Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile)
Abstract
:1. Introduction
Study Area
2. Methodology
2.1. Hydrometereological Characterization
2.1.1. Pluviometric Analysis
2.1.2. Frequency Statistical Analysis and Maximum Flow Rates Calculation
2.1.3. Flow-Type Landslide Mathematical Modeling
2.2. Validation Analysis
2.2.1. Soil Analysis
2.2.2. Morphometric Analysis
2.2.3. Basin Modeling
3. Results and Discussions
3.1. Hydrometeorological Characterization
3.1.1. Pluviometric Analysis
3.1.2. Statistical Frequency Analysis
3.1.3. Calculation of Maximum Flow Rates
Duration (t) (Hours) | K | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
---|---|---|---|---|---|---|---|---|
CF | 0.53 | 0.83 | 1 | 1.18 | 1.42 | 1.6 | 1.78 | |
CDt | Rain PtTr (mm) | |||||||
PtTr Tr2 | PtTr Tr5 | PtTr Tr10 | PtTr Tr20 | PtTr Tr50 | PtTr Tr100 | PtTr Tr200 | ||
1 | 0.9 | 6.895 | 10.797 | 13.009 | 15.350 | 18.472 | 20.814 | 23.155 |
2 | 0.9 | 6.895 | 10.797 | 13.009 | 15.350 | 18.472 | 20.814 | 23.155 |
4 | 0.9 | 6.895 | 10.797 | 13.009 | 15.350 | 18.472 | 20.814 | 23.155 |
6 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
8 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
10 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
12 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
14 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
18 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
24 | 1 | 7.661 | 11.997 | 14.454 | 17.056 | 20.525 | 23.126 | 25.728 |
Duration (t) (Hours) | Rain Intensity (mm/h) | ||||||
---|---|---|---|---|---|---|---|
IPtTr2 | IPtTr5 | IPtTr10 | IPtTr20 | IPtTr50 | IPtTr100 | IPtTr200 | |
1 | 6.895 | 10.797 | 13.009 | 15.350 | 18.472 | 20.814 | 23.155 |
2 | 3.447 | 5.399 | 6.504 | 7.675 | 9.236 | 10.407 | 11.578 |
4 | 1.724 | 2.699 | 3.252 | 3.838 | 4.618 | 5.203 | 5.789 |
6 | 1.277 | 1.999 | 2.409 | 2.843 | 3.421 | 3.854 | 4.288 |
8 | 0.958 | 1.500 | 1.807 | 2.132 | 2.566 | 2.891 | 3.216 |
10 | 0.766 | 1.200 | 1.445 | 1.706 | 2.052 | 2.313 | 2.573 |
12 | 0.638 | 1.000 | 1.205 | 1.421 | 1.710 | 1.927 | 2.144 |
14 | 0.547 | 0.857 | 1.032 | 1.218 | 1.466 | 1.652 | 1.838 |
18 | 0.426 | 0.666 | 0.803 | 0.948 | 1.140 | 1.285 | 1.429 |
24 | 0.319 | 0.500 | 0.602 | 0.711 | 0.855 | 0.964 | 1.072 |
3.1.4. Flow-Type Landslide Mathematical Modeling
3.2. Validation Analysis
3.2.1. Soil Analysis
Geology
Granulometry
3.2.2. Morphometric Analysis
3.2.3. Basin Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Methodological Summary with Its Equations Used, Corresponding to the Hydrometeorological Analysis for the Calculation of Maximum Liquid and Debris Flows for La Chimba Basin, Antofagasta (Chile)
Hydrometeorological Characterization | |||
---|---|---|---|
Analysis | Method | Method—Equation | Description |
Statistical frequency analysis | Probabilities of non-excess | P(X < x) is the probability of non-excess, P(X > x) is the probability of excess, e is the natural number, Tr is the return period, x are the recorded rainfall events and α and u are eigenmetric parameters of the expression. ẋ is the arithmetic mean of the samples, Sx is the standard deviation of the samples and σy and μy are values that are a function of the total number of total samples [37,38,39]. | |
Probabilities of excess | |||
Parameters of the expression | |||
Rainfall for a specific return period (mm) | PTr is the rainfall event recorded (mm) for a specific return period (Tr), Ln is the natural logarithm and α—μ are parameters of the equation described above [37]. | ||
Calculation of maximum flows | IDF Curves | PtTr is the rain with return period Tr years and duration of t hours, PTr10 is the maximum daily rainfall (24 h) with 10 years of return period, CDt is the duration coefficient for t hours, CFT is the frequency coefficient for T years of return period and K is the correction coefficient for the maximum rainfall PTr10 measured between 8 am and 8 am with respect to the 24 rainiest hours of the storm, which, according to the Manual of Roads [38], adopts a value of 1.1. CFT is the frequency coefficient for a return period T. PtTr is the rainfall of duration t and return period of T years. PtTr10 is rainfall of duration t and return period of 10 years. The duration coefficients and frequency coefficients for cities in Chile with the same return period were extracted from DICTUC [59]. | |
Frequency coefficient for a return period (CDt) | |||
Design rainfall intensity for a return period Tr (años) | IPtTr is the intensity of rainfall for a return period of Tr years and for a duration of t hours, IPtTr is the rainfall for a return period of Tr years and for a duration of t hours and t is the duration in hours. From these data we proceed to graph the IDF curve [59]. | ||
Rational Method. Maximum liquid flow rate QL (m3/s) | Calculation by generating a hydrogram from the rational method and empirical expression. The calculation of several parameters is required including the runoff coefficient (C) (dimensionless, where 0 ≤ C ≤ 1), which includes basin characteristics such as: relief, infiltration, vegetation cover and surface storage [40]. | ||
Concentration time Tc (minutos) | Expression of California Highways [41], ideal for mountain basins and arid character, as in the case under study, in which Tc is the concentration time (hours), Lcp is the length of the main channel (km) and H corresponds to the unevenness from the starting point of the channel to the mouth point (m). | ||
O’Brien and Julien Method (1997) [60] Detritic Maximum Flow Rate (QD) | QD is the maximum detrital flow rate (m3/s), QL is the liquid runoff flow (m3/s) and BF is the factor called bulking factor, where Cv is the volumetric concentration of solids, whose value is extracted from the study of Ayala et al. [42] |
Appendix B. Some Outstanding Equations that Mathematically Govern the HEC-RAS and RAMMS Software, in Addition to the Equations for Calculating the Parameters Required to Be Inserted
Hydrometeorological Characterization | |||
---|---|---|---|
Software | Method | Method—Equation | Description |
HEC-RAS v6.1 | Flow heights in a non-permanent flow regime | QD (m3/s) corresponds to the detrital flow, Ah (m2) is the wet area or cross-sectional area of the detrital flow, Rh (m) is the hydraulic radius associated with the different cross-sections considered, respectively, nD corresponds to the Manning coefficient for a detrital flow which depends on the roughness of the walls and Sf represents the slope of the potential line [61]. | |
