Recent and Historical Background and Current Challenges for Sediment Disaster Measures against Climate Change in Japan
Abstract
:1. Introduction
2. Recent and Historical Background
2.1. Non-Structural and Structural Measures against Sediment Disasters in Japan
2.2. Recent Major Sediment Disasters and Response
2.3. Sediment-Laden Floods and Deep-Seated Landslides with No Clear Landslide Topography on Gentle Slope and Simultaneous Debris Flows
3. Challenges for Sediment Disaster Measures against Climate Change
3.1. Current Challenges of Sediment-Laden Floods
3.2. Current Challenges of Deep-Seated Landslides with No Clear Landslide Topography on Gentle Slope
3.3. Current Challenges of Simultaneous Debris Flows
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; Jamec Auflic, M.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Marc, O.; Stumpf, A.; Malet, J.P.; Gosset, M.; Uchida, T.; Chiang, S.H. Initial insights from a global database of rainfall-induced landslide inventories: The weak influence of slope and strong influence of total storm rainfall. Earth Syst. Dyn. 2018, 6, 903–922. [Google Scholar] [CrossRef] [Green Version]
- IPCC Sixth Assessment Report—Summary for Policymakers. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf (accessed on 13 July 2022).
- Stoffel, M.; Tiranti, D.; Huggel, C. Climate change impacts on mass movements—Case study from the European Alps. Sci. Total Environ. 2014, 493, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Gariano, S.L.; Rianna, G.; Petrucci, O.; Guzzetti, F. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci. Total Environ. 2017, 596–597, 417–426. [Google Scholar] [CrossRef]
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef]
- Kanbara, J.; Imamori, N. Outline of measures for sediment disaster by the Sabo department of MLIT, Japan. Landslides 2020, 17, 2503–2513. [Google Scholar]
- Ministry of the Environment—Publication of Report on Assessment of Impacts of Climate Change in Japan and Future Challenges. Available online: https://www.env.go.jp/press/108790.html (accessed on 29 April 2022).
- e-GOV—Climate Change Adaptation Act. Available online: https://elaws.e-gov.go.jp/document?law_unique_id=430AC0000000050_20181201_000000000000000 (accessed on 29 April 2022).
- Cabinet Office—Public Opinion Survey on Water Circulation (October 2020 Survey). Available online: https://survey.gov-online.go.jp/hutai/r02/r02-mizug.pdf (accessed on 29 April 2022).
- Mizuyama, T. Sediment hazards and SABO works in Japan. Int. J. Eros. Control Eng. 2008, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Osanai, N.; Shimizu, T.; Kuramoto, K.; Kojima, S.; Noro, T. Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 2010, 7, 325–338. [Google Scholar] [CrossRef]
- Uchida, T.; Nishimoto, H.; Osanai, N.; Shimizu, T. Countermeasures for sediment-related disasters in Japan using hazard maps. Int. J. Eros. Control Eng. 2009, 2, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Land, Infrastructure, Transport and Tourism—Designation of Sediment Disaster Alert Areas. Available online: https://www.mlit.go.jp/mizukokudo/sabo/content/001465798.pdf (accessed on 29 April 2022).
- e-GOV—Sediment Disaster Prevention Act. Available online: https://elaws.e-gov.go.jp/document?lawid=412AC0000000057 (accessed on 29 April 2022).
- e-GOV—Sabo Act. Available online: https://elaws.e-gov.go.jp/document?lawid=130AC0000000029 (accessed on 29 April 2022).
- e-GOV—Landslide Prevention Act. Available online: https://elaws.e-gov.go.jp/document?lawid=333AC0000000030 (accessed on 29 April 2022).
- e-GOV—Steep Slope Failure Prevention Act. Available online: https://elaws.e-gov.go.jp/document?lawid=344AC0000000057_20150801_000000000000000 (accessed on 29 April 2022).
- Mizuyama, T. Structural countermeasures for debris flow disasters. Int. J. Eros. Control Eng. 2008, 1, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Land, Infrastructure, Transport and Tourism—Sediment-Laden Flood. Available online: https://www.mlit.go.jp/common/001296657.pdf (accessed on 29 April 2022).
