Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Meteorological Data
3.2. Cartometric Methods
3.3. Measurements and Processing of Field Data
3.4. Remote Sensing Methods
3.5. Statistical Methods
4. Results
4.1. Meteorological Conditions
4.2. Morphometry of the Lakes and of Their Catchments
4.3. The Thermal Dynamics of the Lakes
4.4. Ice Cover Formation
4.4.1. Ice-On and Ice-Off Timing
4.4.2. Thickness of the Ice Cover
4.4.3. Internal Structure of the Ice Cover
4.4.4. Thickness of Snow Cover on the Lakes
4.5. Meteorological and Snow–Ice Controls of the Lake Temperature
5. Discussion
5.1. Influence of Air Temperature and Snowfall on the Thermal Dynamics of the Lakes
5.1.1. Role of Ice–Snow Cover
5.1.2. Role of Lake Morphometry and Their Catchment Topography
5.2. Thermal Sensitivity of High Mountain Lakes
6. Conclusions
- The intra-annual variability in the thermal dynamics of lakes is primarily related to the variability in air temperature, solar irradiation, wind, and precipitation. The Tatra lakes usually heat up in June–August. Autumn rain/snowfall and winter snowfall enhance and limit water cooling, respectively. Wind, both in the summer and autumn, amplifies the influence of changes in air temperature, solar irradiation, and precipitation. Meanwhile, in the winter, by influencing snow distribution (blowing snow in/away), it can control/differentiate the cooling rate of ice-covered lakes more than other meteorological factors.
- The interannual variability in the thermal conditions of lakes in the Tatras is primarily associated with the variability in air temperature and ice cover. Notably, the duration of ice–snow cover mainly depends on the thermal and precipitation conditions in autumn and spring.
- Although melting snow and ice are sources of cold water, the annual heat losses of lakes in the periglacial zone of the Tatra Mountains are inversely proportional to the thickness of seasonal ice–snow cover. Therefore, both in winter and summer, lakes situated at high altitudes and with high solar irradiation can be warmer than lakes that are located much lower, but shaded, even if their shapes and sizes are similar. Thus, climate warming and the accompanying decrease in the thickness and duration of lake ice need not give rise to an increase in the mean annual water temperature, but may instead sometimes even cause the lake to cool.
- The sensitivity of the Tatra lakes to a rise in air temperature increases with a decrease in their surface/depth and shading, as well as with an increase in the altitude and share of wind-blown snow in the formation of ice–snow cover. Given the many possible combinations of these features, lakes exhibit great spatial and temporal variability in thermal dynamics and ice cover. Small reservoirs, situated at high altitudes, with high solar irradiation and receiving wind-blown snow, are most sensitive to climate warming, which involves a decrease in snowfall. However, considering the complex interactions between the thermal dynamics and ice formation on lakes, and the rate of heat exchange, it seems that the present-day climate change in the Polish Tatras may be best reflected not by these most sensitive lakes, but by the largest ones located in the subalpine zone.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchinson, G.E.; Löffler, H. The thermal classification of lakes. Proc. Natl. Acad. Sci. USA 1956, 42, 84–86. [Google Scholar] [CrossRef]
