Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experimental Set-Up for Photochemical Procedure
3. Results and Discussion
3.1. Removal of CV by UV, PMS and UV/PMS Process
3.2. Electrical Energy Comparison of the UV/PS, UV/PMS and UV/H2O2 Processes
3.3. Effect of Various Initial Doses of Oxidant
3.4. Effect of Initial Dye Concentration
3.5. Effects of Initial pH
3.6. Effect of Typical Inorganic Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gessner, T.; Mayer, U. Triarylmethane and diarylmethanedyes. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed.; Mayer: NewYork, NY, USA, 2002; Volume 27, pp. 166–173. [Google Scholar]
- Manna, S.; Roy, D.; Saha, P.; Gopakumar, D.; Thomas, S. Rapid methylene blue adsorption using modified lignocellulosic materials. Process Saf. Environ. Prot. 2017, 107, 346–356. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Rauf, S.; Khan, Z.U.H.; Niazi, N.K.; Polychronopoulou, K.; Howari, F.; Rehman, F. Efficient removal of norfloxacin using nano zerovalent cerium composite biochar-catalyzed peroxydisulfate. J. Clean. Prod. 2022, 377, 134405. [Google Scholar] [CrossRef]
- Roselin, L.S.; Selvin, R. Photocatalytic treatment and reusability of textile dyeing effluents from cotton dyeing industries. Sci. Adv. Mater. 2011, 3, 113–119. [Google Scholar] [CrossRef]
- Nassar, M.M.; Magdy, Y.H. Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem. Eng. J. 1997, 66, 223–226. [Google Scholar] [CrossRef]
- Pagga, U.; Brown, D. The degradation of dyestuffs: Part II Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 1986, 15, 479–491. [Google Scholar] [CrossRef]
- Arslan, I.; Balcioǧlu, I.A.; Bahnemann, D.W. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes. Dye. Pigment. 2000, 47, 207–218. [Google Scholar] [CrossRef]
- Durango-Usuga, P.; Guzmán-Duque, F.; Mosteo, R.; Vazquez, M.V.; Peñuela, G.; Torres-Palma, R.A. Experimental design approach applied to the elimination of crystal violet in water by electrocoagulation with Fe or Al electrodes. J. Hazard. Mater. 2010, 179, 120–126. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Adak, A.; Bandyopadhyay, M.; Pal, A. Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep. Purif. Technol. 2005, 44, 139–144. [Google Scholar] [CrossRef]
- Ghosh, D.; Bhattacharyya, K.G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300. [Google Scholar] [CrossRef]
- Suhail, F.; Mashkour, M.S.; Saeb, D. The study on photo degradation of crystal violet by polarographic technique. Int. J. Basic Appl. Sci. 2015, 15, 12–21. [Google Scholar]
- Senthilkumaar, S.; Porkodi, K. Heterogeneous photocatalytic decomposition of crystal violet in UV-illuminated sol–gel derived nanocrystalline TiO2 suspensions. J. Colloid Interface Sci. 2005, 288, 184–189. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Singh, A.K.; Sinha, S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 2011, 186, 1462–1473. [Google Scholar] [CrossRef]
- Habibi, M.H.; Hassanzadeh, A.; Mahdavi, S. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. J. Photochem. Photobiol. A Chem. 2005, 172, 89–96. [Google Scholar] [CrossRef]
- Salem, I.A. Activation of H2O2 by Amberlyst-15 resin supported with copper (II)-complexes towards oxidation of crystal violet. Chemosphere 2001, 44, 1109–1119. [Google Scholar] [CrossRef]
- Akyol, A.; Yatmaz, H.; Bayramoglu, M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl. Catal. B Environ. 2004, 54, 19–24. [Google Scholar] [CrossRef]
- Pielesz, A. The process of the reduction of azo dyes used in dyeing textiles on the basis of infrared spectroscopy analysis. J. Mol. Struct. 1999, 511, 337–344. [Google Scholar] [CrossRef]
- Vijayakumar, G.; Tamilarasan, R.; Dharmendirakumar, M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. Environ. Sci. 2012, 3, 157–170. [Google Scholar]
