Geochemistry of Groundwater in the Semi-Arid Crystalline Terrain of Sri Lanka and Its Health Implications among Agricultural Communities
Abstract
:1. Introduction
2. Study Region
3. Materials and Methods
3.1. Sampling and Analyses
3.2. Data Analysis
4. Result and Discussion
4.1. Variations in Hydrogeochemical Parameters
4.2. Suitability of Water for Drinking
4.3. Major Ion Chemistry and Hydrogeochemical Facies
4.4. Water Quality Index (WQI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, P.; Ma, C.; Zhou, A. Assessment of groundwater sustainable development considering geo-environment stability and ecological environment: A case study in the Pearl River Delta, China. Environ. Sci. Pollut. Res. 2022, 29, 18010–18035. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Homaei, F.; Mohamadi, S. Reliability evaluation of groundwater quality index using data-driven models. Environ. Sci. Pollut. Res. 2022, 29, 8174–8190. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.-L.; Yue, F.; Udeshani, C.; Chandrajith, R. Natural and Anthropogenic controls of groundwater quality in Sri Lanka: Implications for Chronic Kidney Disease of Unknown Etiology (CKDu). Water 2021, 13, 2724. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 2003, 43, 731–736. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R. Do environmental regulation and urbanization help decouple economic growth from water consumption at national and subnational scales in China? Environ. Sci. Pollut. Res. 2022, 29, 19473–19495. [Google Scholar] [CrossRef]
- Bundschuh, J.; Maity, J.P.; Mushtaq, S.; Vithanage, M.; Seneweera, S.; Schneider, J.; Bhattacharya, P.; Khan, N.I.; Hamawand, I.; Guilherme, L.R.G.; et al. Medical geology in the framework of the sustainable development goals. Sci. Total Environ. 2017, 581–582, 87–104. [Google Scholar] [CrossRef]
- Chandrajith, R.; Diyabalanage, S.; Dissanayake, C.B. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundw. Sustain. Dev. 2020, 10, 100359. [Google Scholar] [CrossRef]
- Vlahos, P.; Schensul, S.L.; Anand, S.; Shipley, E.; Diyabalanage, S.; Hu, C.; Ha, T.; Staniec, A.; Haider, L.; Schensul, J.J. Water sources and kidney function: Investigating chronic kidney disease of unknown etiology in a prospective study. NPJ Clean Water 2021, 4, 214–226. [Google Scholar] [CrossRef]
- Imbulana, S.; Oguma, K.; Takizawa, S. Seasonal Variations in Groundwater Quality and Hydrogeochemistry in the Endemic Areas of Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Water 2021, 13, 3356. [Google Scholar] [CrossRef]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.N.C.; Dissanayake, C.B.; Abeysekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef]
- Ranasinghe, A.V.; Kumara, G.W.G.P.; Karunarathna, R.H.; De Silva, A.P.; Sachintani, K.G.D.; Gunawardena, J.M.C.N.; Kumari, S.K.C.R.; Sarjana, M.S.F.; Chandraguptha, J.S.; De Silva, M.V.C. The incidence, prevalence and trends of Chronic Kidney Disease and Chronic Kidney Disease of uncertain aetiology (CKDu) in the North Central Province of Sri Lanka: An analysis of 30,566 patients. BMC Nephrol. 2019, 20, 338. [Google Scholar] [CrossRef]