- Thompson, R.; Kamenik, C.; Schmidt, R. Ultrasensitive alpine lakes and climate change. J. Limnol. 2005, 64, 139–152. [Google Scholar] [CrossRef]
- Thompson, R.; Ventura, M.; Camarero, L. On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change. Freshw. Biol. 2009, 54, 2433–2451. [Google Scholar] [CrossRef]
- Gao, S.B.; Stefan, H.G. Multiple linear regression for lake ice and lake temperature characteristics. J. Cold Reg. Eng. 1999, 13, 59–77. [Google Scholar] [CrossRef]
- Stefan, H.G.; Fang, X.; Eaton, J.G. Simulated fish habitat changes in North American lakes in response to projected climate warming. Trans. Am. Fish. Soc. 2001, 130, 459–477. [Google Scholar] [CrossRef]
- Lei, R.; Leppäranta, M.; Erm, A.; Kari, E.; Parn, O. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est. J. Earth Sci. 2011, 60, 50–64. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Bowling, L.C.; Huber, M. Lake ice phenology of small lakes: Impacts of climate variability in the Great Lakes region. Glob. Planet Chang. 2011, 76, 166–185. [Google Scholar] [CrossRef]
- Hampton, S.E.; Galloway, A.W.E.; Powers, S.M.; Ozersky, T.; Woo, K.H.; Batt, R.D.; Labou, S.; O’Reilly, C.M.; Sharma, S.; Lottig, N.R.; et al. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [Google Scholar] [CrossRef]
- Wang, W.; Lee, X.; Xio, W.; Liu, S.; Schultz, N.; Wang, Y.; Zhang, M.; Zhao, L. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 2018, 11, 410–414. [Google Scholar] [CrossRef]
- Granados, I.; Toro, M.; Giralt, S.; Camacho, A.; Montes, C. Water column changes under ice during different winters in a midlatitude Mediterranean high mountain lake. Aquat. Sci. 2020, 82, 30. [Google Scholar] [CrossRef]
- Maier, D.B.; Diehl, S.; Bigler, C. Interannual variation in seasonal diatom sedimentation reveals the importance of late winter processes and their timing for sediment signal formation. Limnol. Oceanogr. 2019, 64, 1186–1199. [Google Scholar] [CrossRef]
- Rue, G.P.; Darling, J.P.; Graham, E.; Tfaily, M.M.; McKnight, D.M. Dynamic changes in dissolved organic matter composition in a mountain lake under ice cover and relationships to changes in nutrient cycling and phytoplankton community composition. Aquat. Sci. 2020, 82, 15. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes global environmental change. Glob. Planet Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Palecki, M.A.; Barry, R.G. Freeze-up and break-up of lakes as an index of temperature changes during the transition sasons: A case study for Finland. J. Appl. Meteorol. 1985, 25, 893–902. [Google Scholar] [CrossRef]
- Jaagus, J. The impact of climate change on the snow cover pattern in Estonia. Clim. Chang. 1997, 36, 65–77. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef]
- Hodgkins, G.A.; James, I.C.; Huntington, T.G. Historical changes in lake ice-out dates as indicators of climate change in New England. Int. J. Climatol. 2002, 22, 1819–1827. [Google Scholar] [CrossRef]
- Leppäranta, M. Modelling the Formation and Decay of Lake Ice. In The Impact of Climatechange on European Lakes; George, D.G., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 63–83. [Google Scholar]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Skowron, R.; Strzelczak, A. Changes in ice phenology on Polish lakes from 1961–2010 related to location and morphometry. Limnologica 2015, 53, 42–49. [Google Scholar] [CrossRef]
