Inland Navigation as an Opportunity to Increase the Cargo Capacity of the Tri-City Seaports
Abstract
:1. Introduction
2. Current Transport Availability of the Tri-City Sea Ports
2.1. Accessibility of Road Transport
- A1 motorway (23–32%);
- National Road No. 7 (10–18%), running from Żukowo near Gdansk, through Warsaw to the border with Slovakia at Chyżne;
- National Road No. 91 (10–17%), which runs from Gdansk to Częstochowa, through Toruń, Łódź, and Piotrków Trybunalski;
- Expressway S6 (9–18%) [11].
2.2. Availability of Rail Transport
- No. 9 Warsaw East—Gdansk Główny (E-65) with a length of 323.34 km;
- No. 131 Chorzów Batory—Tczew (CE-65) with a length of 493.39 km;
- No. 201 Nowa Wieś Wielka—Gdynia Port with a length of 212.16 km.
2.3. Availability of Sea Transport
3. Methods and Simulation
- From the quay of the container terminal in Gdansk to the mouth of the Martwa Wisła;
- From the mouth of the Martwa Wisła to the dry port in Zajączkowo Tczewskie.
- Length (L): 60 m < L < 100 m;
- Breadth (B): 6 m < B < 8 m;
- Moulded draught (T): 1.5 m < T < 2.5 m.
4. Results
5. Discussion
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Myszka, A.; Kaizer, A. Analysis of the Vessels’ Service Time in the Port of Gdańsk, Based on the Time Registration of Ships Entries and Departures, as a Proposition of Multi-Aspect Method of Port Monitoring. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2020, 14, 465–468. [Google Scholar] [CrossRef]
- Kosiek, J.; Kaizer, A.; Salomon, A.; Sacharko, A. Analysis of Modern Port Technologies Based on Literature Review. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 667–674. [Google Scholar] [CrossRef]
- Ziemska, M.; Plodzik, E.; Falkowska, M. Comparative Analysis of Ports Practices and Activities in the Tri-City and China. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 641–646. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://Www.Google.Pl/Maps/@54.6856423,17.1403752,7.13z?Hl=en (accessed on 13 May 2022).
- Nasri, M.I.; Bektaş, T.; Laporte, G. Route and Speed Optimization for Autonomous Trucks. Comput. Oper. Res. 2018, 100, 89–101. [Google Scholar] [CrossRef]
- Larsson, J.; Keskin, M.F.; Peng, B.; Kulcsár, B.; Wymeersch, H. Pro-Social Control of Connected Automated Vehicles in Mixed-Autonomy Multi-Lane Highway Traffic. Commun. Transp. Res. 2021, 1, 100019. [Google Scholar] [CrossRef]
- IALA. IALA Guideline-1058 the Use of Simulation as a Tool for Waterway Design and AtoN Planning, 2nd ed. 2011. Available online: https://www.iala-aism.org/product/g1058/?download=true (accessed on 21 October 2021).
- Skupien, E.; Tubis, A.; Rydlewski, M. The Analysis of Offenses in Inland Navigation in Poland 2013-2017. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 151–156. [Google Scholar] [CrossRef]
- Kaizer, A.; Neumann, T. The Model of Support for the Decision-Making Process, While Organizing Dredging Works in the Ports. Energies 2021, 14, 2706. [Google Scholar] [CrossRef]
- Soliwoda, J.; Kaizer, A.; Neumann, T. Possibility of Capsizing of a Dredger during Towing. Water 2021, 13, 3027. [Google Scholar] [CrossRef]
- Wojewódzka-Król, K.; Rolbiecki, R. Społeczno-Ekonomiczne Skutki Zagospodarowania Dolnej Wisły; Energa SA: Gdansk, Poland, 2017; ISBN 978-83-945413-0-9. [Google Scholar]
- Wojewódzka-Król, K.; Rolbiecki, R. Rozwój transportu wodnego śródlądowego na zapleczu portów morskich—ważne i aktualne wyzwanie. Probl. Transp. I Logistyki 2017, 37, 285–295. [Google Scholar] [CrossRef]
- Fajczak-Kowalska, A. Analiza Przewozów Ładunków Według Gałęzi Transportu W Latach 1995–2018; Wydawnictwo Politechniki Łódzkiej: Łódź, Poland, 2021; ISBN 978-83-66741-21-8. [Google Scholar]
- Rolbiecki, R.; Gus-Puszczewicz, A. Droga wodna Dolna Wisła jako czynnik wzmacniający potencjał transportowy na zapleczu portu morskiego w Gdańsku. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2021, 65, 144–156. [Google Scholar] [CrossRef]
- Lee, B.K.; Low, J.M.W. Resource Capacity Requirement for Multi-Terminal Cooperation in Container Ports. Appl. Sci. 2021, 11, 9156. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Oja, H.; Semenov, A.D. Analytical Assessment of Stochastic Spread of Demand for the Port Storage Capacity. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2020, 14, 841–844. [Google Scholar] [CrossRef]
- Bazaluk, O.; Havrysh, V.; Nitsenko, V. Energy Efficiency of Inland Waterways Transport for Agriculture: The Ukraine Case Study. Appl. Sci. 2021, 11, 8937. [Google Scholar] [CrossRef]
- Obwieszczenie Ministra Infrastruktury z Dnia 28 Marca 2018 r. w Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej w Sprawie Planu Zrównoważonego Rozwoju Publicznego Transportu Zbiorowego w Zakresie Sieci Komunikacyjnej w Międzywojewódzkich i Międzynarodowych Przewozach Pasażerskich w Transporcie Kolejowym. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180000874 (accessed on 21 October 2021).
