Ecological–Economic Assessment and Managerial Significance of Water Conservation in the Headwaters of the Yellow River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. Spatial and Temporal Pattern and Trend Analysis of Water Yield
Water Yield Calculation
Water Retention Spatio-Temporal Dynamics and Trend Analysis
2.3.2. Ecological Value Evaluation of Regional Water Yield
2.3.3. Division of Ecological Priority Protection Areas
3. Results
3.1. Spatial and Temporal Distribution of Water Yield
3.1.1. Spatio-Temporal Variation Characteristics
3.1.2. Trend Change Characteristics of Water Yield
3.2. Ecological Service Value of Water Conservation in Grassland Ecosystem
3.3. Spatial Division of Water Conservation Capacity and Its Importance
4. Discussion
4.1. Regionalization of Model Parameters
Regionalization of Z-Value Parameters in the Model
4.2. Improvement Measures of Water Conservation Function
4.3. Ecological Priority and Regional Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brett, A.B. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Immerzeel, W.; Wanders, N.; Lutz, A.; Shea, J.; Bierkens, M. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687. [Google Scholar] [CrossRef]
- Zhang, C.F.; Bao, Z.X.; Yang, X.T.; Liu, Z.X.; Guan, X.X.; Wang, G.-Q. Evolution characteristics and response relationships of hydro- meteorological variables in the source region of the yellow river during 1961 to 2013. J. N. China Univ. Water Resour. Electr. Power Nat. Sci. Ed. 2019, 40, 15–19. (In Chinese) [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S.; Zhao, H.L. Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrol. Process. 2011, 25, 3399–3411. [Google Scholar] [CrossRef]
- Lan, Y.C.; Zhao, G.H.; Zhang, Y.N.; Wen, J.; Liu, J.Q.; Hu, X.L. Response of runoff in the source region of the Yellow River to climate warming. Quat. Int. 2010, 226, 60–65. [Google Scholar] [CrossRef]
- Choi, C.Y.; Shi, X.; Shi, J.B.; Gan, X.J.; Wen, C.J.; Zhang, J.W.; Jackson, M.V.; Fuller, R.A.; Gibson, L. China’s ecological conservation redline policy is a new opportunity to meet post-2020 protected area targets. Conserv. Lett. 2021, 15, e12853. [Google Scholar] [CrossRef]
- Gao, J.X.; Zou, C.X.; Zhang, K.; Xu, M.J.; Wang, Y. The establishment of Chinese ecological conservation redline and insights into improving international protected areas. J. Environ. Manag. 2020, 264, 110505. [Google Scholar] [CrossRef]
- Shao, Q.Q.; Zhao, Z.P.; Liu, J.Y.; Fan, J.W. The characteristics of land cover and macroscopical ecology changes in the source region of three rivers on Qinghai Tibet Plateau during last 30 years. Geogr. Res. 2010, 29, 1439–1451. (In Chinese) [Google Scholar]
- Ragettli, S.; Pellicciotti, F.; Immerzeel, W.W.; Miles, E.S.; Petersen, L.; Heynen, M.; Shea, J.M.; Stumm, D.; Joshi, S.; Shrestha, A. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour. 2015, 78, 94–111. [Google Scholar] [CrossRef]
- Maurya, S.; Srivastava, P.K.; Gupta, M.; Islam, T.; Han, D. Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization. Water Resour. Manag. 2016, 30, 5385–5405. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.Z.; Xu, X.L. Estimation of water provision service for monsoon catchments of south China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Kusre, B.C.; Baruah, D.C.; Bordoloi, P.K.; Patra, S.C. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River Basin in Assam (India). Appl. Energy 2010, 87, 298–309. [Google Scholar] [CrossRef]
- Baker, T.J.; Miller, S.N. Using the soil and water assessment tool (SWAT) to assess land use impact on water resources in an east African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, G.S.; Long, X.; Zhang, Q.; Liu, D.S.; Wu, H.J.; Li, S. Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecol. Indic. 2021, 132, 108304. [Google Scholar] [CrossRef]
