 | 0.004 | −2.04 | 0.39 |
E1.2 | 1.01 | 0.50 | 0.002 | 0.004 | −1.01 | 0.44 | |
E1.3 | 1.00 | 0.59 | 0.001 | 0.003 | −0.60 | 0.57 | |
E1.4 | 1.02 | 0.52 | 0.002 | 0.005 | −1.78 | 0.41 | |
2010 | E1.1 | 1.01 | 0.57 | 0.001 | 0.002 | −1.41 | 0.39 |
E1.2 | 1.01 | 0.53 | 0.001 | 0.003 | −1.06 | 0.46 | |
E1.3 | 1.00 | 0.65 | 0.001 | 0.002 | −0.11 | 0.64 | |
E1.4 | 1.00 | 0.61 | 0.001 | 0.002 | −0.18 | 0.60 | |
2011 | E1.1, calibr. | 1.01 | 0.78 | 0.001 | 0.002 | −1.37 | 0.70 |
E1.2 | 1.01 | 0.77 | 0.001 | 0.002 | −1.21 | 0.71 | |
E1.3 | 1.00 | 0.62 | 0.001 | 0.002 | −0.06 | 0.52 | |
E1.4 | 1.00 | 0.60 | 0.001 | 0.002 | −0.26 | 0.48 | |
Experiment 2 | |||||||
2015 | E2.1 | 0.96 | 0.89 | 0.004 | 0.011 | 4.54 | 0.72 |
E2.2 | 1.00 | 0.71 | 0.002 | 0.005 | 0.32 | 0.42 | |
E2.3 | 1.00 | 0.78 | 0.002 | 0.006 | 0.44 | 0.75 | |
2016 | E2.1 | 0.99 | 0.93 | 0.002 | 0.005 | 1.69 | 0.82 |
E2.2 | 0.99 | 0.80 | 0.001 | 0.003 | 0.73 | 0.79 | |
E2.3, calib. | 1.00 | 0.82 | 0.002 | 0.004 | 0.26 | 0.81 | |
2017 | E2.1 | 0.99 | 0.92 | 0.002 | 0.004 | 0.85 | 0.83 |
E2.2 | 1.03 | 0.79 | 0.002 | 0.005 | −2.57 | 0.64 | |
E2.3 | 1.01 | 0.85 | 0.001 | 0.003 | −1.52 | 0.80 |
Season | Kcb A&P ini | Kcb A&P mid | Kcb A&P end | Season | Kcb A&P ini | Kcb A&P mid | Kcb A&P end |
---|---|---|---|---|---|---|---|
Experiment 1 | Experiment 2 | ||||||
2007 | 0.50 | 0.51 | 0.51 | 2015 | 0.63 | 0.63 | 0.65 |
2008 | 0.53 | 0.53 | 0.52 | 2016 | 0.65 | 0.65 | 0.67 |
2009 | 0.52 | 0.54 | 0.52 | 2017 | 0.67 | 0.67 | 0.66 |
2010 | 0.52 | 0.55 | 0.54 | ||||
2011 | 0.53 | 0.54 | 0.53 |
Year | Treatment | b0 (-) | R2 (-) | RMSE (m3 m−3) | NRMSE (-) | PBIAS (%) | NSE (-) |
---|---|---|---|---|---|---|---|
Experiment 1 | |||||||
2007 | E1.1 | 1.02 | 0.59 | 0.002 | 0.004 | −2.40 | 0.31 |
E1.2 | 1.02 | 0.68 | 0.001 | 0.003 | −1.64 | 0.54 | |
E1.3 | 1.02 | 0.55 | 0.002 | 0.005 | −1.98 | 0.40 | |
E1.4 | 1.03 | 0.66 | 0.002 | 0.004 | −2.94 | 0.31 | |
2008 | E1.1 | 1.02 | 0.63 | 0.002 | 0.005 | −2.20 | 0.48 |
E1.2 | 1.00 | 0.57 | 0.002 | 0.004 | −0.47 | 0.33 | |
E1.3 | 0.99 | 0.47 | 0.003 | 0.006 | 0.66 | 0.27 | |
E1.4 | 1.00 | 0.65 | 0.002 | 0.004 | −0.20 | 0.57 | |
2009 | E1.1 | 1.02 | 0.60 | 0.002 | 0.004 | −2.10 | 0.37 |
E1.2 | 1.01 | 0.51 | 0.002 | 0.004 | −1.21 | 0.44 | |
E1.3 | 1.01 | 0.59 | 0.001 | 0.003 | −0.79 | 0.56 | |
E1.4 | 1.02 | 0.53 | 0.002 | 0.005 | −2.01 | 0.39 | |
2010 | E1.1 | 1.01 | 0.56 | 0.001 | 0.003 | −1.48 | 0.37 |
E1.2 | 1.01 | 0.52 | 0.001 | 0.003 | −1.18 | 0.44 | |
E1.3 | 1.00 | 0.63 | 0.001 | 0.002 | −0.18 | 0.63 | |
E1.4 | 1.00 | 0.61 | 0.001 | 0.002 | −0.28 | 0.60 | |
2011 | E1.1. | 1.01 | 0.77 | 0.001 | 0.002 | −1.47 | 0.68 |
E1.2 | 1.01 | 0.77 | 0.001 | 0.002 | −1.36 | 0.69 | |
E1.3 | 1.00 | 0.62 | 0.001 | 0.002 | −0.27 | 0.54 | |
E1.4 | 1.00 | 0.60 | 0.001 | 0.002 | −0.41 | 0.49 | |
Experiment 2 | |||||||
2015 | E2.1 | 0.96 | 0.89 | 0.004 | 0.010 | 4.14 | 0.74 |
E2.2 | 1.00 | 0.70 | 0.002 | 0.005 | −0.40 | 0.48 | |
