Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Data Collection
2.3. Streamflow Naturalization
2.4. Streamflow Drought Index
2.5. Computation of Stability Landscapes
3. Results and Discussion
3.1. Data Validation
3.2. Hydrologic Variability of the Natural State of a River Basin
3.2.1. Synchronous and Asynchronous Wet and Dry Periods
3.2.2. Occurrence of Droughts
3.2.3. Occurrence of Snowfall and Hurricanes
3.2.4. Impacts of Climate Change
3.3. The Modern Hydrology: A Perennial Human-Induced Extreme Drought
3.3.1. Causes of the Perennial Human-Induced Drought
3.3.2. The Degradation Toll of the Environment Due to Human Activities
3.3.3. The Human-Induced Megadrought
3.4. Stability Landscape Metaphor: Resistance, Latitude, Precariousness, and Panarchy
3.4.1. The Dynamic RGB Natural Stability Landscape
3.4.2. The Precarious RGB Regulated Stability Landscape
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lytle, D.A.; Poff, N.L. Adaptation to Natural Flow Regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Grantham, T.E.; Mount, J.F.; Stein, E.D.; Yarnell, S.M. Making the Most of Water for the Environment: A Functional Flows Approach for California Rivers; Public Policy Institute of California: San Francisco, CA, USA, 2020. [Google Scholar]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic Drought: Definition, Challenges, and Opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
- Sthale, D. Anthropogenic Megadrought. Science 2020, 368, 238–239. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large Contribution from Anthropogenic Warming to an Emerging North American Megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic Drought Dominates Groundwater Depletion in Iran. Sci. Rep. 2021, 11, 9135. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Dakos, V.; van Nes, E.H. Generic Indicators of Ecological Resilience: Inferring the Chance of a Critical Transition. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 145–167. [Google Scholar] [CrossRef]
- Beisner, B.E.; Haydon, D.T.; Cuddington, K. Alternative Stable States in Ecology. Front. Ecol. Environ. 2003, 1, 376–382. [Google Scholar] [CrossRef]
- Dakos, V.; Kéfi, S. Ecological Resilience: What to Measure and How. Environ. Res. Lett. 2022, 17, 043003. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-Warning Signals for Critical Transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, J.; Plant, R. Risk and Resilience to Enhance Sustainability with Application to Urban Water Systems. J. Water Resour. Plan. Manag. ASCE 2008, 134, 224–233. [Google Scholar] [CrossRef]
- Hirota, M.; Holmgren, M.; Van Nes, E.H.; Scheffer, M. Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science 2011, 334, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Livina, V.N.; Kwasniok, F.; Lenton, T.M. Potential Analysis Reveals Changing Number of Climate States during the Last 60 Kyr. Clim. Past 2010, 6, 77–82. [Google Scholar] [CrossRef]
- Berdugo, M.; Kéfi, S.; Soliveres, S.; Maestre, F. Plant Spatial Patterns Identify Alternative Ecosystem Multifunctionality States in Global Drylands. Nat. Ecol. Evol. 2017, 1, 3. [Google Scholar] [CrossRef]
- Berdugo, M.; Vidiella, B.; Solé, R.V.; Maestre, F.T. Ecological Mechanisms Underlying Aridity Thresholds in Global Drylands. Funct. Ecol. 2022, 36, 4–23. [Google Scholar] [CrossRef]
- Sendzimir, J.; Magnuszewski, P.; Flachner, Z.; Balogh, P.; Molnar, G.; Sarvari, A.; Nagy, Z. Assessing the Resilience of a River Management Regime: Informal Learning in a Shadow Network in the Tisza River Basin. Ecol. Soc. 2008, 13, 11. [Google Scholar] [CrossRef]