Cowan Methodology—Manning Roughness Coefficient (nD) | nb describes the quality of the material present in the floor of the ravine, n1 considers the effect of superficial irregularities, n2 quantifies the variations in shape and size of the different cross-sections, n3 is the relative effect of obstructions in the channel, n4 quantifies the density of vegetation and m is a corrective factor that considers the degree of sinuosity or meander of the channel. For the case study, nb was determined by granulometric data from soil samples from the respective streams [62]. | ||
RAMMS v1.7.20 | Total friction (Sf) | Flow height H(x, y, t) (m) and mean velocity U(x, y, t) (m/s). In turn, consider a total friction (Sf) in the following equation. nUx and nUy are the directional unit velocity vectors in the x and y directions, respectively. The total basal friction in the Voellmy–Salm model is divided into a velocity-independent Coulomb dry friction coefficient μ (Mu) and a velocity-dependent turbulent friction coefficient ξ (Xi) (m/s2) [63,64,65]. | |
Takahashi Method (1991)—Volume of solids in the flow (Vd) | Vd is the Volume of solids in the flow (m3), QD is the maximum detrital flow (m3/s) and CV corresponds to the volumetric concentration (-). | ||
Mean detrital flow rate (Vm) (m/s) | V(h) is the average flow rate in m/s, as a function of the water height h, R corresponds to the hydraulic radius of the section considered (m), n represents the Manning roughness coefficient and i is the slope of the water line (m/m) [40]. |
Appendix C. Statistical Parameters Used in the Granulometric Analysis of La Chimba Basin
Name | Method—Equation | Description |
---|---|---|
Gradation of the soil. Coefficient of uniformity (Cu) and Coefficient of curvature (Cc) [66] | The uniformity coefficient (Cu) is the extension of the granulometric distribution curve. The coefficient of curvature (Cc) gives information regarding the distribution of intermediate sizes. Both coefficients are used as criteria in the Unified Soil Classification System (U.S.C.S.) | |
Hydraulic conductivity coefficient (K) [67] | K is the hydraulic conductivity (cm/h), D10 is the effective size of the sediments (mm) (10% smaller and 90% larger) and Ca is a coefficient that depends on grain size and uniformity [39]. The effective diameter is calculated directly from the cumulative frequency graph. The factor of 8.64 allows us to enter the value of D10 in mm and we obtain the result of K in m/day. | |
Average Graphic Size (Mz) [68] | It corresponds to the measure of the mean size of the sample in phi units (Φ). Mz corresponds to the mean size of the graph on a phi scale (Φ) and Φ16, Φ50, Φ75 and Φ5 correspond to percentiles with their corresponding percentage. The final result will be evaluated according to the Udden-Wentworth classification and will be indicative of the average kinetic energy of the current. | |
Inclusive graphical standard deviation (Φi) [68] | A measure of spread, indicating how far values may be from the average (mean). Φi is the inclusive standard deviation, Φ84, Φ16, Φ95 and Φ5 are percentiles with their corresponding percentage. It provides information on the level of selection of the sample and therefore it is a very sensitive index to define the fluidity of the transport and sedimentation medium. | |
Degree of inclusive graphic skewness (Ski) [68] | Ski is the degree of inclusive graphic skewness, Φ5, Φ16, Φ50, Φ84 and Φ95 are percentiles with their corresponding percentage. | |
Measurement of graphic Kurtosis (KG) [68] | Many curves designated as “normal” by the skewness measure are markedly abnormal when calculated by kurtosis. If the central part of the curve has better selection than the extremes, the curve is leptokurtic, while if the selection is better at the extremes, the curve is platychortic. | |
Mode [46] | - | There may be one or more modes giving rise to unimodal (one), bimodal (two) or multimodal (greater than two) distributions, respectively. In the latter case, the most abundant is called the main mode and the other modes are secondary. |
Appendix D. Methodological Summary Corresponding to the Morphometric Analysis of La Chimba Basin, Antofagasta (Chile)
Form Parameters | ||
---|---|---|
Name | Equation or Method | Description |
Basin Area (A) [km2] | Geographic information system (GIS) | A measure of the surface area of a basin, defined as the orthogonal projection of the entire drainage area of a runoff system flowing directly or indirectly into the basin [56] |
Basin Perimeter (P) [km] | It is defined as the measurement of the watershed envelope line, by the topographic watershed [51] | |
Axial Length (Al) [km] | Distance in a straight line between the mouth and the farthest point on the perimeter (P) of the basin, which in some cases coincides with the length of the main course [51] | |
Length of the main channel (Lc) [km] | Represents the length of the channel over its entire course (km), including all the sinuosity of the channel. | |
Form Factor (F) [69] | It is defined as the ratio between the area (A) and the length of the drainage basin (Lc). | |
Compactness Factor (Kc) [70] | This factor is the oldest one, expressing the relationship between the perimeter of the drainage basin and that of a circle of equal area (equivalent circle); thus, the higher the coefficient, the more distant the shape of the basin will be with respect to the circle. P represents the perimeter (km) and A the area (km2) of the Macul basin. | |
Drainage System Parameters | ||
Name | Equation or method | Description |
Drainage order (n) [57] | Geographic information system (GIS) | Horton [69] suggests a hierarchization of streams according to order number as a measure of the branching of the main channel in a basin. This system is dimensionless and was later improved and slightly modified by Strahler [57], indicating that a stream may have one or more segments. |
Bifurcation ratio (Br) [57] | It is the ratio between the total number of drains of a certain order (ni) and the total number of drains of the next higher order (ni+1). | |
Length Ratio (Lr) [57] | The ratio of the average length of a certain order of drainage (Li) of the average length of the order of drainages that is immediately lower (Li−1). | |
Drainage network density (Dd) [71] [1/km] | Quotient between the total length of the channels of all of the orders that make up the river system of the basin (∑Li) and the total area of the basin (A). | |
Drainage Frequency (F) [72] [1/km2]. | It is defined as the quotient between the total number of river courses (nt) and the area of the basin (km2). When obtained, it quantifies the potential for any drop of water to find a channel in within an arbitrary timeframe. | |
Drainage hierarchy (J) | Geographic information system (GIS) | Represents the highest drainage order, obtained using Strahler’s [57] drainage order methodology. |