E2.3 | 1.00 | 0.79 | 0.002 | 0.005 | −0.34 | 0.78 | |
2016 | E2.1 | 0.98 | 0.94 | 0.002 | 0.006 | 2.02 | 0.81 |
E2.2 | 0.98 | 0.82 | 0.001 | 0.003 | 1.77 | 0.75 | |
E2.3 | 0.99 | 0.82 | 0.002 | 0.005 | 1.20 | 0.79 | |
2017 | E2.1 | 0.98 | 0.92 | 0.002 | 0.006 | 1.98 | 0.77 |
E2.2 | 1.01 | 0.82 | 0.002 | 0.005 | −0.51 | 0.69 | |
E2.3 | 0.99 | 0.84 | 0.002 | 0.004 | 0.84 | 0.71 |
Year | Treatment | Inputs (mm) | Outputs (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
I | Net P | ΔSW | Tc | Tc act | Es | DP | RO | ||
2007 | E1.1 | 784 | 663 | −2 | 644 | 644 | 247 | 555 | 252 |
E1.2 | 784 | 662 | −2 | 644 | 644 | 355 | 446 | 253 | |
E1.3 | 784 | 661 | −2 | 644 | 644 | 379 | 421 | 254 | |
E1.4 | 784 | 661 | −2 | 644 | 644 | 380 | 421 | 254 | |
2008 | E1.1 | 784 | 629 | −20 | 666 | 666 | 242 | 487 | 164 |
E1.2 | 784 | 629 | −20 | 666 | 666 | 360 | 369 | 164 | |
E1.3 | 784 | 629 | −20 | 666 | 666 | 384 | 345 | 164 | |
E1.4 | 784 | 629 | −20 | 666 | 666 | 384 | 345 | 164 | |
2009 | E1.1 | 800 | 803 | 7 | 653 | 653 | 255 | 699 | 216 |
E1.2 | 800 | 802 | 7 | 653 | 653 | 382 | 570 | 218 | |
E1.3 | 800 | 802 | 7 | 653 | 653 | 399 | 553 | 218 | |
E1.4 | 800 | 801 | 7 | 653 | 653 | 399 | 553 | 218 | |
2010 | E1.1 | 816 | 612 | 1 | 680 | 680 | 237 | 514 | 151 |
E1.2 | 816 | 612 | 1 | 680 | 680 | 360 | 389 | 152 | |
E1.3 | 816 | 612 | 1 | 680 | 680 | 377 | 373 | 151 | |
E1.4 | 816 | 612 | 1 | 680 | 680 | 378 | 372 | 151 | |
2011 | E1.1 | 780 | 902 | 0 | 652 | 652 | 283 | 744 | 169 |
E1.2 | 780 | 902 | 0 | 652 | 652 | 392 | 635 | 169 | |
E1.3 | 780 | 902 | 0 | 652 | 652 | 412 | 615 | 169 | |
E1.4 | 780 | 902 | 0 | 652 | 652 | 413 | 613 | 169 |
Year | Treatment | Inputs (mm) | Outputs (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
I | Net P | ΔSW | Tc | Tc act | Es | DP | RO | ||
2015 | E2.1 | 368 | 722 | −25 | 748 | 674 | 163 | 228 | 135 |
E2.2 | 535 | 758 | −23 | 748 | 748 | 154 | 369 | 99 | |
E2.3 | 502 | 720 | −22 | 748 | 748 | 139 | 314 | 137 | |
2016 | E2.1 | 490 | 634 | −8 | 770 | 704 | 135 | 272 | 160 |
E2.2 | 608 | 634 | −8 | 770 | 770 | 133 | 326 | 160 | |
E2.3 | 588 | 638 | −8 | 770 | 769 | 115 | 329 | 156 | |
2017 | E2.1 | 493 | 673 | −18 | 763 | 726 | 143 | 279 | 206 |
E2.2 | 620 | 669 | −1 | 763 | 763 | 134 | 392 | 210 | |
E2.3 | 590 | 669 | −1 | 763 | 763 | 121 | 375 | 210 |
Treatment | Kc ini | Kc mid | Kc end | Kc non-growing |
---|---|---|---|---|
Experiment 1, medium-size canopies | ||||
E1.1, drip | 1.14 | 0.76 | 1.15 | 1.15 |
E1.2, bubblers | 1.14 | 1.06 | 1.15 | 1.15 |
E1.3, micro-sprinklers | 1.14 | 1.12 | 1.15 | 1.15 |
E1.4., ring basins | 1.14 | 1.12 | 1.15 | 1.15 |
Experiment 2, large-size canopies | ||||
E2.1, drip, moderate deficit irrigation | 0.92 | 0.75 | 0.91 | 0.91 |
E2.2, drip, regulated deficit irrigation | 0.92 | 0.78 | 0.91 | 0.91 |
E2.3, drip, full irrigation | 0.92 | 0.78 | 0.91 | 0.91 |
Year | Treatment | Inputs | Outputs | ||||||