- Medagedara, A.; Hewavitharane, P.; Chandrajith, R.K.; Abeysundara, H.; Thatil, R.; Thennakoon, S.; Mahanama, B.; Weerasuriya, N.; Thilakarathne, A.; Nanayakkara, N. Comparison of biochemical characteristics between an endemic and a nonendemic area for CKDu Sri Lanka. Environ. Dis. 2022, 7, 47–51. [Google Scholar] [CrossRef]
- Johnson, R.J.; Wesseling, C.; Newman, L.S. Chronic kidney disease of unknown cause in agricultural Communities. N. Engl. J. Med. 2019, 380, 1843–1852. [Google Scholar] [CrossRef]
- Balasooriya, S.; Munasinghe, H.; Herath, A.; Diyabalanage, S.; Ileperuma, O.; Manthrithilake, H.; Daniel, C.; Amann, K.; Zwiener, C.; Barth, J.A. Possible links between groundwater geochemistry and chronic kidney disease of unknown etiology (CKDu): An investigation from the Ginnoruwa region in Sri Lanka. Expo. Health 2020, 12, 823–834. [Google Scholar] [CrossRef]
- Liyanage, D.; Diyabalanage, S.; Dunuweera, S.; Rajapakse, S.; Rajapakse, R.; Chandrajith, R. Significance of Mg-hardness and fluoride in drinking water on chronic kidney disease of unknown etiology in Monaragala, Sri Lanka. Environ. Res. 2022, 203, 111779. [Google Scholar] [CrossRef]
- Wickramarathna, S.; Balasooriya, S.; Diyabalanage, S.; Chandrajith, R. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka—A hydrogeochemical and isotope approach. J. Trace Elem. Med. Biol. 2017, 44, 298–306. [Google Scholar] [CrossRef]
- Dissanayake, C.; Chandrajith, R. Fluoride and hardness in groundwater of tropical regions-review of recent evidence indicating tissue calcification and calcium phosphate nanoparticle formation in kidney tubules. Ceylon J. Sci. 2019, 48, 197–207. [Google Scholar] [CrossRef]
- Wasana, H.M.; Aluthpatabendi, D.; Kularatne, W.; Wijekoon, P.; Weerasooriya, R.; Bandara, J. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): Synergic effects of fluoride, cadmium, and hardness of water. Environ. Geochem. Health 2016, 38, 157–168. [Google Scholar] [CrossRef]
- Jayatilake, N.; Mendis, S.; Maheepala, P.; Mehta, F.R. Chronic kidney disease of uncertain aetiology: Prevalence and causative factors in a developing country. BMC Nephrol. 2013, 14, 180. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. The role of ions, heavy metals, fluoride, and agrochemicals: Critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. Environ. Geochem. Health 2016, 38, 639–678. [Google Scholar] [CrossRef]
- Gunarathna, S.; Gunawardana, B.; Jayaweera, M.; Manatunge, J.; Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J. Environ. Sci. Health Part B 2018, 53, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Diyabalanage, S.; Abekoon, S.; Watanabe, I.; Watai, C.; Ono, Y.; Wijesekara, S.; Guruge, K.S.; Chandrajith, R. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka? Environ. Geochem. Health 2016, 38, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Nikagolla, C.; Meredith, K.T.; Dawes, L.A.; Banati, R.B.; Millar, G.J. Using water quality and isotope studies to inform research in chronic kidney disease of unknown aetiology endemic areas in Sri Lanka. Sci. Total Environ. 2020, 745, 140896. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Senevirathna, S.T.M.L.D.; Harada, K.H.; Chandrajith, R.; Nanayakkara, N.; Koizumi, A. The Influence of fluoride on chronic kidney disease of uncertain aetiology (CKDu) in Sri Lanka. Chemosphere 2020, 257, 127186. [Google Scholar] [CrossRef] [PubMed]