Relief Parameters | ||
Name | Equation or method | Description |
Absolute elevation difference (H) [ m a.s.l.] | Corresponds to the difference between the maximum elevation (HM) and the minimum elevation (Hm), measured in meters above sea level (m a.s.l.). | |
Average slope of the basin (Sm) [%] | Geographic information system (GIS) | The average slope of a watershed is directly related to the degradation process to which a watershed is subjected [73]. |
Hypsometric curve [57] | Geographic information system (GIS) and mathematical calculations by calculating relative elevation and relative area, and then applying the results to a graph | The hypsometric curve suggested by Langbein et al. [74] graphically represents the elevations of the terrain as a function of the corresponding surfaces. According to Strahler [57], the importance of this relationship lies in the fact that it is an indicator of the state of dynamic equilibrium of the basin, so the basin can be in a state of youth (disequilibrium), in a state of maturity (equilibrium) or at intermediate levels. |
Complementary Parameters | ||
Name | Equation or method | Description |
Torrentiality coefficient (Tc) [73] (1/km2) | Index that measures the degree of torrentiality of the basin, by means of the ratio of the number of drainages of order 1 (n1) with respect to the total area of the basin (A). | |
Potentiality index (Pi) [75] | It determines the location of erosion and accumulation zones in a watershed; its determination is important. A high Pi value will reveal that in a specific hydrological basin there is accumulation of debris, which could be transported if high rainfall occurs, as to generate an alluvial event [76] |
Appendix E. Base Data and Comparative Data from Meteorological Stations with Available Records for the City of Antofagasta
Institution | Name Estation | Coordinates | Measurement Height (m a.s.l.) | Range of Years with Data Availability | Rainfall Record—Orographic Effect on the Records—Event 1991 | Distance in Relation to the Study Area (km) | Differences between the Average Maximum Rainfall Measurements in 24 h per Year between 1968 and 2018 |
---|---|---|---|---|---|---|---|
(DMC) | Portezuelo | 23°42′ S 70°24′ W | 550 | 1904–1944 (40 years) | 14.1 | 14.2 | 1.53 (DMC/UCN-DGA) |
Cerro Moreno | 23°27′ S 70°26′ W | 119–137 | 1946–2018 (72 years) | ||||
(DMC) | Universidad Católica del Norte (UCN) | 23°41′ S 70°25′ W | 30 | 1968–2018 (50 years) | 42.0 | 17.5 | 1.56 (DGA—DMC/Cerro Moreno) |
(DGA) | DGA | 23°35′ S 70°23′ W | 50 | 1978–2018 (40 years) | 17.0 | 5.5 | 2.17 (DMC/UCN—DMC/Cerro Moreno) |
Appendix F. Area and Description of the Geological Units Present in the La Chimba Basin
Name | Area [km2] | Description |
---|---|---|
La Negra Formation Jln (a) (Lower Jurassic–Upper Jurassic) | 15,725 | Andesitic lavas and pyroxene andesites of gray to greenish gray colors with aphanitic, porphydic, brechosal and tonsilloidal textures with subordinate levels of sedimentary gaps and medium grain sandstones. It emerges as a continuous strip of direction NNE—SSW forming a monoclinal sequence with general attitude of N5°–10° W/55°–70° W, which reaches a minimum potential of 5050 m. |
La Negra Formation Jln (b) (Lower Jurassic–Upper Jurassic) | 5902 | |
Alluvial deposits PlHa (Pleistocene–Holocene) | 2111 | Gravels and sands unconsolidated to slightly cemented that make up the filling of the active ravines and the alluvial fans of the Cordillera de la Costa. The gravels are clastosoportadas with poorly graded clasts and the matrix consists mainly of coarse sands to silts. They present horizontal and locally paleochannel stratification, grain-decreasing tendencies and imbrications. |
Ancient alluvial and colluvial deposits MPla (b) (Upper Miocene–Pleistocene) | 0.404 | Unconsolidated to semi-consolidated gravels and sands, distributed in the eastern sector of the study area including the La Chimba basin. They represent continental deposits of piedmont and mud flows originated by gravitational flows and sporadic water contributions under a desert climate where they form cones of medium to strong slope. |
Ancient alluvial and colluvial deposits MPla (a) (Upper Miocene–Pleistocene) | 0.327 | |
Coluvial deposits PlHc (Pleistocene–Holocene) | 0.242 | Poorly stratified gravels and sands, unconsolidated to moderately cemented, in centimeter to metric layers distributed on the slopes of steep slopes of the Costa Mountain Range. The gravels are clastosoportadas to matrix supported. The clasts have a poor selection, they are angular with low sphericity and the matrix are fine gravels and coarse sands of grayish brown tones. The sands are coarse in size with regular to a good selection. |
Appendix G. Granulometric Results for the La Chimba and Guanaco Sub-Basins. The Values in Gray Are Reference Values since They Were Not Used to Calculate the Parameter in Question
La Chimba Sub-Basin | ||||||
---|---|---|---|---|---|---|
Samples Codes → | LCHN-1 | LCHN-6 | ||||
Statistical Parameters | Opening (mm) | Aperture | Result | Opening (mm) | Aperture | Result |
Phi (Φ) | Phi (Φ) | |||||
Coefficient of uniformity (Cu) | 29.167 | −4.866 | Very well graded | 27.500 | −4.781 | Very well graded |
Coefficient of curvature (Cc) | 1.339 | −0.421 | Well graded | 1.237 | −0.307 | Well graded |
Hydraulic Conductivity Coefficient (K) [cm/h] | 41.472 | SP-SW (U.S.C.S) | 41.472 | SP-SW (U.S.C.S) | ||
(cm/h) | (cm/h) | |||||
Average Chart Size (Mz) | 2.378 | −1.250 | Granule, flow and average energy of the current | 2.351 | −1.233 | Granule, flow and average energy of the current |
Inclusive graph standard deviation (Φi) | 0.149 | 2.748 | Very poorly selected. Low fluidity and high energy current | 0.149 | 2.748 | Very poorly selected. Low fluidity and high energy current |
Degree of inclusive graphic asymmetry (Ski) | 0.892 | 0.165 | Asymmetrical towards fine | 0.9011 | 0.150 | Asymmetrical towards fine |
Measurement of graphical Kurtosis (KG) | 0.520 | 0.943 | Mesokurtic | 0.501 | 0.998 | Mesokurtic |
Mode | −1; 3.6 | Bimodal: Granules—fine sands | −1; 3.6 | Bimodal: Granules—fine sands | ||
Unified Soil Classification System (U.S.C.S.) | SW | Well-graduated sands, sands with gravel, with few or no fines | SW | Well-graduated sands, sands with gravel, with few or no fines | ||
SM | Silty sands, poorly graded sand and silt mixtures | SM | Silty sands, poorly graded sand and silt mixtures | |||
Guanaco Sub-basin | ||||||
Samples codes → | LCHS-1 | LCHS-7 | ||||
Coefficient of uniformity (Cu) | 25.000 | −4.644 | Very well graded | 33.929 | −5.084 | Very well graded |
