Climate Change Impacts on Hydrological Processes in a South-Eastern European Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling
2.3. Data (Reference State)
2.4. Climate Change Scenarios
3. Results and Discussion
3.1. Model Calibration
3.2. Climate Changes
3.3. Water Balance Components (Temporal Dynamics)
3.4. Water Balance Components (Spatial Patterns)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Dayon, G.; Boé, J.; Martin, E.; Gailhard, J. Impacts of climate change on the hydrological cycle over France and associated uncertainties. Comptes Rendus Geosci. 2018, 350, 141–153. [Google Scholar] [CrossRef]
- Dawen, Y.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geog. Sust. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Heino, R.; Brazdil, R.; Forland, E.; Tuomenvirta, H.; Alexandersson, H.; Beniston, M.; Pfister, C.; Rebetez, M.; Rosenhagen, G.; Rosner, S.; et al. Progress in the study of climatic extremes in northern and central Europe. Clim. Change 1999, 42, 151–181. [Google Scholar] [CrossRef] [Green Version]
- Boorman, D.B. Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): Adding a European dimension to the catchment modelling experience developed under LOIS. Sci. Total Environ. 2003, 314, 411–437. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Part B: Regional Aspects. Chapter 23: Europe. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1267–1326. [Google Scholar]
- European Environment Agency (EEA). EEA Report 1/2017. In Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report; European Environment Agency: Copenhagen, Denmark, 2017; Available online: https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016 (accessed on 21 September 2020).
- Howarth, C.; Painter, J. Exploring the science–policy interface on climate change: The role of the IPCC in informing local decision-making in the UK. Palgrave Comm. 2016, 2, 16058. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P. Hydrologic modeling: Progress and future directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Fadeyi, O.; Maresova, P. Stakeholders’ Perception of Climate Actions in Some Developing Economies. Climate 2020, 8, 66. [Google Scholar] [CrossRef]
- Beek, T.A.; Kynast, E.; Flörke, M. Modelling Current and Future Pan-European Irrigation Water Demands and Their Impact on Water Resources. In Problems, Perspectives and Challenges of Agricultural Water Management; Kumar, M., Ed.; IntechOpen: London, UK, 2012; p. 427. ISBN 978-953-51-0117-8. Available online: https://www.intechopen.com/chapters/31500 (accessed on 10 August 2021).
- Greuell, W.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Gerten, D.; Ludwig, F.; Pisacane, G.; Roudier, P.; Schaphoff, S. Evaluation of five hydrological models across Europe and their suitability for making projections under climate change. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 10289–10330. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuel, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Wagener, T.; Tallaksen, L.M.; Engeland, K. Evaluation of nine large-scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resour. Res. 2012, 48, W11504. [Google Scholar] [CrossRef]
- Sood, A.; Smakhtin, V. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 549–565. [Google Scholar] [CrossRef]
- Bar, R.; Rouholahnejad, E.; Rahman, K.; Abbaspour, K.C.; Lehmann, A. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Env. Sci. Pol. 2015, 47, 57–69. [Google Scholar] [CrossRef]
- Verzano, K. Climate Change Impacts on Flood Related Hydrological Processes: Further Development and Application of a Global Scale Hydrological Model. Ph.D. Thesis, University of Kassel, Kassel, Germany, 2009. Available online: https://pure.mpg.de/pubman/item/item_993926_5/component/file_993925/WEB_BzE_71.pdf (accessed on 15 October 2021).
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2007: The Physical Science Basis; Alley, R.B., Allison, I., Carrasco, J., Falto, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H., Zhang, T., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Freund, E.R.; Abbaspour, K.C.; Lehman, A. Water Resources of the Black Sea Catchment under Future Climate and Landuse Change Projections. Water 2017, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Giuliani, G.; Mancosu, E.; Abbaspour, K.C.; Sözen, S.; Gorgan, D.; Beel, A.; Ray, N. Filling the gap between Earth observation and policy making in the Black Sea catchment with enviroGRIDS. Environ. Sci. Policy 2015, 46, 1–12. [Google Scholar] [CrossRef]
- Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling. Water 2017, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Krysanova, V.; Wechsung, F.; Arnold, J.; Ragavan, S.; Williams, J. PIK Report No. 69. In SWIM (Soil and Water Integrated Model), User Manual; Potsdam Institute for Climate Impact Research: Potsdam, Germany, 2000. [Google Scholar]
- Cuculeanu, V.; Tuinea, P.; Bǎlteanu, D. Climate change impacts in Romania: Vulnerability and adaptation options. GeoJournal 2002, 57, 203–209. [Google Scholar] [CrossRef]
- Mitrică, B.; Bogardi, I.; Mitrică, E.; Mocanu, I.; Minciună, M. A forecast of public water scarcity on Leu-Rotunda Plain, Romania, for the end of the 21st century. Nor. Geogr. Tidsskr. Nor. J. Geo. 2017, 71, 12–29. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/Output Documentation; Version 2012; TR-439; Texas Water Resources Institute: College Station, TX, USA, 2012; pp. 1–650. [Google Scholar]
- Dosio, A. EU High Resolution Temperature and Precipitation Dataset. European Commission, Joint Research Centre (JRC), 2018, PID. Available online: http://data.europa.eu/89h/jrc-liscoast-10011 (accessed on 17 May 2020).
