Role of Grain Size Distribution and Pier Aspect Ratio in Scouring and Sorting around Bridge Piers
Abstract
:1. Introduction
- To understand and clarify the effects of bed material grading and pier geometry on scouring and sorting;
- To understand and clarify the interaction between local scouring and the process of sediment sorting.
2. Materials and Methods
2.1. Field Measurement and Observation
2.2. Flume Experiments
3. Results
3.1. Field Measurement and Observation
3.2. Flume Experiment
3.2.1. The Effects of Bed Material Grading and Pier Geometry to Scouring
3.2.2. The Effects of Bed Material Grading and Pier Geometry on Sorting
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wessel, P.; Smith, W.H.F. A Global, Self-Consistent, Hierarchical, High-Resolution Shoreline Database. J. Geophys. Res. Solid Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Milliman, J.D.; Meade, R.H. World-Wide Delivery of River Sediment to the Oceans. J. Geol. 1988, 91, 1–21. [Google Scholar] [CrossRef]
- Mohamed, Z.; Zeinab, Y.; Harun, C.; Firoz, A. A Review on The Methods Used to Reduce the Scouring Effect of Bridge Pier. Energy Procedia 2019, 160, 45–50. [Google Scholar] [CrossRef]
- Enomoto, T.; Horikoshi, K.; Ishikawa, K.; Mori, H.; Takahashi, A.; Unno, T.; Watanabe, K. Levee Damage and Bridge Scour By 2019 Typhoon Hagibis In Kanto Region, Japan. Soils Found. 2021, 61, 566–585. [Google Scholar] [CrossRef]
- Chabert, J.; Engeldinger, P. Etude des Affouillements Autour des Piles des Ponts; Laboratoire National dâHydraulique: Chatou, France, 1956. [Google Scholar]
- Melville, B.W.; Coleman, S.E. Bridge Scour; Water Resources Publication: Littleton, CO, USA, 2000. [Google Scholar]
- Dey, S. Fluvial Hydrodynamics; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Francesco, C.; Roberto, G.; Costantino, M. Near-Bed Eddy Scales and Clear-Water Local Scouring Around Vertical Cylinders. J. Hydraul. Res. 2020, 58, 968–981. [Google Scholar] [CrossRef]
- Sulaiman, M.; Tsutsumi, D.; Fujita, M.; Hayashi, K. Classification of Grain Size Distribution Curves of Bed Material and The Porosity. Annu. Disaster Prev. Res. Inst. 2007, 50, 615–622. [Google Scholar]
- Nicollet, G.; Ramette, M. Affouillements Au Voisinage De Piles De Pont Cylindriques Circulaires. In Proceedings of the 14th IAHR Congress, Paris, France, 29 August–3 September 1971; Volume 3, pp. 315–322. [Google Scholar]
- Ettema, R. Influence of Bed Material Gradation on Local Scour. Master’s Thesis, University of Auckland, Auckland, New Zealand, 1976. [Google Scholar]
- Baker, R.E. Local Scour at Bridge Piers in Non-Uniform Sediment. Master’s Thesis, University of Auckland, Auckland, New Zealand, 1986. [Google Scholar]
- Umeda, S.; Yamazaki, T.; Yuhi, M. An Experimental Study of Scour Process and Sediment Transport around a Bridge Pier with Foundation. In Proceedings of the 5th International Conference on Scour and Erosion (ICSE-5), San Francisco, CA, USA, 7–10 November 2010; pp. 66–75. [Google Scholar] [CrossRef]
- Eghbali, P.; Dehghani, A.; Arvanaghi, H.; Menazadeh, M. The Effect of Geometric Parameters and Foundation Depth on Scour Pattern Around Bridge Pier. J. Civ. Eng. Urban. 2013, 3, 156–163. [Google Scholar]
- Murtaza, G.; Hashmi, H.N.; Naeem, U.A.; Khan, D.; Ahmad, N. Effect of Bridge Pier Shape on Scour Depth at Uniform Single Bridge Pier. Mehran Univ. Res. J. Eng. Technol. 2018, 37, 539–544. [Google Scholar] [CrossRef]
- Vijayasree, B.A.; Eldho, T.I.; Mazumder, B.S.; Ahmad, N. Influence of Bridge Pier Shape on Flow Field and Scour Geometry. Int. J. River Basin Manag. 2019, 17, 109–129. [Google Scholar] [CrossRef]