Coefficient of curvature (Cc) | 1.210 | −0.275 | well graded | 2.350 | −1.232 | well graded |
Hydraulic Conductivity Coefficient (K) [cm/hr] | 115.2 | SP-SW (U.S.C.S) | 56.448 | SP-SW (U.S.C.S) | ||
(cm/h) | (cm/h) | |||||
Average Chart Size (Mz) | 3.523 | −1.817 | Small pebble, flow and average energy of the current | 3.287 | −1.717 | Small pebble, flow and average energy of the current |
Inclusive graph standard deviation (Φi) | 0.150 | 2.736 | Very poorly selected. Low fluidity and high energy current | 0.169 | 2.563 | Very poorly selected. Low fluidity and high energy current |
Degree of inclusive graphic asymmetry (Ski) | 1.060 | −0.084 | Almost asymmetrical | 0.802377 | 0.318 | Very asymmetrical towards fine |
Measurement of graphical Kurtosis (KG) | 0.484 | 1.045 | mMesokurtic | 0.453 | 1.142 | Leptokurtic |
Mode | - | −4.6; 0.2; 3.6 | Multimodal: guijarro pequeño, arena muy gruesa y arena fina | - | −1; 3.6 | Bimodal: granules and fine sand |
Unified Soil Classification System (U.S.C.S.) | SW | Well-graduated sands, sands with gravel, with few or no fines | SW | Well-graduated sands, sands with gravel, with few or no fines | ||
SM | Silty sands, poorly graded sand and silt mixtures | SM | Silty sands, poorly graded sand and silt mixtures |
Appendix H. Granulometric Results for the Mouth Area. The Values in Gray Are Reference Values Since They Were Not Used to Calculate the Parameter in Question
Basin Mouth | |||
---|---|---|---|
Samples Code | LCHCP-2 | ||
Statistical Parameters | Opening (mm) | Aperture | Result |
Phi (Φ) | |||
Coefficient of uniformity (Cu) | 25.000 | −4.644 | Very well graded |
Coefficient of curvature (Cc) | 1.210 | −0.275 | Well gradado |
Hydraulic Conductivity Coefficient (K) [cm/hr] | 165.888 | SP-SW (U.S.C.S) | |
(cm/hr) | |||
Average Chart Size (Mz) | 3.647 | −1.867 | Small pebble, flow and average current energy |
Inclusive graph standard deviation (Φi) | 0.223 | 2.164 | Very poorly selected. Low fluidity and high energy current |
Degree of inclusive graphic asymmetry (Ski) | 1.226 | −0.294 | Asymmetrical towards thick |
Measurement of graphical Kurtosis (KG) | 0.653 | 0.615 | Very platykurtic |
Mode | 25.4, −0.84, −0.08 | - | Multimodal: small pebble, granules and fine sand |
Unified Soil Classification System (U.S.C.S.) | SW | Well-graduated sands, sands with gravel, with few or no fines | |
SM | Silty sands, poorly graded sand and silt mixtures | ||
Samples code | LCHCP-11 | ||
Statistical parameters | Opening (mm) | Aperture | Result |
Phi (Φ) | |||
Coefficient of uniformity (Cu) | 36.364 | −5.184 | Very well graded |
Coefficient of curvature (Cc) | 0.364 | 1.459 | Poorly graded |
Hydraulic Conductivity Coefficient (K) [cm/h] | 34.848 | SP-SW (U.S.C.S) | |
(cm/h) | |||
Average Chart Size (Mz) | 1.866 | −0.900 | Small pebble, flow and average current energy |
Inclusive graph standard deviation (Φi) | 0.202 | 2.308 | Very poorly selected. Low fluidity and high energy current |
Degree of inclusive graphic asymmetry (Ski) | 11.349 | −0.183 | Asymmetrical towards thick |
Measurement of graphical Kurtosis (KG) | 0.748 | 0.419 | Very platykurtic |
Mode | 25.4, −4.75, −2, −0.08 | - | Multimodal: small pebble, granules and fine sand |
Unified Soil Classification System (U.S.C.S.) | SP | Well-graduated sands, sands with gravel, with few or no fines | |
- | - | ||
Samples code | LCHCP-18 | ||
Statistical parameters | Opening (mm) | Aperture | Result |
Phi (Φ) | |||
Coefficient of uniformity (Cu) | 45.000 | −5.492 | Very well graded |
Coefficient of curvature (Cc) | 1.800 | −0.848 | Well gradado |
Hydraulic Conductivity Coefficient (K) [cm/h] | 115.200 | SP-SW (U.S.C.S) | |
(cm/h) | |||
Average Chart Size (Mz) | 5.528 | −2.467 | Small pebble, flow and average current energy |
Inclusive graph standard deviation (Φi) | 0.239 | 2.065 | Very poorly selected. Low fluidity and high energy current |
Degree of inclusive graphic asymmetry (Ski) | 0.91581265 | 0.127 | Asymmetrical towards thick |
Measurement of graphical Kurtosis (KG) | 0.670 | 0.578 | Very platykurtic |
Mode | 25.4, −9.5, −4.75, −0.08 | - | Multimodal: small pebble, granules and fine sand |
Unified Soil Classification System (U.S.C.S.) | GW | Well-graded gravel, mixture of gravel and sand with few or no fines | |
GM | Silty gravels, poorly graduated mixtures of gravel, sand and silt |
Appendix I. Shape Parameters, Whose Value Is Related to Its Meaning
Form Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Zone | A | P | LA | AP | AA | LCP (km) | F | Kc |
(km2) | (km) | (km) | (km) | (km2) | ||||
La Chimba basin | 24.710 | 23.594 | 7.056 | 3.502 | 11.120 | 7.715 | 0.415 | 1.329 |
La Chimba sub-basin | 17.217 | 21.000 | 7.056 | 2.440 | 7.748 | 7.715 | 0.289 | 1.417 |
Guanaco sub-basin | 7.493 | 12.715 | 4.252 | 1.762 | 3.372 | 4.780 | 0.328 | 1.301 |
Appendix J. Drainage Network Parameters, Whose Value Is Related to Their Meaning
Drainage Network Parameters | |||||
---|---|---|---|---|---|
Zona | Branch Relationship (Rb) | Length Ratio (RL) | Densidad de Drenajes (Dd) | Frecuencia de Drenajes (Fd) | Jerarquía de Drenajes (J) |
Cuenca La Chimba | 5.179 | 0.519 | 10.701 | 71.267 | 6 |
Mountain basins. Typical river system. Steep slopes with rapid runoff formation and minor flood maxims | May present high concentrations of runoff along the main channel | Very well drained basin. High volume generation runoff velocities | High probability that the rainwater drop will find a drain | ||
Subcuenca La Chimba | 5.729 | 0.547 | 10.925 | 70.744 | 5 |
Mountain basins. Typical river system. Steep slopes with rapid runoff formation and minor flood maxims | May present high concentrations of runoff along the main channel | Sub-basin very well drained. Large volume generation and runoff velocities | High probability that the rainwater drop will find a drain | ||
Subcuenca Guanaco | 4.747 | 0.572 | 10.188 | 72.467 | 5 |
Mountain basins. Typical river system. Steep slopes with rapid runoff formation and minor flood maxims | May present high concentrations of runoff along the main channel | Sub-basin very well drained. Large volume generation and runoff velocities | Very high probability that the rainwater droplet will find a drain |
Appendix K. Complementary Parameters, Whose Values Are Related to Their Meaning
Supplementary Parameters | ||
---|---|---|
Zone | Torrentiality Coefficient (Ct) | Potentiality Index (IP) |
La Chimba basin | 57.790 | 3.6 |
La Chimba sub-basin | 56.862 | 5.092 |
Guanaco sub-basin | 59.923 | 11.831 |
References
- CRED; UNDRR. Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019). 2020. Available online: https://www.preventionweb.net/files/74124_humancostofdisasters20002019reportu.pdf (accessed on 20 February 2021).