- Al-Shahrani, S. Phenomena of removal of crystal violet from wastewater using Khulays natural bentonite. J. Chem. 2020, 2020, 4607657. [Google Scholar] [CrossRef]
- Sahoo, C.; Gupta, A.; Pal, A. Photocatalytic degradation of Crystal Violet (CI Basic Violet 3) on silver ion doped TiO2. Dye. Pigment. 2005, 66, 189–196. [Google Scholar] [CrossRef]
- Bafana, A.; Devi, S.S.; Chakrabarti, T. Azo dyes: Past, present and the future. Environ. Rev. 2011, 19, 350–371. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Niazi, N.K.; Imran, M.; Khan, J.A.; Khan, Z.U.H.; Hussien, A.G.S.; Polychronopoulou, K.; Howari, F. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J. Hazard. Mater. 2021, 403, 123854. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, H. Manganese Oxides as Catalysts for Water and Wastewater Treatment: A Critical Review. Environ. Sci. Nano 2019, 133, 105141. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)–a review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, T.; Zhou, Y.; Fang, L.; Shao, Y. Degradation of atenolol by UV/peroxymonosulfate: Kinetics, effect of operational parameters and mechanism. Chemosphere 2013, 93, 2717–2724. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Tufano, T.P.; Dionysiou, D.D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Res. 2008, 42, 2899–2910. [Google Scholar] [CrossRef]
- Haag, W.R.; Yao, C.D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 1992, 26, 1005–1013. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/⋅ O− in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Z.; Li, S.; Liu, J.; Yao, L.; Li, Y.; Zhang, H. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Appl. Catal. B Environ. 2016, 185, 22–30. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal. B Environ 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B Environ. 2004, 54, 155–163. [Google Scholar] [CrossRef]
- He, X.; Armah, A.; Dionysiou, D.D. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2013, 251, 160–166. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Al-Gheethi, A.; Iqbal, J. Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. J. Environ. Chem. Eng. 2021, 9, 106160. [Google Scholar] [CrossRef]
- Li, L.; Wei, D.; Wei, G.; Du, Y. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment. J. Hazard. Mater. 2013, 262, 48–54. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A.W. Agricultural waste peels as versatile biomass for water purification–A review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Rehman, F.; Parveen, N.; Iqbal, J.; Sayed, M.; Shah, N.S.; Ansar, S.; Khan, J.A.; Shah, A.; Jamil, F.; Boczkaj, G. Potential degradation of norfloxacin using UV-C/Fe2+/peroxides-based oxidative pathways. J. Photochem. Photobiol. A Chem. 2022, 435, 114305. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Khan, Z.U.H.; Rizwan, M.; Murtaza, B.; Jamil, F.; Shah, A.; Ullah, A.; Nazzal, Y.; Howari, F. Visible light driven doped CeO2 for the treatment of pharmaceuticals in wastewater: A review. J. Water Process Eng. 2022, 49, 103130. [Google Scholar] [CrossRef]
- Ghauch, A.; Tuqan, A.M.; Kibbi, N.; Geryes, S. Methylene blue discoloration by heated persulfate in aqueous solution. Chem. Eng. J. 2012, 213, 259–271. [Google Scholar] [CrossRef]
- Shah, N.S.; He, X.; Khan, H.M.; Khan, J.A.; O’Shea, K.E.; Boccelli, D.L.; Dionysiou, D.D. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study. J. Hazard. Mater. 2013, 263, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Ghauch, A.; Tuqan, A.M.; Kibbi, N. Ibuprofen removal by heated persulfate in aqueous solution: A kinetics study. Chem. Eng. J. 2012, 197, 483–492. [Google Scholar] [CrossRef]
