Analysis of Factors Influencing Wave Overtopping Discharge from Breakwater Based on an MIV-BP Estimation Model
Abstract
:1. Introduction
2. Dataset
2.1. European Overtopping Discharge Dataset
2.2. TIWTE Overtopping Discharge Dataset
2.3. Dataset Combination
3. Method
3.1. The Principles of the BP Algorithm
3.2. Details of the BP Algorithm Implementation
3.3. Ensemble Learning
3.3.1. Bootstrap Resampling
3.3.2. Ensemble Learning Model
3.4. Mean Impact Value
3.5. Evaluation Index
4. Result
4.1. The Performance of the Network Model
4.2. Comparison with the Chinese Standard Formula
4.3. Comparison with the Van Der Meer Formula
4.4. Sensitivity Analysis Based on the MIV
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, H.; Zhou, Y. A review of studies on overtopping discharge and flow of seawall. Port Waterw. Eng. 2008, 8, 14–19. [Google Scholar]
- Chen, S.G.; Wang, Z.M.; Zhang, C.; Zheng, J. Experimental study on wave overtopping of a vertical seawall on coral reefs in large wave flume. Chin. Sci Bull. 2019, 64, 3049–3058. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, J. Estimating of irregular wave overtopping quantities in single sloping. Hydro-Sci. Eng. 1996, 1, 58–63. [Google Scholar]
- Zhang, J.; Zhou, J.; Wang, H. Research Report on Overtopping Model Test; Nanjing Hydraulic Research Institute: Nanjing, China, 1992. [Google Scholar]
- Hydrologic Regulations for Ports and Waterways (A-JTS145-2015); China Communications Publishing: Beijing, China, 2015.
- Van der Meer, J.; Janssen, J. Wave Run-Up and Wave Overtopping at Dikes and Revetments; Delft Hydraulics: Delft, The Netherlands, 1994. [Google Scholar]
- Van der Meer, J.W. Wave run-up and overtopping. In Dikes and Revetments; Routledge: London, UK, 2017; pp. 145–160. [Google Scholar]
- Goda, Y. Random Seas and Design of Maritime Structures; World Scientific Publishing Company: Singapore, 2010. [Google Scholar]
- Yu, Y. Comparison of Methods for Calculating Mean Wave Overtopping on Sloping Seawall. Port Eng. Technol. 2011, 48, 1–4. [Google Scholar]
- Dong, S.; Abolfathi, S.; Tan, Z.; Pearson, J. Enhancing climate resilience of vertical seawall with retrofitting-A physical modelling study. Appl. Ocean Res. 2020, 103, 102331. [Google Scholar] [CrossRef]
- Dong, S.; Abolfathi, S.; Salauddin, M.; Pearson, J.M. Spatial distribution of wave-by-wave overtopping behind vertical seawall with recurve retrofitting. Ocean Eng. 2021, 238, 109674. [Google Scholar] [CrossRef]
- Dong, S.; Salauddin, M.; Abolfathi, S.; Jonathan, M. Wave Impact Loads on Vertical Seawalls: Effects of the Geometrical Properties of Recurve Retrofitting. Water 2021, 13, 2849. [Google Scholar] [CrossRef]
- Salauddin, M.; O’Sullivan, J.; Abolfathi, S.; Dong, S. Distribution of individual wave overtopping volumes on a sloping structure with a permeable foreshore. Coast. Eng. Proceed. 2020, 36, 54. [Google Scholar] [CrossRef]
- Salauddin, M.; O’Sullivan, J.J.; Abolfathi, S.; Pearson, J.M. Eco-engineering of seawalls—an opportunity for enhanced climate resilience from increased topographic complexity. Front. Mar. Sci. 2021, 8, 674630. [Google Scholar] [CrossRef]
- Gao, J.L.; Ma, X.Z.; Zang, J.; Dong, G.H.; Ma, X.J.; Zhu, Y.Z.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Losada, I.J.; Lara, J.L.; Guanche, R.; Gonzalez-Ondina, J.M. Numerical analysis of wave overtopping of rubble mound breakwaters. Coast. Eng. 2008, 55, 47–62. [Google Scholar] [CrossRef]
- Guan, D. Numerical Simulation of Seawall Breakwater over Regular and Irregular Waves; South China University of Technology: Dalian, China, 2016. [Google Scholar]
- Ye, X. SPH Simulation of Wave Crossing Process of Slope Breakwater; Dalian University of Technology: Dalian, China, 2011. [Google Scholar]
- Ren, B.; Wen, H.; Dong, P.; Wang, Y. Improved SPH simulation of wave motions and turbulent flows through porous media. Coast. Eng. 2016, 107, 14–27. [Google Scholar] [CrossRef]
- Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A. Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 2021, 9, 3135. [Google Scholar] [CrossRef]
- Bagherzadeh, M.; Mousavi, F.; Manafpour, M.; Mirzaee, R.; Hoseini, K. Numerical simulation and application of soft computing in estimating vertical drop energy dissipation with horizontal serrated edge. Water Suppl. 2022, 22, 4676–4689. [Google Scholar] [CrossRef]
- Abolfathi, S.; Dong, S.; Borzooei, S.; Pearson, J. Application of smoothed particle hydrodynamics in evaluating the performance of coastal retrofit structures. Coast. Eng. Proceed. 2018, 1, 109. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Aminvash, E.; Ghaderi, A.; Abraham, J.; Bagherzadeh, M. SVM performance for predicting the effect of horizontal screen diameters on the hydraulic parameters of a vertical drop. Appl. Sci. 2021, 11, 4238. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Bagherzadeh, M.; Esmaeeli, R.; Norouzi, R.; Abraham, J. Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Suppl. 2021, 21, 217–231. [Google Scholar] [CrossRef]
- van Gent, M.R.; van den Boogaard, H.F.; Pozueta, B.; Medina, J.R. Neural network modelling of wave overtopping at coastal structures. Coast. Eng. 2007, 54, 586–593. [Google Scholar] [CrossRef]
- Formentin, S.M.; Zanuttigh, B.; van der Meer, J.W. A neural network tool for predicting wave reflection, overtopping and transmission. Coast. Eng. J. 2017, 59, 1750006. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Allsop, W.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Zanutitigh, B. Manual on Wave EurOtop, Overtopping of Sea Defences and Related Structures. 2018. Available online: www.overtopping-manual.com (accessed on 18 October 2021).