- Hasegawa, Y.; Nakatani, K.; Araki, Y.; Kaibori, M.; Satofuka, Y. Study on sediment disasters occurred in Tennou, Kure city, Hiroshima prefecture and considering sediment and flood damage in down stream area. J. Jpn. Soc. Civ. Eng. Ser. B1 2019, 75, 324–331. [Google Scholar] [CrossRef]
- Harada, D.; Nagumo, N.; Nakamura, Y.; Egashira, S. Characteristics of flood flow with active sediment transport in the Sozu river flood hazards at the severe rainfall event in July 2018. J. Disaster Res. 2019, 14, 886–893. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, Transport and Tourism—Technical Criteria for River and SABO Works Basic Planning Part. Available online: https://www.mlit.go.jp/river/shishin_guideline/gijutsu/gijutsukijunn/keikaku/index.html (accessed on 19 July 2022).
- Kinki Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism—The Great Flood in the Kii Peninsula, The Record of Disaster Response of the Kinki Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism. Available online: https://www.kkr.mlit.go.jp/bousai/qgl8vl0000008ajd-att/kiihantou-kirokushi.pdf (accessed on 19 July 2022).
- Sasaki, M. Measures of sediment disasters after 2011 eruption of Shinmoe-dake, Kirishima Volcano. J. Jpn. Soc. Eros. Control Eng. 2014, 66, 88–91. [Google Scholar]
- Council for landslide disaster management in Niigata Prefecture. Activities of Council for landslide disaster management in Niigata Prefecture. J. Jpn. Landslide Soc. 2017, 54, 68–71. [Google Scholar] [CrossRef]
- Uchida, T.; Yamakoshi, T.; Shimizu, T.; Yoshino, K.; Kisa, H.; Ishiduka, T. Quick analysis method for assessing debris flow hazard area induced by overtopping erosions of landslide dam and post-eruption rainstorm. Civ. Eng. J. 2011, 53, 18–23. [Google Scholar]
- Public Works Research Institute, Japan—Development of an Open Source Program for Parallel Computation of Inundation by Stony Debris Flow, Immature Stony Debris Flow and Bed Load. Available online: https://www.pwri.go.jp/jpn/results/db/doken_kankoubutu/doken_shiryou/files/doken_shiryou_4415_00.pdf (accessed on 19 July 2022).
- Japan Meteorological Agency—Climate Change in Japan, December 2020. Available online: https://www.data.jma.go.jp/cpdinfo/ccj/2020/pdf/cc2020_gaiyo_en.pdf (accessed on 8 July 2022).
- Uchida, T.; Sakurai, W.; Okamoto, A. Historical Patterns of Heavy Rainfall Event and Deep-Seated Rapid Landslide Occurrence in Japan: Insight for Effects of Climate Change on Landslide Occurrence. In Advancing Culture of Living with Landslides; Mikoš, M., Casagli, N., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 251–257. [Google Scholar]
- Kawase, H.; Yamaguchi, M.; Imada, Y.; Hayashi, S.; Murata, A.; Nkaegawa, T.; Miyasaka, T.; Takayabu, I. Enhancement of extremely heavy precipitation induced by Typhoon Hagibis (2019) due to historical warming. SOLA 2021, 17A, 7–13. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, Transport and Tourism—Problems Based on Recent Sediment Disaster Experience. Available online: https://www.mlit.go.jp/river/sabo/committee_kikohendo/200521/02shiryo.pdf (accessed on 29 April 2022).
- Saito, H.; Korup, O.; Uchida, T.; Hayashi, S.; Oguchi, T. Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan. Geology 2014, 42, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency—Emergency Warning System. Available online: https://www.jma.go.jp/jma/en/Emergency_Warning/ew_index.html (accessed on 29 April 2022).
- Irasawa, M.; Koi, T.; Tsuo, C.Y.; Kato, N.; Matsuo, S.; Arai, M.; Kaibori, M.; Yamada, T.; Kasai, M.; Wakahara, T.; et al. October 2019 sediment disaster in the Tohoku region owing to Typhoon No. 19 (Tyhpoon Hagibis). Int. J. Eros. Control Eng. 2020, 13, 48–55. [Google Scholar] [CrossRef]
- National Institute for Land and Infrastructure Management, Japan—Report on the Investigation of Infrastructures and Building Damages Caused by Typhoon No.15 and No.19 in 2019. Available online: http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn1111pdf/ks1111.pdf (accessed on 19 July 2022).