- Czernecki, B.; Ptak, M. The impact of global warming on lake surface water temperature in Poland—The application of empirical-statistical downscaling, 1971–2100. J. Limnol. 2018, 77, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Ryan, D.B.; Magee, M.R.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; Woolway, R.I. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang. 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Kirillin, G.; Leppäranta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.; Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [Google Scholar] [CrossRef]
- Šporka, F.; Livingstone, D.M.; Stuchlík, E.; Turek, J.; Galas, J. Water temperatures and ice cover in lakes of the Tatra Mountains. Biologia 2006, 61, 77–90. [Google Scholar] [CrossRef]
- Novikmec, M.; Svitok, M.; Kočický, D.; Šporka, F.; Bitušík, P. Surface water temperature and ice cover of Tatra Mountains lakes depend on altitude, topographic shading, and bathymetry. Arct. Antarct. Alp. Res. 2013, 45, 77–87. [Google Scholar] [CrossRef]
- Livingstone, D.M. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Chang. 1997, 37, 407–439. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F. The relationship between air and water tenmperatures in lakes of the Swiss Plateau: A case study with palaeolimnological implications. J. Paleolimnol. 1998, 19, 181–198. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Jankowski, T.; Lotter, A.F. Patterns of deviation from linearity in the relationship between lake surface temperature and altitude above sea level in the Swiss Alps. Verh. Int. Verei. Limnol. 2005, 29, 300–305. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F.; Kettle, E.H. Altitu-dedependent differences in the primary physical response of mountain lakes to climatic forcing. Limnol. Oceanogr. 2005, 50, 1313–1325. [Google Scholar] [CrossRef]
- Vuglinsky, V.S.; Gronskaya, T.P.; Lemeshko, N.A. Long-term Characteristics of Ice Events and Ice Thickness on the Largest Lakes and Reservoirs of Russia. In Ice in the Environment, Proceedings of the 16th International Symposium on Ice, Dunedin, New Zealand, 2–6 December 2002; Squire, V., Langhorne, P.J., Eds.; University of Otago: Dunedin, New Zealand, 2002; pp. 80–86. [Google Scholar]
- Williams, G.; Layman, K.L.; Stefan, H.G. Dependence of lake ice on climate, geographic and bathymetric variables. Cold Reg. Sci. Technol. 2004, 40, 145–164. [Google Scholar] [CrossRef]
- Blenckner, T. A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 2005, 533, 1–14. [Google Scholar] [CrossRef]
- Gądek, B.; Szumny, M.; Szypuła, B. Classification of the Tatra Mountain lakes in terms of the duration of their ice cover (Poland and Slovakia). J. Limnol. 2020, 79, 70–81. [Google Scholar] [CrossRef]
- Solarski, M.; Szumny, M. Conditions of spatiotemporal variability of the thickness of the ice cover on lakes in the Tatra Mountains. J. Mt. Sci. 2020, 17, 2369–2386. [Google Scholar] [CrossRef]
- Smits, A.P.; MacIntyre, S.; Sadro, S. Snowpack determines relative importance of climate factors driving summer lake warming. Limnol. Oceanogr. Lett. 2020, 5, 271–279. [Google Scholar] [CrossRef]
- Smits, A.; Gomez, N.W.; Dozier, J.; Sadro, S. Winter climate and lake morphology control ice phenology and under-ice temperature and oxygen regimes in mountain lakes. J. Geophys. Res. Biogs. 2021, 126, 1–20. [Google Scholar] [CrossRef]
- Staszic, S. O Ziemiorództwie Karpatów i Innych gór i Równin Polski; Drukarnia Rządowa: Warszawa, Poland, 1815. (In Polish) [Google Scholar]