- Fetting, C. The European Green Deal, ESDN Report, December 2020; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- United Nations Climate Change (UNCC). Annual Report 2020; ISBN 978-92-9219-197-9. Available online: https://unfccc.int/annualreport (accessed on 19 December 2021).
- Mirtl, M.; Orenstein, D.E.; Wildenberg, M.; Peterseil, J.; Frenzel, M. Development of LTSER platforms in LTER-Europe: Challenges and experiences in implementing place-based long-term socio-ecological research in selected regions. In Long Term Socio-Ecological Research; Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., Schmid, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 409–442. [Google Scholar]
- Pişota, I.; Cocoş, O. Unele observaţii hidrologice referitoare la bazinul râului Neajlov. Comunicări De Geografie. 2003, 7, 183–188. (In Romanian) [Google Scholar]
- National Institute for Hydrology and Water Management (NIHWM). Daily Measured Discharge at Moara din Groapa, Vadu Lat and Calugareni Stations (1981–2010). 2020. Available online: https://www.un-igrac.org/donor-partner/nihwm (accessed on 25 May 2020).
- Grecu, F.; Ghita, C.; Albu, M.; Circiumaru, E. Geomorphometric analysis on some riverbeds in the Romanian plain. Int. J. Phys. Sci. 2011, 30, 7055. [Google Scholar] [CrossRef]
- Agentia Nationala de Protectie a Mediului (ANPM). Rapport Judetean Privind Starea Mediului—Judetul Arges. Starea Calitatii Apei in Judetul Arges pe Anul 2014. Ministerul Mediului; ANPM Arges: Pitești, Romania, 2014; p. 67. (In Romanian) [Google Scholar]
- FAO/UNESCO/ISRIC. FAO/UNESCO Soil Map of the World; Revised Legend, with corrections and updates. World Soil Resources Report 60; Reprinted with updates as Technical Paper 20; FAO: Rome, Italy; ISRIC: Wageningen, The Netherlands, 1997; ISBN 92-5-103022-7. Available online: https://www.fao.org/fileadmin/user_upload/soils/docs/isricu_i9264_001.pdf (accessed on 2 March 2022).
- National Meteorological Administration (NMA). Daily Meteorological Data for Videle Station (1981–2010). 2020. Available online: https://weamyl.met.no/anm/ (accessed on 25 May 2020).
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT interface for SWAT 2012—User’s Guide; Blackland Research and Extension Centre, Texas AgriLife Research and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service: Temple, TX, USA, 2013; p. 464. [Google Scholar]
- Blaschke, A.; Schilling, C. daNUbs—Report “Water Balance Calculations for the Case Study Regions in Austria, Hungary and Romania”; Institute of Hydraulics, Hydrology and Water Resources Management: Vienna, Austria; Vienna University of Technology: Vienna, Austria, 2003; p. 155. Available online: https://iwr.tuwien.ac.at/wasser/forschung/projekte/projektarchiv/danubs/ (accessed on 20 May 2021).
- European Environment Agency (EEA). Copernicus Land Service (CLC)-Pan-European Component: CORINE Land Cover. 2012. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (accessed on 23 May 2018).