- Chen, J.H.; Wang, D.C.; Li, G.D.; Sun, Z.C.; Wang, X.; Zhang, X.; Zhang, W. Spatial and temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agglomeration based on the geodetector and spatial elastic coefficient trajectory models. GeoHealth 2012, 4, e2020GH000248. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST Users Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 221, 285. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Li, M.Y.; Liang, D.; Xia, J.; Song, J.X.; Ceng, D.D.; Wu, J.T.; Cao, Y.L.; Sun, H.T.; Li, Q. Evaluation of water conservation function of Danjiang river basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Gumus, V.; Avsaroglu, Y.; Simsek, O. Streamflow trends in the Tigris river basin using Mann−Kendall and innovative trend analysis methods. J. Earth Syst. Sci. 2022, 131, 34. [Google Scholar] [CrossRef]
- Lepeška, T.; Wojkowski, J.; Wałęga, A.; Młyński, D.; Radecki-Pawlik, A.; Olah, B. Urbanization—Its hidden impact on water losses: Prądnik river basin, Lesser Poland. Water 2020, 12, 1958. [Google Scholar] [CrossRef]
- Irannezhad, M.; Ronkanen, A.K.; Klove, B. Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg. Sci. Technol. 2015, 118, 14–29. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Song, C.S.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.G.; Ruckelshaus, M.; Shi, F.Q.; Xiao, Y. Using Gross Ecosystem Product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Xie, G.D.; LU, C.X.; Leng, Y.F. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2004, 18, 189–196. (In Chinese) [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services—Sciencedirect. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Costanza, R.; Groot, R.D.; Sutton, P.; Ploeg, S.V.D.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang.-Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wang, J.L.; Lu, Y.H.; Zeng, Y.; Zhao, Z.J.; Zhang, L.W.; Fu, B.J. Spatial heterogeneous response of land use and landscape functions to ecological restoration: The case of the Chinese loess hilly region. Environ. Earth Sci. 2014, 72, 2683–2696. [Google Scholar] [CrossRef]
- Li, P.H.; Zhang, R.Q.; Xu, L.P. Three-dimensional ecological footprint based on ecosystem service value and their drivers: A case study of Urumqi. Ecol. Indic. 2021, 131, 108117. [Google Scholar] [CrossRef]
- Guo, S.L.; Hu, Z.Y.; Ma, H.Z.; Xu, D.D.; He, R.W. Spatial and temporal variations in the ecological efficiency and ecosystem service value of agricultural land in China. Agriculture 2022, 12, 803. [Google Scholar] [CrossRef]
- Chen, W.X.; Zeng, Y.Y.; Zeng, J. Spatio-temporal variation of ecosystem service values adjusted by vegetation cover: A case study of Wuyishan National Park Pilot, China. J. For. Res. 2022, 33, 851–863. [Google Scholar] [CrossRef]
- Rosswall, T. The international geosphere-biosphere programme: A study of global change (IGBP). Environ. Geol. Water Sci. 1992, 20, 77–78. [Google Scholar] [CrossRef]
- Friedl, M.A.; Gopal, S.; Muchoney, D.; Strahler, A.H. Global land cover mapping from MODIS: Algorithm design and preliminary results. In Proceedings of the 2000 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar] [CrossRef]
- Chen, D.; Zhuang, Q.F.; Zhu, L.; Zhang, W.J. Comparison of methods for reconstructing MODIS land surface temperature under cloudy conditions. Appl. Sci. 2022, 12, 6068. [Google Scholar] [CrossRef]
- Krishnan, M.V.N.; Sulemana, A. Regional scale analysis of land cover dynamics in Kerala over last two decades through MODIS data and statistical techniques. J. Environ. Stud. Sci. 2022, 5, 13412. [Google Scholar] [CrossRef]
- Li, W.J.; Hu, J.; Feng, T.; Liu, Q. Suitability and sensitivity of the potential distribution of cyclobalanopsis glauca forests under climate change conditions in Guizhou Province, Southwestern China. Atmosphere 2022, 13, 456. [Google Scholar] [CrossRef]
- Fatras, C.; Parrens, M.; Peña Luque, S.; Al Bitar, A. Hydrological dynamics of the Congo basin from water surfaces based on L-band microwave. Water Resour. Res. 2020, 18, e2020WR027259. [Google Scholar] [CrossRef]