- Lityński, A. Jeziora tatrzańskie i zamieszkująca je fauna wioślarek. Spraw. Kom. Fizjogr. PAU 1917, 51, 1–88. (In Polish) [Google Scholar]
- Szaflarski, J. Nouvelles études sur le régime thermique des lacs de la Haute-Tatra. Rev. Geogr. Alp. 1936, 24, 369–380. (In French) [Google Scholar] [CrossRef]
- Olszewski, P. Zimowe stosunki tlenowe większych jezior tatrzańskich (Oxygen conditions in winter in the largest lakes in the Tatra Mountains). Rozpr. Wydz. Mat. Przyr. PAU 1948, 72A, 1–80, (In Polish, English Summary). [Google Scholar]
- Ptak, M.; Wrzesiński, D.; Choiński, A. Long-term changes in the hydrological regime of high mountain lake Morskie Oko (Tatra Mountains, Central Europe). J. Hydrol. Hydromech. 2017, 65, 146–153. [Google Scholar] [CrossRef]
- Choiński, A. Thermal characterisation of lake Morskie Oko water in 2007 based on measurements by a gradient thermal probe. Limnol. Rev. 2010, 10, 117–126. [Google Scholar] [CrossRef]
- Choiński, A.; Strzelczak, A. Variability of short-term diel water temperature amplitudes in a mountain lake. Water 2018, 10, 795. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Strzelczak, A. Areal variation in ice cover thickness on lake Morskie Oko (Tatra Mountains). Carpath. J. Earth Environ. Sci. 2013, 8, 97–102. [Google Scholar]
- Kurzyca, I.; Choiński, A.; Pociask-Karteczka, J.; Ławniczak, A.E.; Frankowski, M. Terms and conditions of high-mountain lake ice-cover chemistry (Carpathians, Poland). J. Glaciol. 2015, 61, 1207–1212. [Google Scholar] [CrossRef]
- Balon, J.; Jodłowski, M.; Krąż, P. Tatra Mountains—Topography. In Atlas of the Tatra Mountains. Abiotic Nature, Sheet, I.3; Tatra National Park: Zakopane, Poland, 2015. [Google Scholar]
- Niedźwiedź, T. Climate of the Tatra Mountais. Mt. Res. Dev. 1992, 12, 131–146. [Google Scholar] [CrossRef]
- Łupikasza, E.; Szypuła, B. Vertical climatic belts in the Tatra Mountains in the light of current climate change. Theor. Appl. Clim. 2019, 136, 249–264. [Google Scholar] [CrossRef]
- Gądek, B.; Szypuła, B. Contemporary Cryosphere. In Atlas of the Tatra Mountains. Abiotic Nature, Sheet, V.1; Tatrzański Park Narodowy: Zakopane, Poland, 2015. [Google Scholar]
- Ustrnul, Z.; Walawender, E.; Czekierda, D.; Šta’stny’, P.; Lapin, M.; Mikulova’, K. Precipitation and Snow Cover. In Atlas of the Tatra Mountains. Abiotic Nature, Sheet, II.3; Tatrzański Park Narodowy: Zakopane, Poland, 2015. [Google Scholar]
- Żmudzka, E. Contemporary climate changes in the high mountain part of the Tatras. Misc. Geogr. 2011, 15, 93–102. [Google Scholar] [CrossRef]
- Gądek, B. Climatic sensitivity of the non-glaciated mountains cryosphere (Tatra Mts., Poland and Slovakia). Glob. Planet Chang. 2014, 121, 1–8. [Google Scholar] [CrossRef]
- Kędzia., S.; Chrustek, P.; Kubacka, D.; Pyrc, R. Variability and changes of the height and duration of snow cover on the Gąsienicowa Glade (Tatra Mts). Int. J. Climatol. 2022, in print. [Google Scholar]
- Pociask-Karteczka, J.; Choiński, A. Recent trends in ice cover duration for Lake Morskie Oko (Tatra Mountains, East-Central Europe). Hydrol. Res. 2012, 43, 500–506. [Google Scholar] [CrossRef]
- Rączkowska, Z. Periglacial Landforms. In Atlas of the Tatra Mountains. Abiotic Nature, Sheet, V.1; Tatrzański Park Narodowy: Zakopane, Poland, 2015. [Google Scholar]
- MPHP. Map of Hydrological Division of Poland 1:10,000. Państwowe Gospodarstwo Wodne Wody Polskie; WMS Service: Warsaw, Poland, 2022. Available online: https://dane.gov.pl/pl/dataset/2167 (accessed on 20 June 2022).