- Pillar, V.D.; Blanco, C.C.; Müller, S.C.; Sosinski, E.E.; Joner, F.; Duarte, L.D.S. Functional Redundancy and Stability in Plant Communities. J. Veg. Sci. 2013, 24, 963–974. [Google Scholar] [CrossRef]
- Enríquez-Coyro, E. El Tratado Entre México y Los Estados Unidos de América Sobre Ríos Internacionales: Una Lucha Nacional de Noventa Años; Tomos I y II, Segunda Edición; Comisión Nacional del Agua: Mexico City, Mexico, 1976. [Google Scholar]
- Wurbs, R.A. Methods for Developing Naturalized Monthly Flows at Gaged and Ungaged Sites. J. Hydrol. Eng. 2006, 11, 55–64. [Google Scholar] [CrossRef]
- Blythe, T.L.; Schmidt, J.C. Estimating the Natural Flow Regime of Rivers with Long-Standing Development: The Northern Branch of the Rio Grande. Water Resour. Res. 2018, 54, 1212–1236. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Escorcia, Y.A. Determinación Del Caudal Natural En La Cuenca Transfronteriza Del Río Bravo/Grande. Master’s Thesis, Instituto Politécnico Nacional, Mexico City, Mexico, 2016. [Google Scholar]
- Loredo-Rasgado, J. Determinación y Análisis de Los Valores de Huella Hídrica En La Región Hidrológico Administrativa VI/Río Bravo. Master’s Thesis, Instituto Politécnico Nacional, Mexico City, Mexico, 2018. [Google Scholar]
- Silva Hidalgo, H. Modelo Matemático Para La Distribución De Agua Superficial En Cuencas Hidrológicas. Ph.D. Thesis, Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Mexico, 2010. [Google Scholar]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in Hydrology and Society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Littlewood, I.G.; Marsh, T.J. Re-Assessment of the Monthly Naturalized Flow Record for the River Thames at Kingston since 1883, and the Implications for the Relative Severity of Historical Droughts. Regul. Rivers: Res. Manag. 1996, 12, 13–26. [Google Scholar] [CrossRef]
- Terrier, M.; Perrin, C.; de Lavenne, A.; Andréassian, V.; Lerat, J.; Vaze, J. Streamflow Naturalization Methods: A Review. Hydrol. Sci. J. 2021, 66, 12–36. [Google Scholar] [CrossRef]
- Orive-Alba, A. Informe Técnico Sobre El Tratado International de Aguas Irrigación En México; Comisión Nacional de Irrigación: Mexico City, Mexico, 1945. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Cokelaer, T. Fitter: A Tool to Fit Data to Many Distributions and Best One(s), GitHub Repository 2014. Available online: https://github.com/cokelaer/fitter (accessed on 10 August 2022).
- Garza-Díaz, L.E.; Sandoval-Solis, S. An Ecological Resilience Assessment to Detect Hydrologic Regime Shifts and Thresholds in River Basins. Ecol. Soc. 2022; in review. [Google Scholar]
- Rodríguez-Sánchez, P.; van Nes, E.H.; Scheffer, M. Climbing Escher’s Stairs: A Way to Approximate Stability Landscapes in Multidimensional Systems. PLoS Comput. Biol. 2020, 16, e1007788. [Google Scholar] [CrossRef]
- Srinivasan, V.; Kumar, P. Emergent and Divergent Resilience Behavior in Catastrophic Shift Systems. Ecol. Model. 2015, 298, 87–105. [Google Scholar] [CrossRef]
- Da Silva, M.G.; de Aguiar Netto, A.d.O.; de Jesus Neves, R.J.; Do Vasco, A.N.; Almeida, C.; Faccioli, G.G. Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. J. Environ. Prot. 2015, 6, 837. [Google Scholar] [CrossRef]
- Sandoval-Solis, S.; Paladino, S.; Garza-Diaz, L.E.; Nava, L.F.; Friedman, J.R.; Ortiz-Partida, J.P.; Plassin, S.; Gomez-Quiroga, G.; Koch, J.; Fleming, J.; et al. Environmental Flows in the Rio Grande—Rio Bravo Basin. Ecol. Soc. 2022, 27, e20. [Google Scholar] [CrossRef]
- Ingol-Blanco, E.M.; McKinney, D.C. Modeling Climate Change Impacts on Hydrology and Water Resources: Case Study Rio Conchos Basin; Center for Research in Water Resources, University of Texas: Austin, TX, USA, 2011. [Google Scholar]
