Discrimination of Chemical Oxygen Demand Pollution in Surface Water Based on Visible Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Chemical Analysis and Contamination Assessment
2.3. Spectrum Acquisition and Pre-Processing
2.4. Sample Set Partitioning and Model Evaluation Parameters
2.5. Evaluation of the Model Performance
2.6. Synthetic Minority Oversampling Technique
2.7. Competitive Adaptive Reweighted Sampling
- (1)
- Perform monte carlo sampling and select a certain proportion of samples to build a calibration model;
- (2)
- Use EDF to remove the number of wavelengths with low absolute values of regression coefficients;
- (3)
- Calculate the root mean square error cross-validation (RMSECV) and filter out significant wavelengths using adaptive reweighted sampling (ARS);
- (4)
- Select the subset with the lowest RMSECV as the best wavelength combination.
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Spectral Absorption Characteristics
3.3. Correlation Analysis between Wave Bands
3.4. Comparison of Classification Results
4. Discussion
4.1. Band Analysis by CARS Algorithm
4.2. Implication of Proposed Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suri, M.R.; Dery, J.L.; Pérodin, J.; Brassill, N.; He, X.; Ammons, S.; Gerdes, M.E.; Rock, C.; Goldstein, R.E.R. U.S. farmers’ opinions on the use of nontraditional water sources for agricultural activities. Environ. Res. 2019, 172, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Han, J.; Zhang, B.; Gong, J. Impact of transferred water on the hydrochemistry and water quality of surface water and groundwater in Baiyangdian Lake, North China. Geosci. Front. 2021, 12, 101086. [Google Scholar] [CrossRef]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci. Total Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef]
- Shen, M.; Yang, Y. The Water Pollution Policy Regime Shift and Boundary Pollution: Evidence from the change of water pollution levels in C. Sustainability 2017, 9, 1469. [Google Scholar] [CrossRef]
- Ren, S.; Li, Q.; Wang, J.; Fan, B.; Bai, J.; Peng, Y.; Li, S.; Han, D.; Wu, J.; Wang, J.; et al. Development of a fast and ultrasensitive black phosphorus-based colorimetric/photothermal dual-readout immunochromatography for determination of norfloxacin in tap water and river water. J. Hazard. Mater. 2021, 402, 123781. [Google Scholar] [CrossRef]
- Baghanam, A.H.; Nourani, V.; Aslani, H.; Taghipour, H. Spatiotemporal variation of water pollution near landfill site: Application of clustering methods to assess the admissibility of LWPI. J. Hydrol. 2020, 591, 125581. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Rodrigues, D.P.; Klepacz-Smolka, A.; Martins, R.C.; Quina, M.J. Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Sci. Total Environ. 2019, 649, 1599–1608. [Google Scholar] [CrossRef]
- Rohman, A.; Nugroho, A.; Lukitaningsih, E. Sudjadi Application of vibrational spectroscopy in combination with chemometrics techniques for authentication of herbal medicine. Appl. Spectrosc. Rev. 2014, 49, 603–613. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, C.; Wang, H.; Wang, L.; Dai, L. PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits. Spectrochim. Acta A 2022, 271, 120887. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Li, H.; Shen, M.; Tian, S.; Zhang, H.; Ren, X.; Xing, L.; Zhao, J. Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Phys. Technol. 2020, 111, 103529. [Google Scholar] [CrossRef]
- Xie, X.-L.; Li, A.-B. Identification of soil profile classes using depth-weighted visible–near-infrared spectral reflectance. Geoderma 2018, 325, 90–101. [Google Scholar] [CrossRef]