- Liu, L.; Gao, J.; Wu, S. Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China. Nat. Hazards Earth Syst. Sci. 2022, 22, 1577–1590. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stoch. Environ. Res. Risk Assess. 2022, 36, 1–21. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, Y.-T.; Lee, S.-R. Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions. Remote Sens. 2020, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Grahn, T.; Jaldell, H. Assessment of data availability for the development of landslide fatality curves. Landslides 2017, 14, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Varnes, D. Slope movement types and processes. In Landslides, Analysis and Control; Special Report; Schuster, R.L., Krizek, R.J., Eds.; National Academic of Sciences: Washington, DC, USA, 1978; Volume 176, pp. 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Aristizábal-Giraldo, E.; Vasquez Guarin, M.; Ruíz, D. Métodos estadísticos para la evaluación de la susceptibilidad por movimientos en masa. TecnoLógicas 2019, 22, 39–60. [Google Scholar] [CrossRef]
- Brunsden, D. Mass movement; the research frontier and beyond: A geomorphological approach. Geomorphology 1993, 7, 85–128. [Google Scholar] [CrossRef]
- Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How can statistical models help to determine driving factors of landslides? Ecol. Model. 2012, 239, 27–39. [Google Scholar] [CrossRef]
- Süzen, M.L.; Kaya, B.Ş. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int. J. Digit. Earth 2012, 5, 338–355. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Mondal, S. Statistical Approaches for Landslide Susceptibility Assessment and Prediction; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-93896-7. [Google Scholar]
- Su, Q.; Tao, W.; Mei, S.; Zhang, X.; Li, K.; Su, X.; Guo, J.; Yang, Y. Landslide Susceptibility Zoning Using C5.0 Decision Tree, Random Forest, Support Vector Machine and Comparison of Their Performance in a Coal Mine Area. Front. Earth Sci. 2021, 9, 781472. [Google Scholar] [CrossRef]
- Pánek, T. Landslides and Quaternary climate changes—The state of the art. Earth-Sci. Rev. 2019, 196, 102871. [Google Scholar] [CrossRef]
- Nam, D.; Kim, M.-I.; Kang, D.; Kim, B. Debris Flow Damage Assessment by Considering Debris Flow Direction and Direction Angle of Structure in South Korea. Water 2019, 11, 328. [Google Scholar] [CrossRef] [Green Version]
- Camus, P.; Arenas, F.; Lagos, M.; Romero, A. Visión histórica de la respuesta a las amenazas naturales en Chile y oportunidades de gestión del riesgo de desastre. Rev. Geogr. Norte Gd. 2016, 64, 9–20. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente. Informe del Estado del Medio Ambiente; Gobierno de Chille: Santiago, Chile, 2020. Available online: https://sinia.mma.gob.cl/wp-content/uploads/2020/12/Resumen-Ejecutivo-IEMA-2020.pdf (accessed on 7 September 2021).
- Hauser, A. Remociones en Masa en Chile; Santiago, Chile, 2000. Available online: https://portalgeo.sernageomin.cl/Informes_PDF/RAR-002.pdf (accessed on 11 October 2021).
- Lara, M.; Sepúlveda, S.A. Landslide susceptibility and hazard assessment in San Ramón Ravine, Santiago de Chile, from an engineering geological approach. Environ. Earth Sci. 2010, 60, 1227–1243. [Google Scholar] [CrossRef]
- Francisca, F.; Manuel, A.; Rodrigo, C.; Javier, F.; Aníbal, G.; Sandra, H.; Mónica, M.; Andrea, M.; Francisco, A.M.; Yasna, P.; et al. Geología Para el Ordenamiento Territorial: Área de Antofagasta. 2014. Available online: https://portalgeo.sernageomin.cl/Informes_PDF/RANT-088.pdf (accessed on 20 November 2021).
- Wieczorek, G.F.; Glade, T. Climatic factors influencing occurrence of debris flows. In Debris-Flow Hazards and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–362. [Google Scholar]
- Dou, J.; Yunus, A.P.; Tien Bui, D.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Rodriguez-Caballero, E.; Rodriguez-Lozano, B.; Segura-Tejada, R.; Blanco-Sacristán, J.; Cantón, Y. Landslides on dry badlands: UAV images to identify the drivers controlling their unexpected occurrence on vegetated hillslopes. J. Arid Environ. 2021, 187, 104434. [Google Scholar] [CrossRef]
- Moreiras, S.M.; Sepúlveda, S.A. Landslides in Arid and Semi-Arid Environments. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 322–337. [Google Scholar]
- Hauser, A. Los Aluviones del 18 de Junio de 1991 en Antofagasta: Un Análisis Crítico, a 5 Años del Desastre. 1997. Available online: https://biblioteca.sernageomin.cl/opac/datafiles/Boletin_49Texto.pdf (accessed on 22 March 2021).