- Woodhouse, C.A.; Stahle, D.W.; Díaz, J.V. Rio Grande and Rio Conchos Water Supply Variability over the Past 500 Years. Clim. Res. 2012, 51, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Harley, G.L.; Maxwell, J.T. Current Declines of Pecos River (New Mexico, USA) Streamflow in a 700-Year Context. Holocene 2018, 28, 767–777. [Google Scholar] [CrossRef]
- Sifuentes-Martínez, A.R.; Villanueva, J.; Teodoro, D.; Allende, C.; Estrada, J. 243 Years of Reconstructed Streamflow Volume and Identification of Extreme Hydroclimatic Events in the Conchos River Basin, Chihuahua, Mexico. Trees 2020, 34, 1347–1361. [Google Scholar] [CrossRef]
- Návar-Cháidez, J.d.J. Water Scarcity and Degradation in the Rio San Juan Watershed of Northeastern Mexico. Front. Norte 2011, 23, 125–150. [Google Scholar]
- Ortega-Gaucin, D.; Ortega-Gaucin, D. Caracterización de las sequías hidrológicas en la cuenca del río Bravo, México. Terra Latinoam. 2013, 31, 167–180. [Google Scholar]
- Lehner, F.; Wahl, E.R.; Wood, A.W.; Blatchford, D.B.; Llewellyn, D. Assessing Recent Declines in Upper Rio Grande Runoff Efficiency from a Paleoclimate Perspective. Geophys. Res. Lett. 2017, 44, 4124–4133. [Google Scholar] [CrossRef]
- Sandoval-Solis, S.; McKinney, D.C. Integrated Water Management for Environmental Flows in the Rio Grande. J. Water Resour. Plan. Manag. 2014, 140, 355–364. [Google Scholar] [CrossRef]
- Aguilar Ortiz, T.L.O. Análisis Histórico De La Sequía Hidrológica En La Cuenca Mexicana Del Río Salado; Instituto Mexicano de Tecnología del Agua: Mexico City, Mexico, 2018; p. 2. [Google Scholar]
- CONAGUA Caracterización Fluvial E Hidráulica De Las Inundaciones En México; Comisión Nacional del Agua: Mexico City, Mexico, 2014; p. 58.
- Llewellyn, D.; Vaddey, S. Upper Rio Grande Impact Assessment; Bureau of Reclamation: Columbia, MI, USA, 2013; p. 169. [Google Scholar]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future Dryness in the Southwest US and the Hydrology of the Early 21st Century Drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef]
- Rumsey, C.A.; Miller, M.P.; Sexstone, G.A. Relating Hydroclimatic Change to Streamflow, Baseflow, and Hydrologic Partitioning in the Upper Rio Grande Basin, 1980 to 2015. J. Hydrol. 2020, 584, 124715. [Google Scholar] [CrossRef]
- Steele, C.; Elias, E.; Reyes, J. Recent Streamflow Declines and Snow Drought in the Upper Rio Grande Tributary Basins. Univ. Counc. Water Resour. 2019, 1. [Google Scholar]
- Paredes-Tavares, J.; Gómez-Albores, M.A.; Mastachi-Loza, C.A.; Díaz-Delgado, C.; Becerril-Piña, R.; Martínez-Valdés, H.; Bâ, K.M. Impacts of Climate Change on the Irrigation Districts of the Rio Bravo Basin. Water 2018, 10, 258. [Google Scholar] [CrossRef]
- Duran-Encalada, J.A.; Paucar-Caceres, A.; Bandala, E.R.; Wright, G.H. The Impact of Global Climate Change on Water Quantity and Quality: A System Dynamics Approach to the US–Mexican Transborder Region. Eur. J. Oper. Res. 2017, 256, 567–581. [Google Scholar] [CrossRef]
- Corona, D.S.; Solis, S.S.; Peraza, E.H.; Hidalgo, H.S.; Herrera, C.Á. Aproximación e impacto directo de ciclones tropicales a la cuenca del río Conchos, Chihuahua, México. Investig. Y Cienc. De La Univ. Autónoma De Aguascalientes 2017, 25, 53–61. [Google Scholar] [CrossRef]
- Scurlock, D. From the Rio to the Sierra: An Environmental History of the Middle Rio Grande Basin; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Wozniak, F.E. Irrigation in the Rio Grande Valley, New Mexico: A Study and Annotated Bibliography of the Development of Irrigation Systems; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Ward, F.A.; Booker, J.F.; Michelsen, A.M. Integrated Economic, Hydrologic, and Institutional Analysis of Policy Responses to Mitigate Drought Impacts in Rio Grande Basin. J. Water Resour. Plan. Manag. 2006, 132, 488–502. [Google Scholar] [CrossRef]