- Abbaspour, K.C. SWAT-CUP Premium: SWAT Calibration and Uncertainty Programs—A User Manual; Water, Weather Energy, and Ecosystem Technology and Data (2W2E): Zurich, Switzerland, 2020; p. 7. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Klove, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference 2. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models—Part 1: A discussiojn of principles. J. Hydrol. 1970, 82, 290. [Google Scholar] [CrossRef]
- Stefanidis, S.P. Ability of different spatial resolution regional climate models to simulate air temperature in a forest ecosystem of central Greece. J. Environ. Prot. Ecol. 2021, 22, 1488–1495. [Google Scholar]
- Busuioc, A.; Dumitrescu, A.; Baciu, M.; Cazacioc, L.; Cheval, S. RCM performance in reproducing temperature and precipitation regime in Romania. Application for Banat Plain and Oltenia Plain. Rom. J. Meteorol. 2010, 10, 19. [Google Scholar]
- Spruill, C.A.; Workman, S.R.; Taraba, J.L. Simulation of daily and monthly stream discharge from small watersheds using the SWAT Model. Trans. ASABE 2000, 43, 1431–1439. [Google Scholar] [CrossRef]
- Ahl, R.S.; Woods, S.W.; Zuuring, H.R. Hydrologic Calibration and Validation of SWAT in a Snow-Dominated Rocky Mountain Watershed, Montana, USA. J. Am. Water Resour. Assoc. 2008, 44, 1411–1430. [Google Scholar] [CrossRef]
- Remesan, R.; Bellerby, T.; Frostick, L. Hydrological modelling using data from monthly GCMs in a regional catchment. Hydrol. Process. 2014, 28, 3241–3263. [Google Scholar] [CrossRef] [Green Version]
- Guteascu, M.; Constantinescu, T.; Cracuin, S.; Bascoveanu, D.; Podoleanu, D. Deliverable to Task A3 of the BLUE 2 project “Study on EU integrated policy assessment for the freshwater and marine environment, on the economic benefits of EU water policy and on the costs of its non- implementation”. In Annex VII. Application of the Bottom-Up Multicriteria Methodology in Eight European River Basin Districts—The Arges-Vedea RBD; Ramboll Group A/S: Copenhagen, Denmark, 2018; p. 70. [Google Scholar]
- Administratia Nationala Apele Romane (ANAR). Proiectul planului de management actualizat (2021) afferent portiunii nationale a bazinului hidrografic international al fluviului Dunarea. Sinteza proiectelor planurilor de management actualizate la nivel de bazine/spatii hidrogtrafice. Ministerul Mediului, Apelor si Padurilor: Bucuresti, Romania, 2021; p. 411. (In Romanian). Available online: https://weamyl.met.no/anm/ (accessed on 25 May 2020).
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosyst. Serv. 2015, 17, 278–292. [Google Scholar] [CrossRef]
- Cerkasova, N.; Umgiesser, G.; Ertürk, A. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change—A SWAT application. Ecol. Eng. 2018, 124, 99–115. [Google Scholar] [CrossRef]
- Kiesel, J.; Gericke, A.; Rathjens, H.; Wetzig, A.; Kakouei, K.; Jähnig, S.C.; Fohrer, N. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecol. Eng. 2019, 127, 404–416. [Google Scholar] [CrossRef]
No. | Institution or Working Group | RCM Model | GCM Institute | GCM Driving |
---|---|---|---|---|