- Vargas, G.; Ortlieb, L.; Rutllant, J. Historic mudflows in Antofagasta, Chile, and their relationship to the El Niño/Southern Oscillation events. Andean Geol. 2010, 27, 157–176. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Rebolledo, S.; Vargas, G. Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response. Quat. Int. 2006, 158, 83–95. [Google Scholar] [CrossRef]
- Viesca, R. Debris Flow: Mechanics, Prediction and Countermeasures by Tamotsu Takahashi. Pure Appl. Geophys. 2008, 165, 995–996. [Google Scholar] [CrossRef]
- Mikoš, M.; Bezak, N. Debris Flow Modelling Using RAMMS Model in the Alpine Environment with Focus on the Model Parameters and Main Characteristics. Front. Earth Sci. 2021, 8, 605061. [Google Scholar] [CrossRef]
- Vargas, G.; Ortlieb, L.; Rutllant, J. Aluviones históricos en Antofagasta y su relación con eventos El Niño/Oscilación del Sur. Rev. Geol. Chile 2000, 27, 157–176. [Google Scholar] [CrossRef]
- SERNAGEOMIN. Principales Desastres Ocurridos Desde 1980 en Chile; Santiago, Chile, 2017. Available online: http://sitiohistorico.sernageomin.cl/pdf/presentaciones-geo/Primer-Catastro-Nacional-Desastres-Naturales.pdf (accessed on 23 March 2021).
- Araya, V. Riesgo de Aluviones Perjudiciales en las Quebradas de la Cordillera de la Costa de la Segunda Región; Universidad Católica del Norte: Antofagasta, Chile, 1992. [Google Scholar]
- Chong, G.; Pereira, M.; González, G.; Wilke, H. Los Fenómenos de Remoción en Masa Ocurridos en la Región de Antofagasta en Junio de 1991; Antofagasta, Chile, 1991. Available online: https://biblioteca.sernageomin.cl/opac/index.asp?param=o%AD%88%92bp%96%8Fqb&Op=3 (accessed on 8 January 2021).
- Sánchez, F. Hidrología Superficial y Subterránea, 1st ed.; Createspace Independent Publishing Platform: Scotts Valley, CA, USA, 2017; ISBN 9781975606602. [Google Scholar]
- Ministerio de Obras Públicas. Manual de Carreteras: Volumen N°2, Procedimientos de Estudios Viales; Santiago, Chile, 2018. Available online: https://portal.ondac.com/601/articles-59867_doc_pdf.pdf (accessed on 12 January 2021).
- Ministerio de Obras Públicas. Manual de Carreteras: Volumen N°3, Instrucciones y Criterios de Diseño; Santiago, Chile, 2018. Available online: https://portal.ondac.com/601/articles-59868_doc_pdf.pdf (accessed on 2 February 2021).
- Chow, V.; Maidment, D.; Mays, L. Hidrología Aplicada, 1st ed.; Mc Graw Hill: Santafé de Bogotá, Colombia, 1994; ISBN 958-600-171-7. [Google Scholar]
- Heras, R. Hidrología y Recursos Hidráulicos; Dirección General de Obras Hidráulicas: Madrid, Spain, 1976; ISBN 84-500-1616-9. [Google Scholar]
- Ayala, L.; Vargas, X.; Rutllant, J.; Varela, J. Crecidas Súbitas y Corrientes de Detritos Ocurridas el 18 de Junio de 1991 en Antofagasta. Estudio Realizado por el Centro de Recursos Hidráulicos de la U. de Chile para la Dirección General de Aguas, Ministerio de Obras Públicas. Santiago de Chile. 1993. Available online: https://bibliotecadigital.ciren.cl/bitstream/handle/20.500.13082/2787/DGA041.pdf?sequence=1&isAllowed=y (accessed on 1 April 2021).
- Sosio, R.; Crosta, G.B.; Hungr, O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng. Geol. 2008, 100, 11–26. [Google Scholar] [CrossRef]
- Costa, J.E. Rheologic, Geomorphic and Sedimentologic Differentiation of Water Floods, Hyperconcentrate Flows and Debris Flows. In Flood Geomorphology; John Wiley & Sons: New York, NY, USA, 1998; pp. 113–122. [Google Scholar]
- Engineering Electrowatt. Diseño Definitivo de los Sistemas de Disipación de Energía Aluvional y vías Aluvionales en la Ciudad de Antofagasta; Ministerio de Obras Publicas-Direccion de Obras Hidraulicas II Region: Antofagasta, Chile, 2000. [Google Scholar]
- Pérez, A. Procesos y Medios Sedimentarios. Guía Docente Para el Curso 2009–2010. Available online: https://estudios.unizar.es/estudio/asignatura?anyo_academico=2020&asignatura_id=26414&estudio_id=20200114¢ro_id=100&plan_id_nk=588 (accessed on 8 January 2021).
- Monsalve, G. Hidrología en la Ingeniería, 2nd ed.; Escuela Colombiana de Ingeniería: Bogotá, Colombia, 1995; ISBN 9589574211. [Google Scholar]
- Menabde, M.; Seed, A.; Pegram, G. A simple scaling model for extreme rainfall. Water Resour. Res. 1999, 35, 335–339. [Google Scholar] [CrossRef]
- Pizarro, R.; Sangüesa, C.; Flores, J.P.; Martínez, E. Elementos de Ingeniería Hidrológica Para el Mejoramiento de la Productividad Silvícola; Talca, Chile, 2005. Available online: http://desarrollo.utalca.cl/temporal/ctha/Docs/pdf/Publicaciones/libros/elementos_de_ingenieria_hidrologica_para_el_mejoramiento_de_la_productividad_silvicola.pdf (accessed on 11 December 2020).
- de Blasio, F.V. Introduction to the Physics of Landslides; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-1121-1. [Google Scholar]
- Gaspari, F.; Rodríguez, A.; Senisterra, G.; Denegri, G.; Delgado, M.; Besteiro, S. Morphometric characterization of the upper watershed of the Sauce Grande River, Buenos Aires, Argentina. In Proceedings of the VII Congreso de Medio Ambiente AUGM, Buenos Aires, Argentina, 22–24 May 2012; p. 25. [Google Scholar]
- Dirección General de Aguas Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea. Available online: https://snia.mop.gob.cl/BNAConsultas/reportes (accessed on 3 December 2020).