- Premarathne, S.; Chandrajith, R.; Nanayakkara, N.; Gamage, C.D.; Ratnatunga, N.; Wijetunge, S.; Badurdeen, Z.; Guruge, S.; Elladeniya, N.; Madushan, K.P.S.; et al. Could consumption of trace element–Contaminated rice be a risk factor for acute interstitial nephritis with uncertain etiology in the dry zone of Sri Lanka? Biol. Trace Elem. Res. 2022, 200, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water quality indices: Challenges and application limits in the literature. Water 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Seenithamby, M.; Nandalal, K.D.W. Water resource development planning around village cascades: Piloting of a scientific methodology in Yan Oya river basin of Sri Lanka. Water Policy 2021, 23, 946–969. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Chandrajith, R. The Hydrogeological and Geochemical Characteristics of Groundwater of Sri Lanka. In Groundwater of South Asia; Mukherjee, A., Ed.; Springer: Singapore, 2018; pp. 405–428. [Google Scholar]
- Panabokke, C. Nature of occurrence and sustainable use of groundwater resources for agriculture in the North Central, North Western and North Eastern regions in Sri Lanka. Trop. Agric. Res. Ext. 2003, 6, 8–13. [Google Scholar] [CrossRef]
- SLS. Sri Lanka Standard 894: Specification for Bottled (Packaged) Drinking Water; Sri Lanka Standard Institute: Colombo, Sri Lanka, 2020. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analyses. EOS Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, K.; Singh, U.K.; Ramanathan, A. Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: Conventional graphical and multivariate statistical approach. Environ. Geol. 2009, 57, 873–884. [Google Scholar] [CrossRef]
- Xue, Y.; Song, J.; Zhang, Y.; Kong, F.; Wen, M.; Zhang, G. Nitrate pollution and preliminary source identification of surface water in a semi-arid river basin, using isotopic and hydrochemical approaches. Water 2016, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Klages, S.; Heidecke, C.; Osterburg, B.; Bailey, J.; Calciu, I.; Casey, C.; Dalgaard, T.; Frick, H.; Glavan, M.; D’Haene, K.; et al. Nitrogen Surplus—A Unified Indicator for Water Pollution in Europe? Water 2020, 12, 1197. [Google Scholar] [CrossRef] [Green Version]
- Rubasinghe, R.; Gunatilake, S.; Chandrajith, R. Geochemical characteristics of groundwater in different climatic zones of Sri Lanka. Environ. Earth Sci. 2015, 74, 3067–3076. [Google Scholar] [CrossRef]
- Udeshani, W.; Dissanayake, H.; Gunatilake, S.; Chandrajith, R. Assessment of groundwater quality using water quality index (WQI): A case study of a hard rock terrain in Sri Lanka. Groundw. Sustain. Dev. 2020, 11, 100421. [Google Scholar] [CrossRef]
- Jayathunga, K.; Diyabalanage, S.; Frank, A.H.; Chandrajith, R.; Barth, J.A.C. Influences of seawater intrusion and anthropogenic activities on shallow coastal aquifers in Sri Lanka: Evidence from hydrogeochemical and stable isotope data. Environ. Sci. Pollut. Res. 2020, 27, 23002–23014. [Google Scholar] [CrossRef]
- Kumar, M.; Ramanathan, A.; Rao, M.S.; Kumar, B. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ. Geol. 2006, 50, 1025–1039. [Google Scholar] [CrossRef]