- Carling, P.A.; Kelsey, A.; Glaister, M.S. Effect of Bed Roughness, Particle Shape and Orientation on Initial Motion Criteria. In Sediment Transport in Gravel-Bed Rivers; Thorne, C.R., Bathurst, J.C., Hey, R.D., Eds.; Wiley: Chichester, UK, 1992; pp. 23–37. [Google Scholar]
- Fukuoka, S.; Osada, K. Sediment Transport Mechanism and Grain Size Distributions in Stony Bed Rivers. In Proceedings of the 33rd IAHR Congress: Water Engineering for A Sustainable Environment, Vancouver, BC, Canada, 9–14 August 2009; pp. 505–512. [Google Scholar]
- Mizutani, H.; Nakagawa, H.; Kawaike, K.; Zhang, H.; Lejeune, Q. Local scour and sediment sorting around an impermeable spur-dike with different orientations. In Proceedings of the 12th International Symposium on River Sedimentation (ISRS), Kyoto, Japan, 2–5 September 2013; pp. 879–890. [Google Scholar]
- Zhang, H.; Nakagawa, H. Local Scour and Sediment Sorting Around a Series of Groynes. J. JSNDS 2016, 35, 117–129. [Google Scholar]
- Powell, D.M. Progress in Physical Geography Patterns and Processes Of Sediment Sorting in Gravel-Bed Rivers. Prog. Phys. Geogr. 1998, 22, 1–32. [Google Scholar] [CrossRef]
- Lanzoni, S.; Tubino, M. Grain Sorting and Bar Instability. J. Fluid Mech. 1999, 393, 149–174. [Google Scholar] [CrossRef] [Green Version]
- Milhous, R.T. Sediment Transport in a Gravel-Bottomed Stream. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1973. [Google Scholar]
- Pitlick, J.; Mueller, E.R.; Segura, C.; Cress, R.; Torizzo, M. Relation Between Flow, Surface-Layer Armoring and Sediment Transport in Gravel-Bed Rivers. Earth Surf. Process. Landf. 2008, 33, 1192–1209. [Google Scholar] [CrossRef]
- Pandey, M.; Chen, S.C.; Sharma, P.K.; Ojha, C.S.P.; Kumar, V. Local Scour of Armor Layer Processes Around the Circular Pier in Non-Uniform Gravel Bed. Water 2019, 11, 1421. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, P. Studies on The Nature of Local Scour in Bull Series A, No. 46; Dept. of Water Resources Eng., Lund Inst. of Tech., University of Lund: Lund, Sweden, 1975. [Google Scholar]
- Laursen, E.M.; Toch, A. Scour around Bridge Piers and Abutments; Bulletin No. 4; Iowa Highway Research Board: Iowa City, IA, USA, 1956. [Google Scholar]
- Melville, B.W.; Chiew, Y.-M. Time Scale for Local Scour at Bridge Piers. J. Hydraul. Eng. 1999, 125, 369–375. [Google Scholar] [CrossRef]
- Wolman, M.G. A Method of Sampling Coarse River-Bed Material. Am. Geophys. Union. Trans. 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Chiew, Y.M.; Melville, B.W. Local Scour Around Bridge Piers. J. Hydraul. Res. 1987, 25, 15–26. [Google Scholar] [CrossRef]
- Barnes, H.H., Jr. Roughness Characteristics of Natural Elements. U.S. Geol. Surv. Water-Supply Pap. 1967, 1849. [Google Scholar] [CrossRef]
- Melville, B.W.; Sutherland, A.J. Design Method for Local Scour at bridge Piers. J. Hydraul. Eng. 1988, 114, 1210–1226. [Google Scholar] [CrossRef]
- Staudt, F.; Mullarney, J.C.; Pilditch, C.A.; Huhn, K. Effects of Grain-Size Distribution and Shape on Sediment Bed Stability, Near-Bed Flow and Bed Microstructure. Earth Surf. Process. Landf. 2019, 44, 1100–1116. [Google Scholar] [CrossRef]
- Lee, S.O.; Sturm, T.W. Effect of Sediment Size Scaling on Physical Modeling of Bridge Pier Scour. J. Hydraul. Eng. 2009, 135, 793–802. [Google Scholar] [CrossRef]
- Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics. Geological Survey Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1967. [Google Scholar] [CrossRef] [Green Version]