- Shuin, Y.; Uchida, T.; Kaibori, M.; Takeshita, W.; Tobioka, S.; Nishiwaki, A.; Yamakoshi, T. Sediment disasters in the Kanto area caused by heavy rains in October 2019, Typhoon Hagibis and locally developed front. J. Jpn. Soc. Eros. Control Eng. 2020, 72, 54–62. [Google Scholar]
- Nishiuchi, T.; Miyase, M.; Kunita, K.; Hamaji, R.; Hayashi, S.; Matsumoto, H.; Kito, M.; Sakai, Y.; Yamada, T.; Shibata, S. Characterization of dominant predisposing and triggering factors that are highly relevant to sediment transport phenomena. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Online, 19–21 May 2021; pp. 11–12. [Google Scholar]
- Taniguchi, Y.; Uchida, T.; Omura, H.; Ochiai, H.; Kaibori, M.; Kubota, T.; Sasahara, K.; Jitousono, T.; Shimizu, O.; Shimokawa, E.; et al. Sediment disasters caused by typhoon Nabi (T 0514) in September 2005. J. Jpn. Soc. Eros. Control Eng. 2005, 58, 46–53. [Google Scholar]
- Sasahara, K.; Kato, H.; Sakurai, W.; Ishizuka, T.; Kaji, A. Large-scale landslides occurred at eastern part of Kochi Pref. due to Typhoon No.6, 2011. J. Jpn. Soc. Eros. Control Eng. 2011, 64, 39–45. [Google Scholar]
- Marutani, T.; Kaibori, M.; Jitousono, T.; Mizuno, H.; Ohno, H.; Shimizu, O.; Kubota, T.; Ue, H.; Kanazawa, A.; Kawano, T.; et al. Sediment-related disasters by a heavy rainfall in the northern part of Kyushu-Island, Japan in July 2017. J. Jpn. Soc. Eros. Control Eng. 2017, 70, 31–42. [Google Scholar]
- Satofuka, Y.; Kosugi, K.; Nakatani, K.; Masaoka, N.; Okano, K.; Kasahara, T.; Yanagisaki, G.; Yamaguchi, Y. Disasters occurred in Kansai region due to the heavy rain event of July 2018. J. Jpn. Soc. Eros. Control Eng. 2018, 71, 38–48. [Google Scholar]
- Hashinoki, T.; Mizuyama, T.; Satoh, K.; Murakami, M. Research on sediment yield and sediment discharge which considers timing of sediment yield. J. Jpn. Soc. Eros. Control Eng. 2007, 59, 15–22. [Google Scholar]
- Furuichi, T.; Osanai, N.; Hayashi, S.; Izumi, N.; Kyuka, T.; Shiono, Y.; Miyazaki, T.; Hayakawa, T.; Nagano, N.; Matsuoka, N. Disastrous sediment discharge due to typhoon-induced heavy rainfall over fossil periglacial catchments in western Tokachi, Hokkaido, northern Japan. Landslides 2018, 15, 1645–1655. [Google Scholar] [CrossRef]
- Kitahara, K.; Fujimoto, K.; Fujii, T.; Osegi, H.; Tokunaga, S.; Takahashi, M.; Sato, T. Sediment-laden flood caused by Typhoon Hagibis in Saku area, Nagano Prefecture. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Online, 19–21 May 2021; pp. 25–26. [Google Scholar]
- Osakada, Y.; Nakakita, E. Future changes of “Baiu heavy rainfall duration and accumulated precipitation” using the regional climate model verified with past real heavy rainfall events. J. Jpn. Soc. Civ. Eng. Ser. B1 2018, 74, I_19–I_24. [Google Scholar] [CrossRef]
- Osakada, Y.; Nakamura, A.; Nakakita, E. Statistical analysis of future changes ㏌ baiu heavy rainfall duration and accumulated rainfall considering its spatio-temporal characteristics. J. Jpn. Soc. Civ. Eng. Ser. B1 2020, 76, I_7–I_12. [Google Scholar] [CrossRef]