- Begum, N.; Maiti, A.; Chakravarty, D.; Das, B.S. Diffuse reflectance spectroscopy based rapid coal rank estimation: A machine learning enabled framework. Spectrochim. Acta A 2021, 263, 120150. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, A.; Sarmadian, F.; Minasny, B. Mapping imbalanced soil classes using Markov chain random fields models treated with data resampling technique. Comput. Electron. Agric. 2019, 159, 110–118. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Determination of soil properties with visible to near- and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma 2014, 223–225, 88–96. [Google Scholar] [CrossRef]
- Yu, K.; Fang, S.; Zhao, Y. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochim. Acta A 2021, 245, 118917. [Google Scholar] [CrossRef]
- Han, X.; Xie, D.; Song, H.; Ma, J.; Zhou, Y.; Chen, J.; Yang, Y.; Huang, F. Estimation of chemical oxygen demand in different water systems by near-infrared spectroscopy. Ecotox. Environ. Saf. 2022, 243, 113964. [Google Scholar] [CrossRef]
- Ma, Y.; Tie, Z.; Zhou, M.; Wang, N.; Cao, X.; Xie, Y. Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples. Anal. Methods 2016, 8, 3839–3846. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment of China (CNMEE): Beijing, China, 2002. (In Chinese)
- Hong, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Yu, L.; Liu, Y.; Cheng, H. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma 2019, 337, 758–769. [Google Scholar] [CrossRef]
- Galvao, R.K.; Araujo, M.C.; Jose, G.E.; Pontes, M.J.; Silva, E.C.; Saldanha, T.C. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef]
- Xu, Y.; Goodacre, R. On splitting training and validation Set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Sharififar, A.; Sarmadian, F.; Malone, B.P.; Minasny, B. Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma 2019, 350, 84–92. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, L.; Li, L.; Guo, L.; Huang, F.; Zhao, H. Determination of 10-Hydroxy-2-Decenoic acid of royal jelly using near-infrared spectroscopy vombined with chemometrics. J. Food Sci. 2019, 84, 2458–2466. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Yang, X.; Sun, C.; Xing, B.; Han, J.; Zhao, C. Visualization of vibrational spectroscopy for agro-food samples using t-Distributed Stochastic Neighbor Embedding. Food Control 2021, 126, 107812. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, W.; Fan, S.; Zhao, F.; Liang, D.; Tian, X. Non-destructive discrimination of the variety of sweet maize seeds based on hyperspectral image coupled with wavelength selection algorithm. Infrared Phys. Technol. 2020, 109, 103418. [Google Scholar] [CrossRef]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Tech. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Xu, L.; Hong, Y.; Wei, Y.; Guo, L.; Shi, T.; Liu, Y.; Jiang, Q.; Fei, T.; Liu, Y.; Mouazen, A.M.; et al. Estimation of organic carbon in anthropogenic soil by VIS-NIR spectroscopy: Effect of variable selection. Remote Sens. 2020, 12, 3394. [Google Scholar] [CrossRef]
- Andreu-Rodríguez, J.; Pérez-Espinosa, A.; Pérez-Murcia, M.D.; Moral, R.; Agulló, E.; Ferrández-Villena, M.; Ferrández-García, M.T.; Bustamante, M.A. Near infrared reflectance spectroscopy (NIRS) for the assessment of biomass production and C sequestration by arundo donax L. in salt-affected environments. Agric. Water Manag. 2017, 183, 94–100. [Google Scholar] [CrossRef]
