Variations of Stable Isotopes in Daily Precipitation in a Monsoon Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Moisture Trajectories
2.4. Spatial Interpolation
3. Results
3.1. Spatial Distribution of Annual Mean Stable Isotopes in Precipitation
3.2. Seasonal Variations in Precipitation Isotopes
3.3. Local Meteoric Water Line
4. Discussion
4.1. Relationship between δ18O and T or P
4.2. Moisture Sources over the Beijing Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aeschbach-Heritg, W.; Peeters, F.; Beyerle, U.; Kipfer, R.P. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 2000, 405, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- McDermott, F.; Mattey, D.P.; Hawkesworth, C. Centennial-scale holocene climate variability revealed by a high-resolution speleothem d18O record from SW Ireland. Science 2001, 294, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef]
- Williams, P.P.W.; Fowler, A. Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand. J. Hydrol. New. Zeal. 2002, 41, 53–70. [Google Scholar]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 2nd ed.; CRC Press: New York, NY, USA, 1997; pp. 13–168. ISBN 978 1 5667 0249 2. [Google Scholar] [CrossRef]
- Edmunds, W.; Ma, J.; Aeschbach-Hertig, W.; Kipfer, R.; Darbyshire, D. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl. Geochem. 2006, 21, 2148–2170. [Google Scholar] [CrossRef]
- Beyerle, U. Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys. Res. Lett. 2003, 30, 1173–1177. [Google Scholar] [CrossRef]
- Chen, Z.J.; Qi, J.; Xu, J.; Xu, J.; Ye, H.; Nan, Y. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain. Appl. Geochem. 2003, 18, 997–1009. [Google Scholar]
- Li, J.; Pang, Z.; Froehlich, K.; Huang, T.; Kong, Y.; Song, W.; Yun, H. Paleo-environment from isotopes and hydrochemistry of groundwater in East Junggar Basin, Northwest China. J. Hydrol. 2015, 529, 650–661. [Google Scholar] [CrossRef]
- Kreuzer, A.M.; von Rohden, C.; Friedrich, R.; Chen, Z.; Shi, J.; Hajdas, I.; Kipfer, R.; Aeschbach-Hertig, W. A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem. Geol. 2009, 259, 168–180. [Google Scholar] [CrossRef]
- Neff, U.; Burns, S.J.; Mangini, A.; Mudelsee, M.; Fleitmann, D.; Matter, A. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 2001, 411, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Fleitmann, D.; Burns, S.J.; Mudelsee, M.; Neff, U.; Kramers, J.; Mangini, A.; Matter, A. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman. Science 2003, 300, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Asrat, A.; Fairchild, I.J.; Leng, M.J.; Wynn, P.M.; Bryant, C.; Genty, D.; Umer, M. Analysis of the climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites. Geochim. Cosmochim. Acta 2007, 71, 2975–2988. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Shao, X.; Chen, S.; Wu, J.; Jiang, X.; Wang, X.; An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef]
- Yuan, D.; Cheng, H.; Edwards, R.L.; Dykoski, C.A.; Kelly, M.J.; Zhang, M.; Qing, J.; Lin, Y.; Wang, Y.; Wu, J.; et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science 2004, 304, 575–578. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Broecker, W.S.; Denton, G.H.; Kong, X.; Wang, Y.; Zhang, R.; Wang, X. Ice age terminations. Science 2009, 326, 248–252. [Google Scholar] [CrossRef]
- Cruz, F.; Burns, S.; Karmann, I.; Sharp, W.; Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 2006, 248, 495–507. [Google Scholar] [CrossRef]
- Maher, B. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment. Holocene 2008, 18, 861–866. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim. Past 2009, 5, 441–455. [Google Scholar] [CrossRef]
- Clemens, S.C.; Prell, W.L.; Sun, Y. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O. Paleoceanography 2010, 25, PA4207. [Google Scholar] [CrossRef]
- Dayem, K.E.; Molnar, P.; Battisti, D.S.; Roe, G.H. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia. Earth Planet. Sci. Lett. 2010, 295, 219–230. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Matthews, A.; Sass, E.; Halicz, L. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: Implications for paleoclimate research in semiarid regions. Geochim. Cosmochim. Acta 1996, 60, 337–344. [Google Scholar] [CrossRef]
- Taylor, R.G.; Howard, K.W. Groundwater recharge in the Victoria Nile basin of east Africa: Support for the soil moisture balance approach using stable isotope tracers and flow modelling. J. Hydrol. 1996, 180, 31–35. [Google Scholar] [CrossRef]
- Jones, I.C.; Banner, J.L.; Humphrey, J.D. Estimating recharge in a tropical Karst Aquifer. Water Resour. Res. 2000, 36, 1289–1299. [Google Scholar] [CrossRef]
- Jones, I.C.; Banner, J.L. Estimating recharge thresholds in tropical karst island aquifers: Barbados, Puerto Rico and Guam. J. Hydrol. 2003, 278, 131–143. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Kong, Y.; Wang, S.; Bai, G.; Zhào, H.; Zhou, N.; Sun, F.; Yang, Z. Groundwater Isotopes Biased Toward Heavy Rainfall Events and Implications on the Local Meteoric Water Line. J. Geophys. Res. Atmos. 2018, 123, 6259–6266. [Google Scholar] [CrossRef]