- Yue, F.-J.; Li, S.-L.; Liu, C.-Q.; Lang, Y.-C.; Ding, H. Sources and transport of nitrate constrained by the isotopic technique in a karst catchment: An example from Southwest China. Hydrol. Process. 2015, 29, 1883–1893. [Google Scholar] [CrossRef]
- Chandrajith, R.; Diyabalanage, S.; Premathilake, K.M.; Hanke, C.; van Geldern, R.; Barth, J.A.C. Controls of evaporative irrigation return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: Evidence from solutes and stable isotopes. Sci. Total Environ. 2016, 548–549, 421–428. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Chandrajith, R.; Dissanayake, C.; Ariyarathna, T.; Herath, H.; Padmasiri, J. Dose-dependent Na and Ca in fluoride-rich drinking water—Another major cause of chronic renal failure in tropical arid regions. Sci. Total Environ. 2011, 409, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.B.N.T.; Nanayakkara, N.; Gunarathne, L.; Chandrajith, R. Serum and urine fluoride levels in populations of high environmental fluoride exposure with endemic CKDu: A case-control study from Sri Lanka. Environ. Geochem. Health 2020, 42, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, K.; Balasuriya, S.; Perera, P.; Peiris, L. Determining optimal levels of fluoride in drinking water for hot, dry climates-a case study in Sri Lanka. Community Dent. Oral Epidemiol. 1992, 20, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Dharma-Wardana, M. Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions. Environ. Geochem. Health 2018, 40, 705–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Li, W.-G.; Wen, P.-P.; Jia, P.-P.; Li, Y.-Z.; Li, T.-Y.; Pei, D.-S. Exposure to Sri Lanka’s local groundwater in a CKDu prevalent area causes kidney damage in zebrafish. Aquat. Toxicol. 2022, 251, 106276. [Google Scholar] [CrossRef] [PubMed]
Class | WQI Value | Water Quality |
---|---|---|
1 | <25 | Excellent |
2 | 26–50 | Good |
3 | 51–75 | Poor |
4 | 76–100 | Very poor |
5 | >100 | Unsuitable for drinking purposes |
Parameter | Unit | MPL (SLS 614:2013) | Cold Spots (n = 45) | Hotspots (n = 39) | Mann–Whitney U Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Samples Exceeding MPL (%) | Mean | Median | Min | Max | Samples Exceeding MPL (%) | p-Value | U Value | Z | |||
Temp. | °C | - | 29.3 | 28.8 | 27.2 | 32.2 | ₋ | 30.2 | 30.2 | 27.5 | 33.3 | ₋ | 0.003 | 549 | −2.944 |
pH | - | 8.5 | 6.98 | 7.10 | 6.12 | 7.62 | 0 | 7.07 | 7.07 | 6.38 | 8.42 | 0 | 0.84 | 855 | −0.202 |
EC | µS/cm | 750 | 833 | 720 | 167 | 2720 | 49 | 856 | 865 | 188 | 1875 | 56 | 0.667 | 829 | −0.431 |
TDS | mg/L | 500 | 725 | 626 | 145 | 2366 | 69 | 745 | 753 | 164 | 1631 | 69 | 0.667 | 829 | −0.431 |
TA | mg/L | 200 | 318 | 334 | 33 | 713 | 73 | 359 | 358 | 99 | 691 | 77 | 0.278 | 756 | −1.09 |
TH | mg/L | 250 | 302 | 296 | 104 | 615 | 60 | 321 | 308 | 100 | 632 | 69 | 0.427 | 789 | −0.794 |
HCO3− | mg/L | ₋ | 387 | 407 | 40 | 868 | ₋ | 436 | 436 | 120 | 841 | ₋ | 0.286 | 758 | −1.067 |
Cl− | mg/L | 250 | 107 | 72 | 26 | 518 | 9 | 96 | 86 | 18 | 302 | 5 | 0.986 | 880 | 0.018 |
SO42− | mg/L | 250 | 39 | 28 | 1 | 200 | 0 | 46 | 34 | 5 | 148 | 0 | 0.093 | 690 | −1.678 |
F− | mg/L | 1 | 0.75 | 0.55 | 0.02 | 2.26 | 27 | 0.87 | 0.66 | 0.02 | 4 | 31 | 0.918 | 866 | −0.103 |