- Lin, H.; Ma, H.; Nyandwi, C.; Feng, Q.; Liang, T. A new net primary productivity model and new management strategy of grassland classification based on CSCS in China. Rangel. J. 2021, 43, 285–295. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.J.; Zhang, T. Valuation of ecosystem services based on land use and land cover in source region of the Yellow River. Geogr. Geo-Inf. Sci. 2014, 30, 99–104. (In Chinese) [Google Scholar]
- Ge, Q.Q.; Xu, W.J.; Fu, M.C.; Han, Y.X.; An, G.Q.; Xu, Y.T. Ecosystem service values of gardens in the Yellow River Basin, China. J. Arid Land. 2022, 14, 284–296. [Google Scholar] [CrossRef]
- Tang, R.; Zhao, Y.; Lin, H. Spatio-Temporal Variation Characteristics of Aboveground Biomass in the Headwater of the Yellow River Based on Machine Learning. Remote Sens. 2021, 13, 3404. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Niu, F.; Wu, Q. Technology using 137Cs measurements to investigate the impact of soil erosion on soil nutrients in alpine meadows within the Yangtze River Region, China. Cold Reg. Sci. Technol. 2017, 135, 28–33. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 502. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Shi, X.L.; Du, C.L.; Guo, X.D.; Shi, W.J. Heterogeneity of water-retention capacity of forest and its influencing factors based on meta-analysis in the Beijing-Tianjin-Hebei region. J. Geogr. Sci. 2021, 31, 69–90. [Google Scholar] [CrossRef]
- Zhang, T.T.; Lyu, X.G.; Zou, Y.C.; Liu, J.P.; Jiang, M.; Xu, C.G.; Zhou, C.C.; Xu, C.; Xue, Z.S. Value assessment of wetland ecosystem services in the Da Hinggan Mountains, China. Chin. Geogr. Sci. 2022, 32, 302–311. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S.F. New Ecological Redline Policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing china’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Gao, J.X.; Wang, Y.; Zou, C.X.; Xu, D.L.; Lin, N.F.; Wang, L.X.; Zhang, K. China’s ecological conservation redline: A solution for future nature conservation. Ambio 2020, 49, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zou, C.; Lin, N.; Qiu, J.; Pei, W.; Yang, Y.; Bao, X.; Zhang, Z. The Ecological conservation redline program: A new model for improving China’s protected area network. Environ. Sci. Policy 2022, 131, 10–13. [Google Scholar] [CrossRef]
- Lv, L.T.; Ren, T.T.; Sun, C.Z.; Zheng, D.F.; Wang, H. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016. Acta Ecol. Sin. 2020, 3, 993–1003. (In Chinese) [Google Scholar] [CrossRef]
- Yin, Y.H.; Wu, S.H.; Zhao, D.H.; Dai, E.H. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010. Geogr. Res. 2016, 1, 49–57. (In Chinese) [Google Scholar]
- Xinhua News Agency. The central committee of the communist party of China and the state council issued the outline of the yellow river basin ecological protection and high-quality development plan. China Water Resour. 2021, 21, 3–16. (In Chinese) [Google Scholar]
- Xu, X.L.; Wang, L.; Li, J.; Cai, H.Y. Analysis of the grassland restoration trend and degradation situation in the “three-river headwaters” region since the implementation of the ecological project. Acta Geogr. Sin. 2017, 19, 50–58. (In Chinese) [Google Scholar]
- Yang, J. Study on Grassland Ecosystem Service and Its Trade-Off and Synergy in the Yellow River Basin. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 21 October 2021. [Google Scholar]
- Zhao, Y.T. Alpine Grassland Ecological Security Assessment for the Headwaters of the Yellow River, China. Master’s Thesis, Lanzhou University, Lanzhou, China, 3 June 2021. [Google Scholar]
- Kang, H.H. Evaluation and Prediction of Ecosystem Services Based on Land Cover in the Source Region of Yellow River. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 3 June 2017. [Google Scholar]
- Yellow River Water Resources Bulletin. Available online: http://www.yrcc.gov.cn/other/hhgb/ (accessed on 24 May 2022).