1 | Climate Limited-area Modeling Community (CLMcom) | CCLM4-8-17 | CNRM-CERFACS | CNRM-CM5 |
2 | Danish Meteorological Institute (DMI) | HIRHAM5 | ICHEC | EC-EARTH |
3 | Climate Limited-area Modeling Community (CLMcom) | CCLM4-8-17 | MPI-M | MPI-ESM-LR |
Absolute Values | Relative Change vs. Reference (%) | |||||||
---|---|---|---|---|---|---|---|---|
Full Year | Growing Season | Full Year | Growing Season | |||||
Parameter | ENS RCP 4.5 | ENS RCP 8.5 | ENS RCP 4.5 | ENS RCP 8.5 | ENS RCP 4.5 | ENS RCP 8.5 | ENS RCP 4.5 | ENS RCP 8.5 |
1981–2010 (reference) | ||||||||
Precip. (mm/yr) | 546.2 | 560.3 | 301.1 | 309.3 | ||||
Ave. daily Tave. (°C) | 10.8 | 10.8 | 18.3 | 18.3 | ||||
Ave. daily Tmax. (°C) | 16.0 | 15.9 | 24.1 | 24.0 | ||||
Ave. daily Tmin. (°C) | 5.9 | 5.8 | 12.5 | 12.4 | ||||
Days with T < 0 °C (/yr) | 98.2 | 98.7 | 3.2 | 3.4 | ||||
Days with T > 25 °C (/yr) | 84.6 | 83.2 | 83.4 | 81.8 | ||||
Days with T > 35 °C (/yr) | 5.1 | 5.2 | 5.1 | 5.2 | ||||
Days with precip. (/yr) | 163.5 | 164.6 | 78.2 | 78.9 | ||||
2021–2050 (short-term) | ||||||||
Precip. (mm/yr) | 553.8 | 561.8 | 278.6 | 300.5 | 1.4 | 0.3 | −7.5 | −2.8 |
Ave. daily Tave. (°C) | 12.0 | 12.1 | 19.6 | 19.6 | 11.0 | 12.4 | 6.8 | 7.2 |
Ave. daily Tmax. (°C) | 17.2 | 17.2 | 25.3 | 25.2 | 7.1 | 8.2 | 5.1 | 5.2 |
Ave. daily Tmin. (°C) | 7.1 | 7.2 | 13.7 | 13.7 | 20.5 | 23.2 | 9.7 | 10.6 |
Days with T < 0 °C (/yr) | 85.2 | 83.7 | 2.7 | 2.0 | −13.2 | −15.1 | −16.7 | −40.3 |
Days with T > 25 °C (/yr 1) | 101.2 | 100.1 | 98.9 | 97.1 | 19.6 | 20.3 | 18.6 | 18.8 |
Days with T > 35 °C (/yr) | 10.3 | 9.7 | 10.3 | 9.7 | 103.5 | 87.8 | 103.5 | 87.3 |
Days with precip. (/yr) | 159.8 | 159.6 | 72.2 | 74.9 | −2.2 | −3.1 | −7.6 | −5.1 |
2071–2100 (long-term) | ||||||||
Precip. (mm/yr) | 539.3 | 551.1 | 291.6 | 287.8 | −1.3 | −1.6 | −3.1 | −7.0 |
Ave. daily Tave. (°C) | 13.1 | 15.0 | 20.5 | 22.5 | 20.7 | 39.8 | 11.6 | 23.0 |
Ave. daily Tmax. (°C) | 18.3 | 20.2 | 26.1 | 28.1 | 14.0 | 27.2 | 8.6 | 17.0 |
Ave. daily Tmin. (°C) | 8.1 | 10.1 | 14.6 | 16.7 | 38.0 | 73.2 | 17.1 | 34.4 |
Days with T < 0 °C (/yr) | 70.6 | 48.2 | 0.9 | 0.4 | −28.1 | −51.1 | −70.7 | −88.2 |
Days with T > 25 °C (/yr) | 109.5 | 129.4 | 106.4 | 123.8 | 29.4 | 55.5 | 27.6 | 51.4 |
Days with T > 35 °C (/yr) | 14.6 | 27.2 | 14.6 | 27.2 | 189.0 | 425.1 | 189.0 | 424.9 |
Days with precip. (/yr) | 156.5 | 148.7 | 73.7 | 69.2 | −4.3 | −9.7 | −5.8 | −12.3 |
Parameter | ENS RCP 4.5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1981–2010 (reference) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 41.4 | 34.5 | 41.5 | 43.0 | 71.9 | 69.3 | 42.9 | 33.2 | 40.7 | 38.5 | 47.6 | 41.8 |
Ave. daily Tave. (°C) | −1.7 | −0.1 | 5.1 | 11.3 | 15.7 | 19.7 | 23.0 | 22.5 | 17.9 | 11.4 | 4.7 | 0.5 |
2021–2050 (short-term) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 41.2 | 40.0 | 48.2 | 52.0 | 65.1 | 54.8 W | 37.5 | 29.1 | 40.1 | 45.7 | 53.9 | 46.3 |
Ave. daily Tave. (°C) | −0.1 | 1.5 | 6.0 | 11.7 | 16.6 | 21.4 | 24.6 | 24.1 | 19.2 | 12.5 | 6.0 | 1.0 |
2071–2100 (long-term) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 38.9 | 33.6 | 42.2 | 50.3 | 64.5 | 62.4 | 44.3 | 29.9 | 40.2 | 44.3 | 46.1 | 42.6 |