- Warman, A. La Reforma Agraria Mexicana: Una Visión de Largo Plazo. In Land Reform, Land Settlement and Cooperatives—Réforme Agraire, Colonisation et Coopératives Agricoles—Reforma Agraria, Colonización y Cooperativas; FAO Rural Development Division: Mexico City, Mexico, 2006. [Google Scholar]
- U.S. Congress Pecos River Compact. Congress of the United States; U.S. Congress Pecos River Compact: Santa Fe, NM, USA, 1949. [Google Scholar]
- Heard, T.; Perkin, J.; Bonner, T. Intra-Annual Variation in Fish Communities and Habitat Associations in a Chihuahua Desert Reach of the Rio Grande/Rio Bravo Del Norte. West. North Am. Nat. 2012, 72, 1–15. [Google Scholar] [CrossRef]
- Contreras-Balderas, S.; Edwards, R.J.; de Lourdes Lozano-Vilano, M.; García-Ramírez, M.E. Fish Biodiversity Changes in the Lower Rio Grande/Rio Bravo, 1953–1996. Rev. Fish Biol. Fish. 2002, 12, 219–240. [Google Scholar] [CrossRef]
- Contreras-Balderas, S.; Ruiz-Campos, G.; Schmitter-Soto, J.J.; Díaz-Pardo, E.; Contreras-McBeath, T.; Medina-Soto, M.; Zambrano-González, L.; Varela-Romero, A.; Mendoza-Alfaro, R.; Ramírez-Martínez, C.; et al. Freshwater Fishes and Water Status in México: A Country-Wide Appraisal. Aquat. Ecosyst. Health Manag. 2008, 11, 246–256. [Google Scholar] [CrossRef]
- Wong, C.; Williams, C.; Pittock, J.; Collier, U.; Schelle, P. World’s Top 10 Rivers at Risk. Working Papers. 2007. Available online: esocialsciences.com (accessed on 10 August 2022).
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A Climate Dynamics Perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Walker, B.; Carpenter, S.; Anderies, J.; Abel, N.; Cumming, G.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience Management in Social-Ecological Systems: A Working Hypothesis for a Participatory Approach. Conserv. Ecol. 2002, 6, 14. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C.S. Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002; ISBN 978-1-55963-857-9. [Google Scholar]
- Becken, S. Developing A Framework for Assessing Resilience of Tourism Sub-Systems to Climatic Factors. Ann. Tour. Res. 2013, 43, 506–528. [Google Scholar] [CrossRef]
Description of State | Criterion |
---|---|
Extremely dry | −2 < SDI ≤ −3 |
Severely dry | −1 < SDI < −2 |
Dry | −0.5 < SDI < −1 |
Moderately dry | 0 < SDI < −0.5 |
Moderately wet | 0 < SDI < 0.5 |
Wet | 0.5 < SDI < 1 |
Severely wet | 1 < SDI < 2 |
Extremely wet | 2 < SDI ≤ 3 |
Control Point | Hydrologic Period (Average of Consecutive Years) | |||
---|---|---|---|---|
Dry (−3 to −0.5) 1 | Extremely Dry (−3 to −2) 1 | Wet (0.5 to 4) 1 | Extremely Wet (2 to 4) 1 | |
San Marcial | 10 | 8 | 11 | 2 |
El Paso | 13 | 8 | 15 | 2 |
Above Amistad | 13 | 9 | 16 | 3 |
Anzalduas | 13 | 6 | 12 | 2 |
Rio Conchos | 12 | 6 | 16 | 3 |
Pecos River | 25 | 2 | 16 | 4 |
Rio Salado | 23 | 5 | 13 | 2 |
Rio San Juan | 18 | 4 | 15 | 3 |
Average | 16 | 6 | 14 | 3 |
Median | 13 | 6 | 15 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza-Díaz, L.E.; Sandoval-Solis, S. Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts. Water 2022, 14, 2835. https://doi.org/10.3390/w14182835
Garza-Díaz LE, Sandoval-Solis S. Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts. Water. 2022; 14(18):2835. https://doi.org/10.3390/w14182835
Chicago/Turabian StyleGarza-Díaz, Laura E., and Samuel Sandoval-Solis. 2022. "Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts" Water 14, no. 18: 2835. https://doi.org/10.3390/w14182835
APA StyleGarza-Díaz, L. E., & Sandoval-Solis, S. (2022). Changes in the Stability Landscape of a River Basin by Anthropogenic Droughts. Water, 14(18), 2835. https://doi.org/10.3390/w14182835