- Zhu, H.X.; Fu, B.J.; Wang, S.; Zhu, L.H.; Zhang, L.W.; Jiao, L.; Wang, C. Reducing soil erosion by improving community functional diversity in semi-arid grasslands. J. Appl. Ecol. 2015, 52, 1063–1072. [Google Scholar] [CrossRef]
- Zhang, M.N.; Liu, B.; Li, G.Y.; Kuang, Y.Y.; Yue, X.Q.; Jiang, S.C.; Liu, J.S.; Wang, L. The relative and combined effects of herbivore assemblage and soil nitrogen on plant diversity. Sci. China-Life Sci. 2021, 65, 830–837. [Google Scholar] [CrossRef]
- The Grassland Law of the People’s Republic of China. Available online: http://www.forestry.gov.cn/main/3949/20180918/114120127762082 (accessed on 1 June 2022).
- Huang, L.; Ning, J.; Zhu, P.; Zheng, Y.H.; Zhai, J. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. J. Geogr. Sci. 2021, 31, 518–534. [Google Scholar] [CrossRef]
- Wang, C.X.; Liang, W.; Yan, J.W.; Jin, Z.; Zhang, W.B.; Li, X.F. Effects of vegetation restoration on local microclimate on the Loess Plateau. J. Geogr. Sci. 2022, 32, 291–316. [Google Scholar] [CrossRef]
Category | Abbreviation | Variable Interpretation | Resolution/Unit | Data source |
---|---|---|---|---|
S | CLAY 1 | Clay content (0–30 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 |
CLAY 2 | Clay content (30–100 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 | |
SAND 1 | Sand content (0–30 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 | |
SAND 2 | Sand content (30–100 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 | |
SILT | Silt content (0–30 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 | |
SOC | Soil organic carbon (0–30 cm) | 250 m | HWSD (https://www.fao.org/soils-portal) The accessed date: 11 March 2021 | |
LUCC | Land use/land cover change | 30 m | 2005, 2010, 2015, 2020 four years’ data of Soil Science Database in China (http://sdb.casnw.net/portal/) The accessed date: 20 March 2021 | |
IGBP | Land use classification data | 250 m | MCD12Q1.V006(https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification) The accessed date: 30 June 2020 | |
SD | Soil depth | 1000 m | Soil Science Database in China (http://sdb.casnw.net/portal/) The accessed date: 2 April 2021 | |
Velocity | Velocity coefficient | -- | USDA-NRCS The accessed date: 5 April 2021 | |
A | PRE | Annual precipitation | 1000 m | Meteorological Station The accessed date: 30 June 2020 |
TEM | Annual temperature | 1000 m | Meteorological Station The accessed date: 30 June 2020 | |
V | Evapotranspiration | 1000 m | Meteorological Station The accessed date: 30 June 2020 | |
RA | Radiation from the top of solar atmosphere | 1000 m | China Meteorological Data Service Centre (http://data.cma.cn/) The accessed date: 30 June 2020 | |
T | LON | Longitude | 30 m | ArcGis Calculated |
LAT | Latitude | 30 m | ArcGis Calculated | |
DEM | Elevation | 30 m | Geospatial Data Cloud(http://www.gscloud.cn/) The accessed date: 30 June 2020 | |