- Ettema, R. Scour at Bridge Piers. Rep. No. 216; School of Engineering, University of Auckland: Auckland, New Zealand, 1980. [Google Scholar]
- Dey, S.; Raikar, R.V. Clear-Water Scour at Piers in Sand Beds with an Armor Layer of Gravels. J. Hydraul. Eng. 2007, 133, 703–711. [Google Scholar] [CrossRef]
- MacKenzie, L.G.; Eaton, B.C. Large Grains Matter: Contrasting Bed Stability and Morphodynamics During Two Nearly Identical Experiments. Earth Surf. Process. Landf. 2017, 42, 1287–1295. [Google Scholar] [CrossRef]
- Kothyari, U.C.; Hager, W.H.; Oliveto, G. Generalized Approach for Clear-Water Scour at Bridge Foundation Elements. J. Hydraul. Eng. 2007, 133, 1229–1240. [Google Scholar] [CrossRef]
Otofuke | Satsunai | Tama | Sagami | Nakatsu | Ara | |
---|---|---|---|---|---|---|
d50 (mm) | 37.0 | 23.0 | 32.5 | 46.0 | 74.6 | 53.5 |
σg (mm) | 6.24 | 2.11 | 2.26 | 2.36 | 1.73 | 2.19 |
Basin Geology | Volcanic Rock | Accretionary Complex | Accretionary Complex | Accretionary Complex | Volcanic Rock | Granite Rock |
Width (m) | Depth (m) | Pier Width (m) | d50 (mm) | n | Velocity (m/s) | Q (m3/s) | UC (m/s) | U/UC (m/s) | |
---|---|---|---|---|---|---|---|---|---|
Exp Q1 | 0.3 | 0.05 | 0.025 | 0.7 | 0.014 | 0.25 | 0.0038 | 0.37 | 0.67 |
Satsunai River (Q1) | 350 | 1.6 | 0.8 | 23 | 0.03 | 1.4 | 803 | 2.14 | 0.67 |
Exp Q2 | 0.3 | 0.03 | 0.025 | 0.7 | 0.014 | 0.19 | 0.0017 | 0.34 | 0.55 |
Satsunai River (Q2) | 350 | 1 | 0.8 | 23 | 0.03 | 1.1 | 368 | 1.97 | 0.53 |
Pier (Aspect Ratio) | Time (h) | Discharge | Max Scour Depth (mm) | Max Deposition Height (mm) | ||||
---|---|---|---|---|---|---|---|---|
GSD1 | GSD2 | GSD3 | GSD1 | GSD2 | GSD3 | |||
1 (1:1) | 2 | 2(1.8 L/s) | 31.8 | 9.4 | 9.3 | 15.85 | 4.45 | 6.5 |
1 (1:1) | 4 | 2(1.8 L/s) | 24.4 | 8.95 | 6.55 | 14.35 | 4.2 | 7.3 |
1 (1:1) | 2 | 1(3.6 L/s) | 48.15 | 18.4 | 16.6 | 7.05 | 3 | 5.15 |
1 (1:1) | 4 | 1(3.6 L/s) | 51.5 | 20.2 | 13.35 | 4.85 | 4.25 | 4.75 |
2 (1:2) | 2 | 2(1.8 L/s) | 32.85 | 7.9 | 3.94 | 14.5 | 6.45 | 2.05 |
2 (1:2) | 4 | 2(1.8 L/s) | 21.25 | 10.3 | 4.5 | 7.2 | 4.25 | 2.6 |
2 (1:2) | 2 | 1(3.6 L/s) | 48.2 | 19.85 | 9.9 | 6.05 | 4.75 | 3.9 |
2 (1:2) | 4 | 1(3.6 L/s) | 52.7 | 16.4 | 9.2 | 3.85 | 6.05 | 4.5 |
3 (1:4) | 2 | 2(1.8 L/s) | 28.85 | 8.99 | 5.35 | 11.6 | 7.71 | 3.8 |
3 (1:4) | 4 | 2(1.8 L/s) | 22.4 | 8.6 | 4.9 | 11.6 | 6.5 | 3.55 |
3 (1:4) | 2 | 1(3.6 L/s) | 43.65 | 16.7 | 10.55 | 7.25 | 8.45 | 6.0 |
3 (1:4) | 4 | 1(3.6 L/s) | 51 | 17.94 | 9.7 | 3.0 | 8.76 | 6.1 |
4 (1:6) | 2 | 2(1.8 L/s) | 32.25 | 6.7 | 4.8 | 8.8 | 5.25 | 4.35 |
4 (1:6) | 4 | 2(1.8 L/s) | 23.45 | 7.25 | 5.35 | 9.45 | 5.3 | 4.4 |
4 (1:6) | 2 | 1(3.6 L/s) | 45.9 | 14.85 | 10.8 | 1.95 | 7 | 4.75 |
4 (1:6) | 4 | 1(3.6 L/s) | 48.95 | 15.7 | 9.25 | 1.95 | 5.65 | 4.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibana, T.; Quiocho, R.; Watanabe, K. Role of Grain Size Distribution and Pier Aspect Ratio in Scouring and Sorting around Bridge Piers. Water 2022, 14, 2066. https://doi.org/10.3390/w14132066
Chibana T, Quiocho R, Watanabe K. Role of Grain Size Distribution and Pier Aspect Ratio in Scouring and Sorting around Bridge Piers. Water. 2022; 14(13):2066. https://doi.org/10.3390/w14132066
Chicago/Turabian StyleChibana, Takeyoshi, Rose Quiocho, and Kenji Watanabe. 2022. "Role of Grain Size Distribution and Pier Aspect Ratio in Scouring and Sorting around Bridge Piers" Water 14, no. 13: 2066. https://doi.org/10.3390/w14132066
APA StyleChibana, T., Quiocho, R., & Watanabe, K. (2022). Role of Grain Size Distribution and Pier Aspect Ratio in Scouring and Sorting around Bridge Piers. Water, 14(13), 2066. https://doi.org/10.3390/w14132066