- Ghauch, A.; Baalbaki, A.; Amasha, M.; El Asmar, R.; Tantawi, O. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem. Eng. J. 2017, 317, 1012–1025. [Google Scholar] [CrossRef]
- Al Mayyahi, A.; Al-Asadi, H. Advanced Oxidation Processes (AOPs) for Wastewater Treatment and Reuse: A Brief Review. Asian J. Appl. Sci. Technol. 2018, 2, 18–30. [Google Scholar]
- Oturan, M.A.; Aaron, J.J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Khodadad, I.; Abedzadeh, N.; Lakshminarayan, V.; Saini, S.S. Low Cost Spectrometers and Learning Applications for Exposing Kids to Optics. In Proceedings of the Education and Training in Optics and Photonics, Bordeaux, France, 29 June–2 July 2015; p. OUT03. [Google Scholar]
- Guan, Y.-H.; Ma, J.; Li, X.-C.; Fang, J.-Y.; Chen, L.-W. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Alonso, E.; Singh, D.N. Photocatalytic mechanisms for peroxymonosulfate activation through the removal of methylene blue: A case study. Int. J. Environ. Res. Public Health 2019, 16, 198. [Google Scholar] [CrossRef] [Green Version]
- Sayed, M.; Khan, J.A.; Shah, L.A.; Shah, N.S.; Shah, F.; Khan, H.M.; Zhang, P.; Arandiyan, H. Solar light responsive poly (vinyl alcohol)-assisted hydrothermal synthesis of immobilized TiO2/Ti film with the addition of peroxymonosulfate for photocatalytic degradation of ciprofloxacin in aqueous media: A mechanistic approach. J. Phys. Chem. C 2018, 122, 406–421. [Google Scholar] [CrossRef]
- Khan, J.A.; He, X.; Shah, N.S.; Khan, H.M.; Hapeshi, E.; Fatta-Kassinos, D.; Dionysiou, D.D. Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82− and HSO5−. Chem. Eng. J. 2014, 252, 393–403. [Google Scholar] [CrossRef]
- Parsons, S. Advanced Oxidation Processes for Water and Wastewater Treatment; IWA Publishing: London, UK, 2004. [Google Scholar]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ansari, A.; Bahari, F.; Ghaedi, A.; Vafaei, A. A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; He, X.; Khan, H.M.; Boccelli, D.; Dionysiou, D.D. Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2016, 316, 37–43. [Google Scholar] [CrossRef]
- Rehman, F.; Sayed, M.; Khan, J.A.; Shah, N.S.; Khan, H.M.; Dionysiou, D.D. Oxidative removal of brilliant green by UV/S2O82−, UV/HSO5−and UV/H2O2 processes in aqueous media: A comparative study. J. Hazard. Mater. 2018, 357, 506–514. [Google Scholar] [CrossRef]
- Shah, N.S.; Rizwan, A.D.; Khan, J.A.; Sayed, M.; Khan, Z.U.H.; Murtaza, B.; Iqbal, J.; Din, S.U.; Imran, M.; Nadeem, M.; et al. Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H2O2 based advanced oxidation processes. Process Saf. Environ. Prot. 2018, 117, 473–482. [Google Scholar] [CrossRef]
- Khan, J.A.; He, X.; Khan, H.M.; Shah, N.S.; Dionysiou, D.D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82-/Fe2+ and UV/HSO5-/Fe2+ processes: A comparative study. Chem. Eng. J. 2013, 218, 376–383. [Google Scholar] [CrossRef]
- He, X.; Pelaez, M.; Westrick, J.A.; O’Shea, K.E.; Hiskia, A.; Triantis, T.; Kaloudis, T.; Stefan, M.I.; Armah, A.; Dionysiou, D.D. Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res 2012, 46, 1501–1510. [Google Scholar] [CrossRef]
- Shah, N.S.; Khan, J.A.; Nawaz, S.; Khan, H.M. Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation. J. Hazard. Mater. 2014, 278, 40–48. [Google Scholar] [CrossRef]
- Qi, Y.; Qu, R.; Liu, J.; Chen, J.; Al-Basher, G.; Alsultan, N.; Wang, Z.; Huo, Z. Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere 2019, 237, 124484. [Google Scholar] [CrossRef]
- Khan, J.A.; He, X.; Shah, N.S.; Sayed, M.; Khan, H.M.; Dionysiou, D.D. Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl-atrazine in water with OH and SO4− based-AOPs. Chem. Eng. J. 2017, 325, 485–494. [Google Scholar] [CrossRef]