- Najwyższa Izba Kontroli Informacja o Wynikach Kontroli Infrastruktura Dostępowa Do Portów Morskich. Available online: www.nik.gov.pl/plik/id,17942,vp,20530.pdf (accessed on 21 October 2021).
- White Paper Roadmap to a Single European Transport Area—Towards a Competitive and Resource Efficient Transport System EUR-Lex-52011DC0144-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0144 (accessed on 21 October 2021).
- Port of Gdańsk Authority SA. Available online: https://www.port.gdynia.pl/pl/o-porcie/dane-portu (accessed on 21 October 2021).
- The European Parliament and The Council of the European Union. Directive (EU) 2016/1629 of the European Parliament and of the Council of 14 September 2016 Laying down Technical Requirements for Inland Waterway Vessels, Amending Directive 2009/100/EC and Repealing Directive 2006/87/EC. Off. J. Eur. Union 2016, 252, 119–137. [Google Scholar]
- Transas Marine Ltd. Navi-Trainer 5000; Transas Marine Ltd.: Helsinki, Finland, 2020. [Google Scholar]
- Kulczyk, J.; Winter, J. Śródlądowy Transport Wodny; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2003; ISBN 978-3-7085-7200-0. [Google Scholar]
- Transas MIP Ltd. Transas Navigational Simulators. #90005221; Transas Ltd.: Helsinki, Finland, 2020. [Google Scholar]
- Transas Marine Ltd. Ships Data: Pilot Card and Wheelhouse Poster; Transas Marine Ltd.: Helsinki, Finland, 2020. [Google Scholar]
- Pilotażowy Rejs Kontenerowy Dolną Wisła—Wisła Cargo 2021. Available online: http://wislacargo.kujawsko-pomorskie.pl/ (accessed on 21 October 2021).
- Fraselle, J.; Limbourg, S.L.; Vidal, L. Cost and Environmental Impacts of a Mixed Fleet of Vehicles. Sustainability 2021, 13, 9413. [Google Scholar] [CrossRef]
- Xie, W.; Zhuge, S.; Wu, Y.; Xiao, D. Simulation-Based Operational Evaluation of a Single-Berth Multipurpose Seaport with Wharf Space Restriction. J. Mar. Sci. Eng. 2021, 9, 883. [Google Scholar] [CrossRef]
- Lisaj, A. Implementation of E-Navigation Strategies for RIS Centres Supporting Inland Navigation. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 145–149. [Google Scholar] [CrossRef]
- Feng, M.; Cheng, Y. Solving Truck-Cargo Matching for Drop-and-Pull Transport with Genetic Algorithm Based on Demand-Capacity Fitness. Alex. Eng. J. 2021, 60, 61–72. [Google Scholar] [CrossRef]
Model | Total Length (Lmax) | Maximum Breadth (Bmax) | Maximum Moulded Draught (Tmax) | Machine Power | Propulsion | Steering Gear |
---|---|---|---|---|---|---|
Conventional tug 2 together with the barge | 75 m | 7.1 m | 2.1 m | 500 kW | 1 × FPP | 1 × balanced rudder (max. 35) |
Location | Distance [Nm] | Pilot Cruise Time/Time Taken [hh:mm] | Simulation Time/Time Taken [hh:mm] | Average Speed (Pilot Cruise) [knt] | Average Speed (Simulation) [knt] |
---|---|---|---|---|---|
Departure from the Gdańsk (Szczecinskie berth) | - | 12:00/00:00 | 12:00/00:00 | - | - |
Passing the lock (Przegalina) | 11.7 Nm | 15:00/03:00 | 14:48/02:48 | 3.90 | 4.18 |
Arrival (area in the vicinity of port in Zajączkowo Tczewskie) | 14.3 Nm | 18:00/03:00 | 18:06/3:18 | 4.77 | 4.33 |
Total | 26.0 Nm | 18:00/03:00 | 06:06 | 4.33 | 4.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaizer, A.; Winiarska, M.; Formela, K.; Neumann, T. Inland Navigation as an Opportunity to Increase the Cargo Capacity of the Tri-City Seaports. Water 2022, 14, 2482. https://doi.org/10.3390/w14162482
Kaizer A, Winiarska M, Formela K, Neumann T. Inland Navigation as an Opportunity to Increase the Cargo Capacity of the Tri-City Seaports. Water. 2022; 14(16):2482. https://doi.org/10.3390/w14162482
Chicago/Turabian StyleKaizer, Adam, Magdalena Winiarska, Kamil Formela, and Tomasz Neumann. 2022. "Inland Navigation as an Opportunity to Increase the Cargo Capacity of the Tri-City Seaports" Water 14, no. 16: 2482. https://doi.org/10.3390/w14162482
APA StyleKaizer, A., Winiarska, M., Formela, K., & Neumann, T. (2022). Inland Navigation as an Opportunity to Increase the Cargo Capacity of the Tri-City Seaports. Water, 14(16), 2482. https://doi.org/10.3390/w14162482