- Fang, W.F. Research on the mechanism and application of BP neural network algorithm. Sci. Technol. Innovat. Herald. 2020, 17, 150–151. [Google Scholar]
- Chang, L. Research on Grid Resource Scheduling Based on BP Algorithm; Harbin University of Science and Technology: Harbin, China, 2007. [Google Scholar]
- Ghiasi, B.; Noori, R.; Sheikhian, H.; Zeynolabedin, A.; Sun, Y.; Jun, C.; Hamouda, M.; Bateni, S.M.; Abolfathi, S. Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams. Sci. Rep. 2022, 12, 4610. [Google Scholar] [CrossRef]
- Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.; Abolfathi, S. An Efficient Data Driven-Based Model for Prediction of the Total Sediment Load in Rivers. Hydrology 2022, 9, 36. [Google Scholar] [CrossRef]
- Dombi, G.W.; Nandi, P.; Saxe, J.M.; Ledgerwood, A.M.; Lucas, C.E. Prediction of rib fracture injury outcome by an artificial neural network. J. Trauma Acute Care Surg. 1995, 39, 915–921. [Google Scholar] [CrossRef]
Parameters | Mean Value | Variance | Maximum Value | Minimum Value |
---|---|---|---|---|
3.34 | 1.88 | 14.40 | 1.03 | |
1 | 0 | 1 | 1 | |
4.05 | 0.98 | 15.57 | 2.55 | |
3.00 | 2.02 | 14.40 | 0.66 | |
0.92 | 1.47 | 10.18 | 0 | |
0.46 | 0.06 | 0.66 | 0.38 | |
1.84 | 0.68 | 5 | 1.30 | |
1.35 | 0.48 | 3.04 | 0 | |
1.32 | 0.60 | 3.75 | 0 | |
1.46 | 0.96 | 12.50 | 0 | |
0.45 | 0.15 | 1 | 0 |
Method | R |
---|---|
Chinese standard formula | 0.61 |
This study | 0.84 |
Method | R |
---|---|
Van der Meer’s formula | 0.64 |
This study | 0.90 |
No. | Characteristics Parameter | 10% Mediation Rate | 15% Mediation Rate | 20% Mediation Rate |
---|---|---|---|---|
1 | 8.26 × 10−4 | 0.0012 | 0.0016 | |
2 | 0.0058 | 0.0088 | 0.0118 | |
3 | 0.0035 | 0.0053 | 0.0072 | |
4 | −5.24 × 10−4 | –7.84 × 10−4 | −0.001 | |
5 | 1.15 × 10−4 | 1.74 × 10−4 | 2.34 × 10−4 | |
6 | −0.0028 | −0.0043 | −0.0059 | |
7 | 4.14 × 10−4 | 0.0011 | 0.0019 | |
8 | −0.0024 | −0.0036 | −0.0049 | |
9 | −0.0019 | −0.0028 | −0.0038 | |
10 | −0.0019 | −0.0028 | −0.0038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Chen, H.; Peng, C.; Wang, Y.; Hu, Y. Analysis of Factors Influencing Wave Overtopping Discharge from Breakwater Based on an MIV-BP Estimation Model. Water 2022, 14, 2967. https://doi.org/10.3390/w14192967
Chen S, Chen H, Peng C, Wang Y, Hu Y. Analysis of Factors Influencing Wave Overtopping Discharge from Breakwater Based on an MIV-BP Estimation Model. Water. 2022; 14(19):2967. https://doi.org/10.3390/w14192967
Chicago/Turabian StyleChen, Songgui, Hanbao Chen, Cheng Peng, Yina Wang, and Yuanye Hu. 2022. "Analysis of Factors Influencing Wave Overtopping Discharge from Breakwater Based on an MIV-BP Estimation Model" Water 14, no. 19: 2967. https://doi.org/10.3390/w14192967
APA StyleChen, S., Chen, H., Peng, C., Wang, Y., & Hu, Y. (2022). Analysis of Factors Influencing Wave Overtopping Discharge from Breakwater Based on an MIV-BP Estimation Model. Water, 14(19), 2967. https://doi.org/10.3390/w14192967