- Li, M.; An, Z.; Huo, Y.; Jiang, J.; Zhou, Y.; Cao, H.; Jin, Z.; Xie, J.; Zhan, J.; He, M. Individual and combined degradation of N-heterocyclic compounds under sulfate radical-based advanced oxidation processes. Chem. Eng. J. 2022, 442, 136316. [Google Scholar] [CrossRef]
- Lee, B.-N.; Liaw, W.-D.; Lou, J.-C. Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension. Environ. Eng. Sci. 1999, 16, 165–175. [Google Scholar] [CrossRef]
- Kulkarni, M.R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour.-Effic. Technol. 2017, 3, 71–77. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Bajwa, S.Z.; Rahmat, R.; Nazir, A. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Sayed, M.; Ismail, M.; Khan, S.; Tabassum, S.; Khan, H. Degradation of ciprofloxacin in water by advanced oxidation process: Kinetics study, influencing parameters and degradation pathways. Environ. Technol. 2016, 37, 590–602. [Google Scholar] [CrossRef]
- Sánchez-Polo, M.; López-Peñalver, J.; Prados-Joya, G.; Ferro-García, M.A.; Rivera-Utrilla, J. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res. 2009, 43, 4028–4036. [Google Scholar] [CrossRef]
- Sayed, M.; Hadi, F.; Khan, J.A.; Shah, N.S.; Shah, L.A.; Khan, H. Degradation of Acetaminophen in Aqueous Media by H2O2 Assisted Gamma Irradiation Process. Z. fur Phys. Chem. 2018, 232, 545–558. [Google Scholar] [CrossRef]
- Shah, N.S.; Khan, J.A.; Sayed, M.; Khan, Z.U.H.; Iqbal, J.; Arshad, S.; Junaid, M.; Khan, H.M. Synergistic effects of H2O2 and S2O82− in the gamma radiation induced degradation of congo-red dye: Kinetics and toxicities evaluation. Sep. Purif. Technol. 2020, 233, 115966. [Google Scholar] [CrossRef]
- Shah, N.S.; Khan, J.A.; Sayed, M.; Khan, Z.U.H.; Ali, H.S.; Murtaza, B.; Khan, H.M.; Imran, M.; Muhammad, N. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82−. Chem. Eng. J. 2019, 356, 199–209. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Huang, Y.-F.; Huang, C.-i.; Chen, C.-Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater. 2009, 170, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 2014, 48, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Hu, J.; Qi, J.; Hou, Y.; Cao, R.; Wei, X. Removal of crystal violet by using reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): Application of artificial intelligence modeling for the optimization process. Materials 2018, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, U.L.; Zango, Z.U.; Kadir, H.A. Crystal violet removal from aqueous solution using corn stalk biosorbent. Sci. World J. 2019, 14, 133–138. [Google Scholar]
- Soliman, A.M.; Elsuccary, S.; Ali, I.M.; Ayesh, A.I. Photocatalytic activity of transition metal ions-loaded activated carbon: Degradation of crystal violet dye under solar radiation. J. Water Process Engl. 2017, 17, 245–255. [Google Scholar] [CrossRef]
- Imran, M.S.; Javed, T.; Areej, I.; Haider, M.N. Sequestration of crystal violet dye from wastewater using low-cost coconut husk as a potential adsorbent. Water Sci. Technol. 2022, 85, 2295–2317. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Lin, C.; Zhang, H.; Li, X.; Ma, J. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants. Chem. Eng. J. 2017, 315, 201–209. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Ghatak, H.R. Advanced oxidation processes for the treatment of biorecalcitrant organics in wastewater. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1167–1219. [Google Scholar] [CrossRef]
- Son, H.-S.; Choi, S.-B.; Khan, E.; Zoh, K.-D. Removal of 1, 4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics. Water Res. 2006, 40, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Staehelin, J.; Hoigne, J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ. Sci. Technol. 1985, 19, 1206–1213. [Google Scholar] [CrossRef]