SLP | Slope | 30 m | ArcGis Calculated | |
TI | Topographic index | 30 m | ArcGis Calculated | |
B | PAWC | Plant available water content | 30 m | ArcGis Calculated |
Ksat | Vegetation evapotranspiration coefficient | -- | FAO56 | |
NPP | Net Primary Productivity | 1000 m | MOD16A3 | |
E | Crop | Wheat growing areas; the per unit yield; unit-price | hm2; kg/hm2; USD/kg | China Statistical Yearbook 2002–2021, China Grain and Material Reserve Yearbook 2002–2021 The accessed date: 16 February 2022 |
GDP | County GDP | USD | Qinghai Statistical Yearbook 2021; Gansu Statistical Yearbook 2021; Aba Prefecture Statistical Yearbook 2021 The accessed date: 17 February 2022 |
SENslope | Z | Trend |
---|---|---|
>0.001 | >1.96 | Significantly increasing |
>0.001 | −1.96–1.96 | Increasing |
−0.001–0.001 | −1.96–1.96 | Stable |
<0.001 | −1.96–1.96 | Decreasing |
<0.001 | <−1.96 | Significantly decreasing |
Country | 2001–2005 | 2005–2010 | 2011–2015 | 2016–2020 |
---|---|---|---|---|
Mean | Mean | Mean | Mean | |
Xinghai | 290.24 | 339.6 | 299.4 | 424.32 |
Qumalai | 195.27 | 240.17 | 220.2 | 263.12 |
Maduo | 262.43 | 303.63 | 303 | 365.73 |
Tongde | 300.93 | 349.41 | 315.91 | 447.75 |
Zeku | 362.96 | 414.2 | 381.63 | 509.36 |
Maqin | 395.5 | 432.09 | 419.02 | 516.88 |
Chengduo | 277.36 | 327.05 | 331.08 | 356.71 |
Henan | 412.14 | 446.51 | 422.37 | 540.13 |
Gande | 458.34 | 483.5 | 490.15 | 569.31 |
Maqu | 505.19 | 496.08 | 529.65 | 632.68 |
Dari | 451.44 | 473.6 | 509.8 | 558.69 |
Ruoergai | 565.87 | 530.2 | 607.6 | 710.77 |
Jiuzhi | 545.21 | 548.92 | 593.75 | 663.29 |
Aba | 554.83 | 538.09 | 623.99 | 710 |
Hongyuan | 603.22 | 587.23 | 686.87 | 785.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhao, Y.; Yang, W.; Ma, K.; Hao, T.; Zhao, J.; Tang, R.; Pu, Y.; Zhang, X.; Mujtaba, K.G.; et al. Ecological–Economic Assessment and Managerial Significance of Water Conservation in the Headwaters of the Yellow River. Water 2022, 14, 2553. https://doi.org/10.3390/w14162553
Wang D, Zhao Y, Yang W, Ma K, Hao T, Zhao J, Tang R, Pu Y, Zhang X, Mujtaba KG, et al. Ecological–Economic Assessment and Managerial Significance of Water Conservation in the Headwaters of the Yellow River. Water. 2022; 14(16):2553. https://doi.org/10.3390/w14162553
Chicago/Turabian StyleWang, Danni, Yuting Zhao, Wenxue Yang, Kexin Ma, Tianxing Hao, Jingwei Zhao, Rong Tang, Yanfei Pu, Xiujuan Zhang, Kalhoro Ghulam Mujtaba, and et al. 2022. "Ecological–Economic Assessment and Managerial Significance of Water Conservation in the Headwaters of the Yellow River" Water 14, no. 16: 2553. https://doi.org/10.3390/w14162553
APA StyleWang, D., Zhao, Y., Yang, W., Ma, K., Hao, T., Zhao, J., Tang, R., Pu, Y., Zhang, X., Mujtaba, K. G., & Lin, H. (2022). Ecological–Economic Assessment and Managerial Significance of Water Conservation in the Headwaters of the Yellow River. Water, 14(16), 2553. https://doi.org/10.3390/w14162553