- Wu, Y.H.; Nakakita, E.; Kunitomo, M. Future change of rainfall-triggered landslide risk using NHRCM05 based on critical line method. J. Jpn. Soc. Civ. Eng. Ser. B1 2020, 76, I_67–I_72. [Google Scholar] [CrossRef]
- Wu, Y.H.; Nakakita, E.; Yamaji, A. Future change of snake line pattern and its relation to sediment disasters. J. Jpn. Soc. Civ. Eng. Ser. B1 2021, 77, I_193–I_198. [Google Scholar] [CrossRef]
- Uchida, T.; Sakai, Y. Sediment and flood damage as a characteristic form of sediment disaster and its countermeasures. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Morioka, Japan, 21–23 May 2021; pp. 7–8. [Google Scholar]
- Furukawa, K.; Kaibori, M.; Kubota, T.; Jirousono, T.; Gonda, Y.; Sugihara, S.; Hayashi, S.; Ikeda, A.; Araki, Y.; Kashiwabara, Y. Debris disasters caused by heavy rainfall around Hofu City in Yamaguchi Prefecture on July 21, 2009. J. Jpn. Soc. Eros. Control Eng. 2009, 62, 62–67. [Google Scholar]
- Matsumura, K.; Fujita, M.; Yamada, T.; Gonda, Y.; Numamoto, S.; Tsutsumi, D.; Nakatani, K.; Imaizumi, F.; Shimada, T.; Kaibori, M.; et al. Sediment disasters due to typhoon No.12 at 2011, occurred in Kii peninsula. J. Jpn. Soc. Eros. Control Eng. 2012, 64, 43–53. [Google Scholar]
- Nagumo, N.; Egashira, S. Geomorphological analysis on flood and sediment hazards in the Omoto River resulting from Typhoon Lionrock in 2016. Trans. Jpn. Geomorphol. Union 2018, 39, 47–66. [Google Scholar]
- Kaibori, M.; Hasegawa, Y.; Yamashita, Y.; Sakida, H.; Nakai, S.; Kuwada, S.; Hiramatsu, S.; Jitousono, T.; Irasawa, M.; Shimizu, O.; et al. Sediment related disaster due to heavy rainfall in Hiroshima Prefecture in July 2018. J. Jpn. Soc. Eros. Control Eng. 2018, 71, 49–60. [Google Scholar]
- Jitousono, T.; Igura, M.; Ue, H.; Ohishi, H.; Kakimoto, T.; Kitou, K.; Koga, S.; Sakai, Y.; Sakashima, T.; Shinohara, Y.; et al. Sediment disasters in Kumamoto Prefecture by a heavy rainfall in July 2020. J. Jpn. Soc. Eros. Control Eng. 2020, 73, 41–50. [Google Scholar]
- Sakai, Y.; Yamada, Y.; Sakata, T.; Yamakoshi, T.; Miyase, M.; Sakai, N.; Hayashi, S. Sediment disasters in the Gebasawa River, Chino, Nagano Prefecture on September 2021. J. Jpn. Soc. Eros. Control Eng. 2022, 75, 35–40. [Google Scholar]
- Rokko SABO Office—The Great Hanshin Flood. 1938. Available online: https://www.kkr.mlit.go.jp/rokko/disaster/history/s13/s13-index.php (accessed on 29 March 2022).
- Tada, Y.; Sanmori, T.; Daimaru, H.; Koyama, K.; Kawai, T. Changes in Forests and Sediment Disaster over the Past 100 Years; Japan Society of Erosion Control Engineering: Tokyo, Japan, 2010; pp. 32–33. [Google Scholar]
- Ide, M. Looking back upon forest conservation (Chisan) measures of the last 100 years in Japan. J. Jpn. Soc. Eros. Control Eng. 2011, 64, 40–48. [Google Scholar]
- Shuin, Y. Changes in Japan’s forests and sediment disaster caused by heavy rainfall. Sci. Fire Disaster Prev. 2021, 143, 40–46. [Google Scholar]
- Rokko SABO Office—Effects of Sabo Facilities against the Torrential Rains in July Heisei 30. Available online: https://www.mlit.go.jp/river/sabo/jirei/h30dosha/H30koukajirei_rokkou_jigyo.pdf (accessed on 29 March 2022).