---|---|---|---|---|---|---|---|---|---|
I (mm) | Net P (mm) | ΔSW (mm) | Tc (mm) | Tc act (mm) | Es (mm) | DP (mm) | RO (mm) | ||
2007 | E1.1 | 784 | 665 | −2 | 597 | 597 | 254 | 597 | 250 |
E1.2 | 784 | 664 | −2 | 597 | 597 | 367 | 484 | 251 | |
E1.3 | 784 | 663 | −2 | 597 | 597 | 394 | 455 | 252 | |
E1.4 | 784 | 664 | −2 | 597 | 597 | 395 | 455 | 251 | |
2008 | E1.1 | 784 | 629 | −20 | 634 | 634 | 245 | 516 | 164 |
E1.2 | 784 | 629 | −20 | 634 | 634 | 368 | 393 | 164 | |
E1.3 | 784 | 629 | −20 | 634 | 634 | 394 | 367 | 164 | |
E1.4 | 784 | 629 | −20 | 634 | 634 | 394 | 367 | 164 | |
2009 | E1.1 | 800 | 804 | 7 | 638 | 638 | 257 | 712 | 216 |
E1.2 | 800 | 802 | 7 | 638 | 638 | 385 | 582 | 217 | |
E1.3 | 800 | 802 | 7 | 638 | 638 | 403 | 564 | 218 | |
E1.4 | 800 | 802 | 7 | 638 | 638 | 403 | 564 | 218 | |
2010 | E1.1 | 816 | 613 | 1 | 675 | 675 | 238 | 518 | 151 |
E1.2 | 816 | 612 | 1 | 675 | 675 | 361 | 393 | 152 | |
E1.3 | 816 | 613 | 1 | 675 | 675 | 379 | 377 | 151 | |
E1.4 | 816 | 613 | 1 | 675 | 675 | 379 | 376 | 151 | |
2011 | E1.1 | 780 | 902 | 0 | 640 | 640 | 285 | 754 | 168 |
E1.2 | 780 | 902 | 0 | 640 | 640 | 395 | 644 | 168 | |
E1.3 | 780 | 902 | 0 | 640 | 640 | 415 | 624 | 168 | |
E1.4 | 780 | 902 | 0 | 640 | 640 | 417 | 622 | 168 |
Year | Treatment | Inputs | Outputs | ||||||
---|---|---|---|---|---|---|---|---|---|
I (mm) | Net P (mm) | ΔSW (mm) | Tc (mm) | Tc act (mm) | Es (mm) | DP (mm) | RO (mm) | ||
2015 | E2.1 | 368 | 722 | −27 | 738 | 671 | 164 | 230 | 135 |
E2.2 | 535 | 758 | −23 | 738 | 738 | 154 | 379 | 99 | |
E2.3 | 502 | 721 | −22 | 738 | 738 | 139 | 324 | 137 | |
2016 | E2.1 | 490 | 634 | −8 | 783 | 709 | 135 | 267 | 160 |
E2.2 | 608 | 634 | −8 | 783 | 783 | 133 | 314 | 160 | |
E2.3 | 588 | 638 | −8 | 783 | 783 | 115 | 319 | 156 | |
2017 | E2.1 | 493 | 673 | −18 | 798 | 740 | 142 | 267 | 205 |
E2.2 | 620 | 669 | −1 | 798 | 798 | 132 | 359 | 210 | |
E2.3 | 590 | 669 | −1 | 798 | 798 | 119 | 342 | 210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouich, H.; Karfoul, R.; Ramos, T.B.; Moustafa, A.; Pereira, L.S. Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model. Water 2022, 14, 2052. https://doi.org/10.3390/w14132052
Darouich H, Karfoul R, Ramos TB, Moustafa A, Pereira LS. Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model. Water. 2022; 14(13):2052. https://doi.org/10.3390/w14132052
Chicago/Turabian StyleDarouich, Hanaa, Razan Karfoul, Tiago B. Ramos, Ali Moustafa, and Luis S. Pereira. 2022. "Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model" Water 14, no. 13: 2052. https://doi.org/10.3390/w14132052
APA StyleDarouich, H., Karfoul, R., Ramos, T. B., Moustafa, A., & Pereira, L. S. (2022). Searching for Sustainable-Irrigation Issues of Clementine Orchards in the Syrian Akkar Plain: Effects of Irrigation Method and Canopy Size on Crop Coefficients, Transpiration, and Water Use with SIMDualKc Model. Water, 14(13), 2052. https://doi.org/10.3390/w14132052