Ave. daily Tave. (°C) | 1.0 | 2.8 | 8.1 | 12.9 | 17.6 | 21.9 | 25.3 | 25.0 | 20.1 | 13.3 | 6.6 | 2.2 |
ENS RCP 8.5 | ||||||||||||
1981–2010 (reference) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 44.1 | 35.6 | 43.4 | 43.8 | 72.3 | 75.0 | 43.6 | 31.6 | 43.0 | 40.8 | 46.5 | 40.6 |
Ave. daily Tave. (°C) | −1.8 | −0.2 | 5.2 | 11.2 | 15.7 | 19.6 | 22.8 | 22.6 | 17.7 | 11.4 | 4.5 | 0.6 |
2021–2050 (short-term) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 42.4 | 36.5 | 51.8 | 55.4 | 63.4 | 63.7 | 46.7 | 35.6 | 35.7 | 39.0 | 48.6 | 43.0 |
Ave. daily Tave. (°C) | −0.9 | 2.0 | 6.5 | 12.1 | 16.8 | 21.2 | 24.3 | 23.8 | 19.1 | 13.1 | 6.0 | 1.1 |
2071–2100 (long-term) | ||||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
Precip. (mm/yr) | 35.4 | 42.8 | 47.7 | 58.9 | 64.2 | 61.3 | 33.8 | 27.4 | 42.1 | 54.2 | 41.7 | 41.5 |
Ave. daily Tave. (°C) | 3.1 | 5.5 | 9.7 | 14.7 | 19.1 | 24.2 | 27.7 | 27.1 | 22.0 | 14.8 | 8.2 | 4.4 |
Period | T | PP | SNMT | PET | ET | SW | PERC | SURF | LAT | Q |
---|---|---|---|---|---|---|---|---|---|---|
°C | mm | mm | mm | mm | mm | mm | mm | mm | m3/s | |
Full year multi-annual averages | ||||||||||
RCP 4.5 | ||||||||||
1981–2010 | 10.8 | 546.2 | 113.3 | 1150.8 | 455.4 | 81.5 | 47.9 | 5.4 | 33.1 | 8.3 |
2021–2050 | 12.0 | 553.8 | 113.8 | 1246.5 | 444.3 | 85.2 | 58.4 | 6.9 | 36.4 | 9.7 |
2071–2100 | 13.1 | 539.3 | 80.7 | 1296.0 | 449.0 | 79.2 | 46.8 | 5.0 | 34.5 | 8.4 |
RCP 8.5 | ||||||||||
1981–2010 | 10.8 | 560.3 | 119.6 | 1138.8 | 460.9 | 84.4 | 54.5 | 5.7 | 23.3 | 9.0 |
2021–2050 | 12.1 | 561.8 | 104.4 | 1226.6 | 466.4 | 83.1 | 51.3 | 5.2 | 23.3 | 9.0 |
2071–2100 | 15.0 | 551.1 | 59.5 | 1410.5 | 455.0 | 80.5 | 51.9 | 4.9 | 22.0 | 9.0 |
Growing season multi-annual averages | ||||||||||
RCP 4.5 | ||||||||||
1981–2010 | 18.3 | 301.1 | 8.2 | 929.1 | 352.7 | 77.7 | 22.1 | 3.6 | 17.3 | 8.8 |
2021–2050 | 19.6 | 278.6 | 11.6 | 1010.5 | 338.9 | 73.9 | 26.3 | 4.5 | 16.9 | 9.8 |
2071–2100 | 20.5 | 291.8 | 1.0 | 1034.1 | 340.4 | 66.6 | 17.0 | 3.3 | 16.0 | 8.4 |
RCP 8.5 | ||||||||||
1981–2010 | 18.3 | 308.7 | 10.4 | 919.2 | 357.0 | 81.0 | 25.7 | 3.8 | 11.1 | 9.5 |
2021–2050 | 19.6 | 299.1 | 7.4 | 981.9 | 359.4 | 75.9 | 22.2 | 3.1 | 10.5 | 9.1 |
2071–2100 | 22.5 | 287.8 | 1.3 | 1116.1 | 337.5 | 63.6 | 19.3 | 2.7 | 8.9 | 8.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielescu, S.; Adamescu, M.C.; Cheval, S.; Dumitrescu, A.; Cazacu, C.; Borcan, M.; Postolache, C. Climate Change Impacts on Hydrological Processes in a South-Eastern European Catchment. Water 2022, 14, 2325. https://doi.org/10.3390/w14152325
Danielescu S, Adamescu MC, Cheval S, Dumitrescu A, Cazacu C, Borcan M, Postolache C. Climate Change Impacts on Hydrological Processes in a South-Eastern European Catchment. Water. 2022; 14(15):2325. https://doi.org/10.3390/w14152325
Chicago/Turabian StyleDanielescu, Serban, Mihai Cristian Adamescu, Sorin Cheval, Alexandru Dumitrescu, Constantin Cazacu, Mihaela Borcan, and Carmen Postolache. 2022. "Climate Change Impacts on Hydrological Processes in a South-Eastern European Catchment" Water 14, no. 15: 2325. https://doi.org/10.3390/w14152325