NO3− | mg/L | 50 | 2.68 | 0.88 | 0.44 | 24.8 | 0 | 3.66 | 1.77 | 0.44 | 14.62 | 0 | 0.284 | 759 | −1.07 |
PO43− | mg/L | 2 | 0.32 | 0.26 | 0.02 | 0.84 | 0 | 0.36 | 0.26 | 0.09 | 3.54 | 3 | 0.76 | 912 | 0.305 |
Na+ | mg/L | 200 | 64 | 48 | 5 | 341 | 2 | 66 | 50 | 11 | 216 | 3 | 0.441 | 791 | −0.771 |
K+ | mg/L | ₋ | 2.67 | 1.32 | 0.32 | 16.4 | ₋ | 2.71 | 0.94 | 0.18 | 34.29 | ₋ | 0.137 | 1044 | 1.489 |
Ca2+ | mg/L | 100 | 81 | 84 | 24 | 181 | 27 | 85 | 81 | 18 | 183 | 33 | 0.594 | 818 | −0.534 |
Mg2+ | mg/L | 30 | 33 | 31 | 5 | 105 | 51 | 37 | 36 | 6 | 123 | 62 | 0.358 | 775 | −0.92 |
WQI | - | 50 * | 52 | 44 | 2 | 141 | 42 ** | 61 * | 49 | 3 | 244 | 49 ** | 0.66 | 828 | −0.439 |
Cold Spots | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | pH | TDS | TH | HCO3− | Cl− | SO42− | F− | Na+ | K+ | Ca2+ | Mg2+ | WQI |
pH | 1.00 | |||||||||||
TDS | 0.37 | 1.00 | ||||||||||
TH | 0.35 | 0.84 | 1.00 | |||||||||
HCO3− | 0.50 | 0.84 | 0.82 | 1.00 | ||||||||
Cl− | 0.01 | 0.77 | 0.51 | 0.42 | 1.00 | |||||||
SO42− | 0.12 | 0.80 | 0.68 | 0.59 | 0.72 | 1.00 | ||||||
F− | 0.31 | 0.78 | 0.63 | 0.75 | 0.56 | 0.54 | 1.00 | |||||
Na+ | 0.25 | 0.87 | 0.59 | 0.68 | 0.81 | 0.81 | 0.78 | 1.00 | ||||
K+ | −0.22 | 0.13 | 0.02 | −0.03 | 0.19 | 0.33 | 0.02 | 0.15 | 1.00 | |||
Ca2+ | 0.28 | 0.76 | 0.80 | 0.61 | 0.52 | 0.62 | 0.45 | 0.55 | 0.08 | 1.00 | ||
Mg2+ | 0.42 | 0.80 | 0.88 | 0.85 | 0.48 | 0.52 | 0.66 | 0.56 | −0.07 | 0.63 | 1.00 | |
WQI | 0.37 | 0.84 | 0.69 | 0.80 | 0.60 | 0.60 | 0.99 | 0.81 | 0.05 | 0.52 | 0.70 | 1.00 |
Hotspots | ||||||||||||
pH | 1.00 | |||||||||||
TDS | 0.22 | 1.00 | ||||||||||
TH | 0.16 | 0.91 | 1.00 | |||||||||
HCO3− | 0.26 | 0.88 | 0.80 | 1.00 | ||||||||
Cl− | 0.05 | 0.84 | 0.81 | 0.69 | 1.00 | |||||||
SO42− | 0.13 | 0.80 | 0.70 | 0.61 | 0.66 | 1.00 | ||||||
F− | 0.17 | 0.54 | 0.61 | 0.62 | 0.31 | 0.41 | 1.00 | |||||
Na+ | 0.29 | 0.95 | 0.85 | 0.90 | 0.80 | 0.75 | 0.62 | 1.00 | ||||
K+ | 0.30 | 0.26 | 0.10 | 0.15 | 0.13 | 0.20 | 0.08 | 0.26 | 1.00 | |||
Ca2+ | −0.06 | 0.73 | 0.73 | 0.64 | 0.63 | 0.58 | 0.37 | 0.64 | 0.06 | 1.00 | ||
Mg2+ | 0.17 | 0.88 | 0.87 | 0.79 | 0.78 | 0.70 | 0.63 | 0.85 | 0.16 | 0.57 | 1.00 | |
WQI | 0.27 | 0.68 | 0.66 | 0.72 | 0.40 | 0.53 | 0.93 | 0.75 | 0.22 | 0.42 | 0.68 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udeshani, W.A.C.; Koralegedara, N.H.; Gunatilake, S.K.; Li, S.-L.; Zhu, X.; Chandrajith, R. Geochemistry of Groundwater in the Semi-Arid Crystalline Terrain of Sri Lanka and Its Health Implications among Agricultural Communities. Water 2022, 14, 3241. https://doi.org/10.3390/w14203241
Udeshani WAC, Koralegedara NH, Gunatilake SK, Li S-L, Zhu X, Chandrajith R. Geochemistry of Groundwater in the Semi-Arid Crystalline Terrain of Sri Lanka and Its Health Implications among Agricultural Communities. Water. 2022; 14(20):3241. https://doi.org/10.3390/w14203241
Chicago/Turabian StyleUdeshani, W. A. Charitha, Nadeesha H. Koralegedara, S. K. Gunatilake, Si-Liang Li, Xiangyu Zhu, and Rohana Chandrajith. 2022. "Geochemistry of Groundwater in the Semi-Arid Crystalline Terrain of Sri Lanka and Its Health Implications among Agricultural Communities" Water 14, no. 20: 3241. https://doi.org/10.3390/w14203241