- Shinohara, Y.; Kume, T. Changes in the factors contributing to the reduction of landslide fatalities between 1945 and 2019 in Japan. Sci. Total Environ. 2022, 827, 154392. [Google Scholar] [CrossRef]
- Sugimoto, H.; Uto, T.; Honma, H.; Takeshi, T. Features of landslides induced by the 2011 off the Pacific Coast of Tohoku Earthquake, in Shirakawa hills. Civ. Eng. J. 2012, 54, 18–21. [Google Scholar]
- Kaibori, M.; Ishikawa, Y.; Ushiyama, M.; Kubota, T.; Hiramatsu, S.; Fujita, M.; Miyoshi, I.; Yamashita, Y. Debris flow and slope failure disasters in Hiroshima Prefecture caused by feavy rainfall in June, 1999 (Prompt Report). J. Jpn. Soc. Eros. Control Eng. 1999, 52, 34–43. [Google Scholar]
- Kaibori, M.; Ishikawa, Y.; Satufuka, Y.; Matsumura, K.; Nakatani, K.; Hasegawa, Y.; Matsumoto, N.; Takahara, T.; Fukatsuka, K.; Yoshino, K.; et al. Sediment-related disasters induced by a heavy rainfall in Hiroshima-city on 20th August, 2014. J. Jpn. Soc. Eros. Control Eng. 2014, 67, 49–59. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism—The Report of the Sediment Disaster Prevention Study Committee to Ensure Effective Evacuation. Available online: https://www.mlit.go.jp/river/sabo/committee_jikkousei/190529/hokokusyo.pdf (accessed on 29 March 2022).
- Sakai, Y.; Tsushima, M.; Yamakoshi, T. Sediment yield in recent events with sediment and flood damage. Civ. Eng. J. 2021, 63, 30–35. [Google Scholar]
- Sakai, Y.; Tsushima, M.; Yamakoshi, T. Topographic analysis of damaged houses on sediment and flood damage. Civ. Eng. J. 2021, 63, 30–35. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism—Draft Guideline of Investigation for Watershed at Risk of Severe Damage due to Sediment and Flood Damage (Trial version). Available online: https://www.mlit.go.jp/river/shishin_guideline/sabo/dosyakouzuihanran_youryou_r0403.pdf (accessed on 29 March 2022).
- Kinki Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism—Revaluation of Kizugawa River project. Available online: https://www.kkr.mlit.go.jp/plan/ippan/zigyohyoka/ol9a8v000003p9bu-att/no.3.pdf (accessed on 29 March 2022).
- Kinki Regional Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism—Revaluation of Kii moutains project. Available online: https://www.kkr.mlit.go.jp/plan/ippan/zigyohyoka/ol9a8v000004e27l-att/no.4.pdf (accessed on 29 March 2022).
- Ministry of Land, Infrastructure, Transport and Tourism—Manual for Cost-Benefit Analysis of SABO Project (Draft). Available online: https://www.mlit.go.jp/river/sabo/zigyo_hyokasyuho/manualsabo.pdf (accessed on 29 March 2022).
- Marushita, J.; Kiyotsuna, Y.; Kano, K.; Tanigawa, Y.; Ikeshima, T. A case study of planning measure against sediment and flood damage in the watershed of Tenjin river. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Miyazaki, Japan, 11–13 May 2022; pp. 481–482. [Google Scholar]
- Kobayashi, Y.; Mori, K.; Kato, Y.; Ochi, T.; Sugiyama, S.; Mori, M.; Nakata, H. A case study of analysis against sediment and flood damage for facility layout plan. Proceedings of annual meeting, Japan Society of Erosion Control Engineering, Online, 19–21 May 2021; pp. 29–30. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism—Summary of Sediment Disasters Caused by Heavy Rainfall in Northern Kyushu, July Heisei 29. Available online: https://www.mlit.go.jp/river/sabo/h29_kyushu_gouu/gaiyou.pdf (accessed on 29 March 2022).
- Ministry of Land, Infrastructure, Transport and Tourism—5th SABO Technical Panel for Climate Change, Material No.4 Others. Available online: https://www.mlit.go.jp/river/sabo/committee_kikohendo/220422/06siryou4.pdf (accessed on 29 March 2022).
- Sugimoto, H.; Kamiyama, J.; Fujiwara, K.; Hayashi, S.; Matsumoto, H.; Kito, M.; Sugawara, H.; Kanai, S.; Fujimoto, R.; Okazaki, T.; et al. An investigation of inventory and conditions for occurrence of deep-seated landslide with no clear landslide topography on gentle slope. Proceedings of Annual Meeting, Japan Society of Erosion Control Engineering, Online, 19–21 May 2021; pp. 263–264. [Google Scholar]
- Japan Meteorological Agency—Table of Probable Rainfall (51 locations). Available online: https://www.data.jma.go.jp/cpdinfo/riskmap/qt_table.html (accessed on 29 March 2022).