- Naranjo, J.A. Interpretacion de la actividad cenozoica superior a lo largo de la Zona de Falla Atacama, Norte de Chile. Rev. Geol. Chile 1987, 31, 43–55. [Google Scholar] [CrossRef]
- González, G.; Niemeyer, H. Cartas Antofagasta y Punta Tetas. Región de Antofagasta. 2005. Available online: https://es.scribd.com/document/378352508/Cartas-Antofagasta-y-Punta-Tetas-1 (accessed on 20 April 2020).
- Nicol, M.; Basson, P. The anodic behaviour of covellite in chloride solutions. Hydrometallurgy 2017, 172, 60–68. [Google Scholar] [CrossRef]
- SEMANART. Cuencas Hidrográficas; Mexico, 2013. Available online: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2013/CD001596.pdf (accessed on 15 March 2021).
- Strahler, A. Quantitative Geomorphology of Drainage Basins and Channel Networks. In Handbook of Applied Hydrology; Chow, V., Ed.; McGraw Hill: New York, NY, USA, 1964; pp. 439–476. [Google Scholar]
- Van Liem, N.; Dat, N.P.; Dieu, B.T.; Van Phai, V.; Trinh, P.T.; Vinh, H.Q.; Van Phong, T. Assessment of Geomorphic Processes and Active Tectonics in con voi Mountain Range Area (Northern Vietnam) Using the Hypsometric Curve Analysis Method. Vietnam J. Earth Sci. 2016, 38, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Vivienda y Urbanismo. Técnicas Alternativas Para Soluciones de Aguas Lluvias en Sectores Urbanos, Guía de Diseño; Santiago, Chile, 1996. Available online: https://www.hesep.cl/intranet/upload/documentos/5c9102de5a5ed.pdf (accessed on 1 January 2021).
- Che, C. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, 1st ed.; American Society of Civil Engineers: New York, NY, USA, 1997; ISBN 978-0-7844-0268-9. [Google Scholar]
- Zhu, P. A discussion on the velocity of debris flow. In Erosion in Debris Flows and Environment in Mountain Regions, Proceedings of the Chengdu Symposium, Chengdu, China, 5–9 July 1992; pp. 369–374. [Google Scholar]
- Arcement, G., Jr.; Schneider, V. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; 1989. Available online: http://pubs.er.usgs.gov/publication/wsp2339 (accessed on 25 February 2021).
- Hussin, H.Y. Probabilistic Run-Out Modeling of a Debris Flow in Barcelonnette. Master’s Thesis, University of Twente, Barcelonnette, France, 2011. [Google Scholar]
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, L. Aplicación de Metodologías Para la Evaluación de la Susceptibilidad de Generación y Peligro de Flujos Detríticos en las Quebradas Baquedano, Uribe y El Toro en Antofagasta, Región de Antofagasta. Master’s Thesis, Universidad Católica del Norte, Antofagasta, Chile, 2017. [Google Scholar]
- Berry, L.; Reid, D. Mecánica de Suelos, 1st ed.; McGraw-Hill: Manchester, UK, 2000; ISBN 9789586001724. [Google Scholar]
- Espinoza, C. Hidráulica de Aguas Subterráneas y su Aprovechamiento. Material Docente, Facultad de Ciencias Físicas y Matemáticas. Available online: https://www.u-cursos.cl/ingenieria/2010/1/CI51J/1/material_docente/ (accessed on 11 April 2021).
- Folk, R.L.; Ward, W.C. Brazos River bar [Texas]; a study in the significance of grain size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350. [Google Scholar] [CrossRef]
- Zavoianu, I. Morphometry of Drainage Basins, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 1985; ISBN 9780080870113. [Google Scholar]
- Chorley, R.; Horton, R.E. 1945: Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56, 2 75–3 70. Prog. Phys. Geogr. Earth Environ. 1995, 19, 533–554. [Google Scholar] [CrossRef]
- Garay, D.; Agüero, J. Delimitación Hidrográfica y Caracterización Morfométrica de la Cuenca del Río Anzulón; La Rioja, Argentina, 2018. Available online: https://inta.gob.ar/sites/default/files/inta-_delimitacion_y_caracterizacion_de_la_cuenca_del_rio_anzulon_1.pdf (accessed on 21 July 2020).
- López Cadenas de Llano, F. Restauración Hidrológica Forestal de Cuencas y Control de la Erosión, Ingeniería Medioambiental, 2nd ed.; Mundi-Prensa: Madrid, Spain, 1998; ISBN 84-7114-733-5. [Google Scholar]
- Langbein, W. Topographic Characteristics of Drainage Basins. Geol. Surv. Water Supply 1947, 968-C, 125–158. [Google Scholar]
- Reinaldo, B.O. Un Metodo Para Prevencion de Aluviones en Zonas Deserticas; Santiago, Chile, 1978. Available online: https://repositoriodigital.minvu.cl/Record/21337 (accessed on 5 November 2020).
- Arcadis Geotécnia. Modificación Plan Regulador Comunal de Antofagasta Sector Norte. 2008. Available online: http://200.42.173.246/transparencia/clientes/1/datos/ModificacionPlanReguladorComunalSectorNorte,Antofagasta.pdf (accessed on 6 January 2021).