- Daniel, M.; Guerra, R.; Brázio, A.; Rodrigues, D.; Cavaco, A.M.; Antunes, M.D.; Valente de Oliveira, J. Feature discovery in NIR spectroscopy based Rocha pear classification. Expert Syst. Appl. 2021, 177, 114949. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Shen, R.; Chen, S.; Xu, G.; Cheng, H.; Guo, L.; Wei, Z.; Yang, J.; Liu, Y.; et al. Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. Environ. Pollut. 2021, 291, 118128. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Smyth, H.E.; Gishen, M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agric. Food Chem. 2003, 51, 7703–7708. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Set | The Range of PH | Number of Samples | Min (mg/L) | Max (mg/L) | Mean (mg/L) | Median (mg/L) | COD Value > 40 mg/L | COD Value < 40 mg/L |
---|---|---|---|---|---|---|---|---|---|
Surface water | All | 5.63–8.92 | 127 | 4 | 688 | 61.98 | 27 | 39 | 88 |
Training set | 5.63–7.85 | 95 | 4 | 688 | 58.65 | 20 | 25 | 70 | |
Testing set | 6.52–8.92 | 32 | 5 | 313 | 50.25 | 18 | 14 | 18 |
Sample Type | Model Algorithm | Pre.p * | Number of Bands | Number of Training Sets | Number of Test Sets | Accuracy of Training Sets | Accuracy of Test Sets | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|---|
Surface water | PLS–DA | RS | 1050 | 95 | 32 | 0.85 | 0.84 | 0.83 | 0.86 |
FD | 95 | 32 | 0.87 | 0.84 | 0.82 | 0.90 | |||
SD | 95 | 32 | 0.88 | 0.88 | 0.83 | 0.93 | |||
MSC | 95 | 32 | 0.74 | 0.69 | 0.68 | 0.69 | |||
SNV | 95 | 32 | 0.76 | 0.75 | 0.73 | 0.80 | |||
SMOTE–PLS–DA | RS | 140 | 32 | 0.89 | 0.88 | 0.96 | 0.63 | ||
FD | 140 | 32 | 0.94 | 0.91 | 0.95 | 0.90 | |||
SD | 140 | 32 | 0.97 | 0.94 | 0.89 | 0.93 | |||
MSC | 140 | 32 | 0.86 | 0.72 | 0.63 | 0.85 | |||
SNV | 140 | 32 | 0.75 | 0.75 | 0.82 | 0.70 | |||
CARS–SMOTE–PLS–DA | RS | 8 | 140 | 32 | 0.88 | 0.88 | 0.83 | 0.93 | |
FD | 10 | 140 | 32 | 0.94 | 0.94 | 1.00 | 0.80 | ||
SD | 38 | 140 | 32 | 0.99 | 0.97 | 0.94 | 1.00 | ||
MSC | 47 | 140 | 32 | 0.83 | 0.78 | 0.84 | 0.69 | ||
SNV | 85 | 140 | 32 | 0.85 | 0.84 | 0.91 | 0.70 |
Locations of Selected Spectral Variables (nm) | Possible Fundamental Bonds | Possible Related Constituents |
---|---|---|
800 | C-H | Organics (aromatics) |
1000 | N-H | Organics (amine) |
1100 | C-H | Organics (aromatics) |
1200 | C-H | Organics (aromatics) |
1380 | O-H | Water |
1500 | C-O | Organics (aromatics) |
1800 | C-H | Organics |
2100 | N-H | Organics (amine) |
2400 | C-O | Organics (Carbohydrates) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Chen, X.; Ma, J.; Chen, J.; Xie, B.; Yin, W.; Yang, Y.; Jia, W.; Xie, D.; Huang, F. Discrimination of Chemical Oxygen Demand Pollution in Surface Water Based on Visible Near-Infrared Spectroscopy. Water 2022, 14, 3003. https://doi.org/10.3390/w14193003
Han X, Chen X, Ma J, Chen J, Xie B, Yin W, Yang Y, Jia W, Xie D, Huang F. Discrimination of Chemical Oxygen Demand Pollution in Surface Water Based on Visible Near-Infrared Spectroscopy. Water. 2022; 14(19):3003. https://doi.org/10.3390/w14193003
Chicago/Turabian StyleHan, Xueqin, Xiaoyan Chen, Jinfang Ma, Jiaze Chen, Baiheng Xie, Wenhua Yin, Yanyan Yang, Wenchao Jia, Danping Xie, and Furong Huang. 2022. "Discrimination of Chemical Oxygen Demand Pollution in Surface Water Based on Visible Near-Infrared Spectroscopy" Water 14, no. 19: 3003. https://doi.org/10.3390/w14193003
APA StyleHan, X., Chen, X., Ma, J., Chen, J., Xie, B., Yin, W., Yang, Y., Jia, W., Xie, D., & Huang, F. (2022). Discrimination of Chemical Oxygen Demand Pollution in Surface Water Based on Visible Near-Infrared Spectroscopy. Water, 14(19), 3003. https://doi.org/10.3390/w14193003