- Mizuyama, T.; Wada, H.; Yoshida, K. Debris flow control structures installed in zero-order torrents—A debris flow fence. J. Jpn. Soc. Eros. Control Eng. 2009, 62, 74–76. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism—Technical Supplement for Structural Countermeasure against Debris Flow in Streams with Small Catchment Area and No Flowing Water (Trial version). Available online: https://www.mlit.go.jp/river/shishin_guideline/sabo/muryuusuikeiryuu_ryuuizikou_r0403.pdf (accessed on 29 March 2022).
- Sabo Planning Division, National Institute for Land and Infrastructure Management, Japan. Manual of Technical Standard for Establishing Sabo Master Plan for Debris Flow and Driftwood. Available online: http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0904.htm (accessed on 19 July 2022).
- Sabo Planning Division, National Institute for Land and Infrastructure Management, Japan. Manual of Technical Standard for Designing Sabo Facilities against Debris Flow and Driftwood. Available online: http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0905.htm (accessed on 19 July 2022).
- Suzuki, M.; Kobashi, S. The critical rainfall for the disasters caused by slope failures. J. Jpn. Soc. Eros. Control Eng. 1981, 34, 16–26. [Google Scholar]
- Shiomi, R.; Otsubo, R.; Ieta, Y.; Kiyono, M.; Nakanishi, H.; Sakai, Y.; Uchida, T. Topographic characteristics of erosion and deposition sites in watersheds caused sediment and flood damage. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Morioka, Japan, 21–23 May 2021; pp. 423–424. [Google Scholar]
- Tomita, Y.; Mori, T.; Miya, T.; Musashi, Y.; Suzuki, T.; Mizuyama, T. Development of sediment discharge model and deformation of riverbed model for watershed-management system (WMS). J. Jpn. Soc. Eros. Control Eng. 2014, 66, 3–12. [Google Scholar]
- Yamanoi, K.; Fujita, M. Risk estimation of multiple hazards related to sediment and water disasters occurring in heavy rainfall. J. Jpn. Soc. Civ. Eng. Ser. B1 2016, 72, I_1291–I_1296. [Google Scholar]
- Matsushi, Y.; Toyama, M.; Matsuzaki, H.; Chigira, M. Simulation of Soil Production and Transport for Prediction of Location and Magnitude of Shallow Landslides. Trans. Jpn. Geomorphol. Union 2016, 37, 427–453. [Google Scholar]
- Yamazaki, Y.; Egashira, S. Method to estimate landslide and their runout during heavy rainfall. J. Jpn. Soc. Civ. Eng. Ser. B1 2020, 76, I_1093–I_1098. [Google Scholar] [CrossRef]
- Kunitoki, M.; Hayashi, S.; Matsumoto, H.; Kito, M.; Yamakoshi, T.; Sakai, Y.; Uchida, T.; Ikeda, H.; Kawai, E.; Sugihara, S. Study on the estimation method of produced sediment volume using the results of interpretation for slope failure and debris flow. In Proceedings of the Annual Meeting, Japan Society of Erosion Control Engineering, Online, 19–21 May 2021; pp. 567–568. [Google Scholar]
- Fujita, A.; Suzuki, K.; Toda, M.; Kawabe, M.; Tanigawa, Y.; Ogawa, S.; Matsunaga, Y.; Makino, H. Basic study for setting design rainfall based on future rainfall forecast data in Uonuma region. Proceedings of Annual Meeting, Japan Society of Erosion Control Engineering, Miyazaki, Japan, 11–13 May 2022; pp. 61–62. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism—Interim Report of SABO Technical Panel for Climate Change. Available online: https://www.mlit.go.jp/river/sabo/committee_kikohendo/200521/chukan_torimatome.pdf (accessed on 29 March 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, S.-i.; Kunitomo, M.; Mikami, K.; Suzuki, K. Recent and Historical Background and Current Challenges for Sediment Disaster Measures against Climate Change in Japan. Water 2022, 14, 2285. https://doi.org/10.3390/w14152285
Hayashi S-i, Kunitomo M, Mikami K, Suzuki K. Recent and Historical Background and Current Challenges for Sediment Disaster Measures against Climate Change in Japan. Water. 2022; 14(15):2285. https://doi.org/10.3390/w14152285
Chicago/Turabian StyleHayashi, Shin-ichiro, Masaru Kunitomo, Koso Mikami, and Keisuke Suzuki. 2022. "Recent and Historical Background and Current Challenges for Sediment Disaster Measures against Climate Change in Japan" Water 14, no. 15: 2285. https://doi.org/10.3390/w14152285