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Hutchinson, G.E. A Treatise on limnology. Geograph, Physics and Chemistry; Johny Wiley and Sons, Inc.: New York, NY, USA, 1957; Volume 1, pp. 164–194. [Google Scholar]
- Nõges, T. Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia 2009, 633, 33–43. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology Lake and River Ecosystems; Academic Press: San Diego, CA, USA, 2011; pp. 34–42. [Google Scholar]
- Niesina, L.W. O parametre termiczeskoj stratyfikacji wody. Tr. G.G.O. Meteorol. Reżim Wodojemow 1970, 271, 86–89. (In Russian) [Google Scholar]
- Adams, W.P.; Roulet, N.T. Illustration of the roles of snow in the evolution of the winter cover of a lake. Arctic 1980, 33, 100–116. [Google Scholar] [CrossRef]
- Leppäranta, M. A growth model for black ice, snow ice and snow thickness in subarctic basins. Nord. Hydrol. 1983, 14, 59–70. [Google Scholar] [CrossRef]
- Leppäranta, M. Freezing of Lakes and the Evolution of Their Ice Cover, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 137–173. [Google Scholar] [CrossRef]
- Sadro, S.; Melack, J.M.; Sickman, J.O.; Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. 2018, 4, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Kolendowicz, L.; Choiński, A.; Sobkowiak, L.; Pociask-Karteczka, J. Changes in lake ice cover on the Morskie Oko Lake in Poland (1971–2007). Adv. Clim. Chang. Res. 2013, 1, 71–75. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Strzelczak, A. Changeability of accumulated heat content in alpine-type lakes. Pol. J. Environ. Stud. 2015, 24, 2363–2369. [Google Scholar] [CrossRef]
- Żmudzka, E.; Najedlik, P.; Mikulová, K. Temperature, Thermal Indices. In Atlas of the Tatra Mountains. Abiotic Nature, Sheet, II.2; Tatrzański Park Narodowy: Zakopane, Poland, 2015. [Google Scholar]
- Gądek, B.; Grabiec, M.; Rączkowska, Z.; Maciata, A. Variability of the snow avalanche danger in the Tatra Mountains during the past nine decades. Geogr. Pol. 2016, 89, 65–77. [Google Scholar] [CrossRef]
- Kapusta, J.; Petrovič, F.; Hreško, J.; Rączkowska, Z. Shrinkage of the tarns in the High Tatras (Slovakia, Poland). Geogr. Cassoviensis 2021, 15, 5–26. [Google Scholar] [CrossRef]
Properties | Wielki Staw | Przedni Staw | Zadni Staw | |
---|---|---|---|---|
Lakes | ||||
Al—Lake area (ha) | 34.5 | 7.8 | 7.1 | |
V—Volume (m3) | 12,967,000 | 1,130,000 | 918,400 | |
Hmax—Max. depth (m) | 79.3 | 34.6 | 31.6 | |
Hmean—Mean depth (m) | 37.98 | 14.68 | 14.19 | |
Lo—Lake openness index | 9083.73 | 5313.35 | 5003.53 | |
Le—Mean effective length (m) | 725.0 | 349 | 308.5 | |
Lake catchments | ||||
Ac—Catchment area (ha) | 373.45 | 93.67 | 63.7 | |
ΔH—Altitude difference (m) | 637 | 518 | 411 | |
Binc—Mean inclination (‰) | 329.63 | 535.22 | 514.96 | |
RSchindler—Schindler’s ratio | 0.32 | 0.9 | 0.77 | |
Exposure (%) | N | 21.42 | 60.4 | 4.26 |
E | 26.46 | 1.84 | 14.42 | |
S | 34.56 | 1.97 | 56.65 | |
W | 17.56 | 35.78 | 24.67 | |
PISR—Potential incoming solar radiation (Wh/m2/a) | 12,787.74 | 10,975.38 | 12,977.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szumny, M.; Gądek, B.; Laska, M.; Ciepły, M. Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland). Water 2022, 14, 2704. https://doi.org/10.3390/w14172704
Szumny M, Gądek B, Laska M, Ciepły M. Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland). Water. 2022; 14(17):2704. https://doi.org/10.3390/w14172704
Chicago/Turabian StyleSzumny, Mirosław, Bogdan Gądek, Michał Laska, and Michał Ciepły. 2022. "Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland)" Water 14, no. 17: 2704. https://doi.org/10.3390/w14172704
APA StyleSzumny, M., Gądek, B., Laska, M., & Ciepły, M. (2022). Thermal Sensitivity of High Mountain Lakes: The Role of Morphometry and Topography (The Tatra Mts., Poland). Water, 14(17), 2704. https://doi.org/10.3390/w14172704