Fluidity | Parameter | Value |
---|---|---|
Maximum fluidity | ξ (m/s2) | 500 |
µ | 0.05 | |
Medium fluidity | ξ (m/s2) | 350 |
µ | 0.125 | |
Minimum fluidity | ξ (m/s2) | 200 |
µ | 0.2 |
Data Ordered from Highest to Lowest (Rainfall) | Gumbel Distribution for Extreme Values | |||||
---|---|---|---|---|---|---|
Date | Maximum Daily Rainfall Events (mm) | Gumbel Distribution Probability of Non-Exceedance (P(X < x)) | Gumbel Distribution Probability of Non-Exceedance (P(X < x)%) | Gumbel Distribution Exceedance Probability (P(X < x)) | Gumbel Distribution Exceedance Probability (P(X < x)%) | Return Period (Tr) (Years) |
24 March 2015 | 31.50 | 0.9957 | 99.57% | 0.0043 | 0.43% | 230.1945 |
6 June 2017 | 20.50 | 0.9711 | 97.11% | 0.0289 | 2.89% | 34.5495 |
17 June 1991 | 17.00 | 0.9475 | 94.75% | 0.0525 | 5.25% | 19.0519 |
28 July 1987 | 13.20 | 0.9010 | 90.10% | 0.0990 | 9.90% | 10.1000 |
29 August 2006 | 11.50 | 0.8693 | 86.93% | 0.1307 | 13.07% | 7.6525 |
24 June 2016 | 6.70 | 0.7246 | 72.46% | 0.2754 | 27.54% | 3.6312 |
8 July 2011 | 6.10 | 0.6994 | 69.94% | 0.3006 | 30.06% | 3.3271 |
13 January 1983 | 6.00 | 0.6951 | 69.51% | 0.3049 | 30.49% | 3.2795 |
27 August 2002 | 3.80 | 0.5869 | 58.69% | 0.4131 | 41.31% | 2.4209 |
27 August 1982 | 3.50 | 0.5705 | 57.05% | 0.4295 | 42.95% | 2.3280 |
28 May 1992 | 3.00 | 0.5422 | 54.22% | 0.4578 | 45.78% | 2.1841 |
7 June 1984 | 2.00 | 0.4828 | 48.28% | 0.5172 | 51.72% | 1.9334 |
31 May 2000 | 1.80 | 0.4705 | 47.05% | 0.5295 | 52.95% | 1.8886 |
20 July 2009 | 1.60 | 0.4581 | 45.81% | 0.5419 | 54.19% | 1.8455 |
12 September 2014 | 1.40 | 0.4457 | 44.57% | 0.5543 | 55.43% | 1.8040 |
18 May 1986 | 1.00 | 0.4205 | 42.05% | 0.5795 | 57.95% | 1.7257 |
20 May 1995 | 1.00 | 0.4205 | 42.05% | 0.5795 | 57.95% | 1.7257 |
20 July 1994 | 0.80 | 0.4079 | 40.79% | 0.5921 | 59.21% | 1.6888 |
5 August 1981 | 0.70 | 0.4015 | 40.15% | 0.5985 | 59.85% | 1.6709 |
26 March 1979 | 0.50 | 0.3888 | 38.88% | 0.6112 | 61.12% | 1.6361 |
20 August 1989 | 0.50 | 0.3888 | 38.88% | 0.6112 | 61.12% | 1.6361 |
29 August 1996 | 0.50 | 0.3888 | 38.88% | 0.6112 | 61.12% | 1.6361 |
27 October 1980 | 0.40 | 0.3824 | 38.24% | 0.6176 | 61.76% | 1.6192 |
25 April 2005 | 0.40 | 0.3824 | 38.24% | 0.6176 | 61.76% | 1.6192 |
26 July 2004 | 0.10 | 0.3632 | 36.32% | 0.6368 | 63.68% | 1.5705 |
A | 0.00 | 0.3569 | 35.69% | 0.6431 | 64.31% | 1.5549 |
Number of Data (n) | Mean (Average) (Ẋ) | Trend | Standard Deviation (Sx) | σy | μy | α | u |
---|---|---|---|---|---|---|---|
41 | 3.3 | 0.000 | 6.576 | 1.1413 | 0.5436 | 5.7622 | 0.1726 |
Tr | 1/PTr | 1-1/Tr | PTr (mm) |
---|---|---|---|
2 | 0.5 | 0.5 | 2.284 |
5 | 0.2 | 0.8 | 8.815 |
10 | 0.1 | 0.9 | 13.140 |
20 | 0.05 | 0.95 | 17.287 |
50 | 0.02 | 0.98 | 22.656 |
100 | 0.01 | 0.99 | 26.679 |
200 | 0.005 | 0.995 | 30.688 |
Result | ||||
---|---|---|---|---|
Return Period (Tr) (Años) | Design Rain Intensity (i) (mm/h) | La Chimba Sub-Basin | Guanaco Sub-Basin | Total Detrital Flow (QDT) (m3/s) |
Debris Flow (QD) (m3/s) | Debris Flow (QD) (m3/s) | |||
2 | 7.890 | 17.806 | 8.467 | 26.272 |
5 | 12.356 | 27.884 | 13.259 | 41.143 |
10 | 14.887 | 33.595 | 15.975 | 49.570 |
20 | 17.566 | 43.607 | 20.735 | 64.342 |
50 | 21.139 | 57.246 | 27.221 | 84.468 |
100 | 23.819 | 67.191 | 31.950 | 99.140 |
200 | 26.498 | 74.750 | 35.544 | 110.294 |
Data | Required Values | Result |
---|---|---|
Zone | D90 (mm) (Average) | no |
La Chimba sub-basin | 0.12 | 0.0266 |
Guanaco sub-basin | 0.14 | 0.0273 |
Required Values | Result | |||||||
---|---|---|---|---|---|---|---|---|
Zone | m | no | n1 | n2 | n3 | n4 | n′ | Total |
La Chimba sub-basin | 1.15 | 0.0266 | 0.005 | 0.005 | 0 | 0.01 | 0.0535 | Floor; fine-coarse gravel, perimeter irregularity; slight, variation sections; occasionally alternate, obstructions; despicable, vegetation; low and sinuosity; appreciable-high |
Guanaco sub-basin | 1.15 | 0.0273 | 0.005 | 0.005 | 0 | 0.01 | 0.0543 | Floor; fine-coarse gravel, perimeter irregularity; slight, variation sections; occasionally alternate, obstructions; despicable, vegetation; low and sinuosity; mild |
Relief Parameters | |||||
---|---|---|---|---|---|
Zone | Maximum and Mínimum Elevation (HM) (Hm) (m a.s.l.) | Absolute Slope (H) (m) | Mean Basin Slope (Pm) (%) | Main Channel Slope (Pcp) (%) | Hypsometric Curve (CH) |
La Chimba basin | 1062–272 | 790 | 30.285 | 16.200 | Young basin |
La Chimba sub-basin | 1062–276 | 786 | 26.744 | 16.200 | Young sub-basin |
Guanaco sub-basin | 988–272 | 716 | 33.825 | 27.558 | Young sub-basin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roldán, F.; Salazar, I.; González, G.; Roldán, W.; Toro, N. Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile). Water 2022, 14, 2225. https://doi.org/10.3390/w14142225
Roldán F, Salazar I, González G, Roldán W, Toro N. Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile). Water. 2022; 14(14):2225. https://doi.org/10.3390/w14142225
Chicago/Turabian StyleRoldán, Francisca, Iván Salazar, Gabriel González, Walter Roldán, and Norman Toro. 2022. "Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile)" Water 14, no. 14: 2225. https://doi.org/10.3390/w14142225
APA StyleRoldán, F., Salazar, I., González, G., Roldán, W., & Toro, N. (2022). Flow-Type Landslides Analysis in Arid Zones: Application in La Chimba Basin in Antofagasta, Atacama Desert (Chile). Water, 14(14), 2225. https://doi.org/10.3390/w14142225