- Pape, J.R.; Banner, J.L.; Mack, L.E.; Musgrove, M.; Guilfoyle, A. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. J. Hydrol. 2010, 385, 203–215. [Google Scholar] [CrossRef]
- Yamanaka, T.; Shimada, J.; Hamada, Y.; Tanaka, T.; Yang, Y.; Zhang, W.; Hu, C. Hydrogen and oxygen isotopes in precipitation in the northern part of the North China Plain: Climatology and inter-storm variability. Hydrol. Process. 2004, 18, 2211–2222. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Kong, Y.; Zhou, M.; Huang, T. Contrasting seasonal distribution of stable isotopes and deuterium excess in precipitation over China. Geophys. Res. Lett. 2014, 23, 2078–2085. [Google Scholar]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable isotopic compositions of precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Earth Surf. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Johnson, K.R.; Ingram, B. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2004, 220, 365–377. [Google Scholar] [CrossRef]
- Tan, M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim. Dyn. 2013, 42, 1067–1077. [Google Scholar] [CrossRef]
- Allen, S.T.; Keim, R.F.; McDonnell, J.J. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales. J. Hydrol. 2014, 522, 58–66. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau. Sci. China Earth Sci. 2022, 1–13. [Google Scholar] [CrossRef]
- Sun, C.; Tian, L.; Shanahan, T.M.; Partin, J.W.; Gao, Y.; Piatrunia, N.; Banner, J. Isotopic variability in tropical cyclone precipitation is controlled by Rayleigh distillation and cloud microphysics. Commun. Earth Environ. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Li, J.; Tao, T.; Pang, Z.; Tan, M.; Kong, Y.; Duan, W.; Zhang, Y. Identification of Different Moisture Sources through Isotopic Monitoring during a Storm Event. J. Hydrometeorol. 2015, 16, 1918–1927. [Google Scholar] [CrossRef]
- Wen, F.X.; Zhang, S.C.; Sun, X.M.; Yu, G.R.; Lee, X. Water vapor and precipitation isotope ratios in Beijing, China. JGR Atmos. 2010, 115, D01103. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, J.; Zhang, Y.; Teng, Y.; Zuo, R.; Huan, H. Hydrochemical and isotopic investigation of atmospheric precipitation in Beijing. China. Sci. Total Environ. 2013, 456–457, 202–211. [Google Scholar] [CrossRef]
- Draxler, R.; Rolph, G. HYbrid single-particle lagrangian integrated trajectory (HYSPLIT) 2003. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 20 July 2022).
- Shang B, Zhou Y, Liu J, Huang Y Comparing vertical structure of precipitation cloud and non-precipitation cloud using Cloudsat. J. Appl. Meteorol. Sci. 2012, 23, 1–9.
- Salamalikis, V.; Argiriou, A.; Dotsika, E. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Sci. Total Environ. 2016, 544, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Pang, H.Z.; Kong, Y.L.; Froehlich, K.; Huang, T.M.; Yuan, L.J.; Li, Z.Q.; Wang, F.T. Processes affecting isotopes in precipitation of an arid region. Tellus B 2011, 63, 352–359. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Che, Y.; Chen, F.; Qiang, F. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resour. Res. 2016, 52, 3246–3257. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B: Chem. Phys. Meteorol. 2013, 65. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
Station | Longitude (°E) | Latitude (°N) | Elevation (m) | δ2H (‰) | δ18O (‰) | dexcess (‰) | P (mm) | T (°C) |
---|---|---|---|---|---|---|---|---|
YQY | 117.375 | 40.637 | 477 | −57.0 | −8.5 | 11.2 | 540.8 | 12.3 * |
ZJF | 116.782 | 40.614 | 186 | −59.4 | −8.6 | 9.3 | 596.1 | 14.2 * |
YQ | 115.993 | 40.463 | 492 | −65.0 | −9.6 | 11.5 | 531.0 | 10.2 |
YC | 115.894 | 40.033 | 238 | −51.9 | −7.7 | 9.3 | 423.7 | 15.3 * |
FHY | 116.694 | 39.615 | 11 | −58.0 | −8.7 | 11.4 | 474.1 | 16.8 * |
ZF | 115.688 | 39.576 | 108 | −49.7 | −7.6 | 11.4 | 514.9 | 13.5 * |
BTC | 116.379 | 39.976 | 54 | −59.7 | −8.8 | 10.3 | 600.3 | 15.1 |
Precipitation AmountRange | δ2H/δ18O Correlation Equations | R2 | N |
---|---|---|---|
≥0 | δ2H = 6.7δ18O − 2.4 | 0.93 | 539 |
≥1.0 | δ2H = 7.0δ18O + 1.1 | 0.94 | 400 |
≥5.0 | δ2H = 7.4δ18O + 6.4 | 0.96 | 199 |
≥10.0 | δ2H = 7.7δ18O + 8.9 | 0.96 | 115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Pang, Z.; Tian, L.; Zhao, H.; Bai, G. Variations of Stable Isotopes in Daily Precipitation in a Monsoon Region. Water 2022, 14, 2891. https://doi.org/10.3390/w14182891
Li J, Pang Z, Tian L, Zhao H, Bai G. Variations of Stable Isotopes in Daily Precipitation in a Monsoon Region. Water. 2022; 14(18):2891. https://doi.org/10.3390/w14182891
Chicago/Turabian StyleLi, Jie, Zhonghe Pang, Lijun Tian, Hongyi Zhao, and Guoying Bai. 2022. "Variations of Stable Isotopes in Daily Precipitation in a Monsoon Region" Water 14, no. 18: 2891. https://doi.org/10.3390/w14182891