- Liu, L.; Lin, S.; Zhang, W.; Farooq, U.; Shen, G.; Hu, S. Kinetic and mechanistic investigations of the degradation of sulfachloropyridazine in heat-activated persulfate oxidation process. Chem. Eng. J. 2018, 346, 515–524. [Google Scholar] [CrossRef]
- Nie, M.; Deng, Y.; Nie, S.; Yan, C.; Ding, M.; Dong, W.; Dai, Y.; Zhang, Y. Simultaneous removal of bisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide. Chem. Eng. J. 2019, 369, 35–45. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Lai, B.; Yao, G.; Chen, X.; Song, L. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism. Chem. Eng. J. 2019, 364, 45–56. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F. Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: Mechanism and identification of intermediates. Mater. Res. Bull. 2019, 111, 43–52. [Google Scholar] [CrossRef]
- Ito, T.; Morimoto, S.; Fujita, S.I.; Nishimoto, S.I. Radical intermediates generated in the reactions of l-arginine with hydroxyl radical and sulfate radical anion: A pulse radiolysis study. Radiat. Phys. Chem. 2009, 78, 256–260. [Google Scholar] [CrossRef]
- Sayed, M.; Khan, J.A.; Shah, L.A.; Shah, N.S.; Khan, H.M.; Rehman, F.; Khan, A.R.; Khan, A.M. Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation. Environ. Sci. Pollut. Res. 2016, 23, 13155–13168. [Google Scholar] [CrossRef]
- Tripathy, N.; Ahmad, R.; Song, J.E.; Park, H.; Khang, G. ZnO nanonails for photocatalytic degradation of crystal violet dye under UV irradiation. AIMS Mater. Sci. 2017, 4, 267–276. [Google Scholar] [CrossRef]
System | UV/PMS | PMS Only | UV Only |
---|---|---|---|
Kobs (mints)−1 | 0.2857 | 0.1269 | 0.0094 |
Time (h)/O | 0.14 | 0.302 | 4.08 |
EE/O (kWh m−3/order) | 1.68 | 3.62 | 48.96 |
Time (h)/four order | 0.54 | 1.210 | 16.33 |
EE/fourth-order (kWh/m3/order) | 6.48 | 14.52 | 195.96 |
Reactor | Molar Ratio of [Oxidant]ₒ/[CV]ₒ = 0.01 Mm (5 ppm) | Concentration (PMS) (mM) | %Removal = (Cₒ − C) × 100/(Cₒ) | Kobs (mints)−1 | R2 | Degradation Rate (mM/mints) | Time/Order Removal (min/O) | Time/Fourth-Order Removal (min/Fourth-Order) |
---|---|---|---|---|---|---|---|---|
PMS | 50 | 0.5 | 64% | 0.094 | 0.953 | 0.057 | 24.522 | 98.087 |
100 | 1 | 83% | 0.160 | 0.918 | 0.071 | 14.400 | 57.601 | |
150 | 1.5 | 89% | 0.199 | 0.941 | 0.086 | 11.560 | 46.237 | |
200 | 2 | 97% | 0.286 | 0.974 | 0.099 | 8.059 | 32.238 |
Reactor | Molar Ratio of [Oxidant]ₒ/[CV]ₒ = 0.002 Mm (1 ppm) | Concentration (ppm) | Concentration (mM) | %Removal = (Cₒ − C) × 100/(Cₒ) | Kobs (mints)−1 | R2 | Degradation Rate (mM/mints) | Time/Order Removal (min/O) | Time/Four-Order Removal (min/Fourorder) |
---|---|---|---|---|---|---|---|---|---|
Crystal violet | 250 | 1 | 0.002 | 77% | 0.0225 | 0.979 | 0.011 | 102.338 | 409.348 |
500 | 2 | 0.004 | 62% | 0.0141 | 0.938 | 0.017 | 163.304 | 653.216 | |
750 | 3 | 0.007 | 50% | 0.0112 | 0.974 | 0.021 | 205.588 | 822.352 | |
1000 | 4 | 0.009 | 44% | 0.0096 | 0.977 | 0.025 | 239.853 | 959.410 | |
5 | 0.01 | 42% | 0.0094 | 0.968 | 0.035 | 244.956 | 979.823 |
Dyes | Oxidant/Treatments Methodology | Removal Efficiency (%) | Reaction Time (Min) | Reference |
---|---|---|---|---|
Crystal violet | UV/PMS | 97 | 12 | Present Study |
PMS | 76 | 12 | ||
UV | 42 | 60 | ||
Brilliant Green | UV/PS | 63.1 | 30 | [57] |
UV/PMS | 47.0 | 30 | ||
UV/H2O2 | 34.8 | 30 | ||
Crystal Violet | ZnO nanonails under UV irradiation | 95 | 70 | [92] |
Crystal Violet | MnO2-based nanofibrous mesh/photocatalyst | 97 | 90 | [67] |
Congo-red | H2O2 coupled with nZVMn/PBC | 95 | - | [24] |
nZVMn/PBC | 77 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, N.; Khan, A.A.; Wakeel, M.; Khan, I.A.; Din, S.U.; Qaisrani, S.A.; Khan, A.M.; Hameed, M.U. Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet. Water 2022, 14, 3440. https://doi.org/10.3390/w14213440
Ali N, Khan AA, Wakeel M, Khan IA, Din SU, Qaisrani SA, Khan AM, Hameed MU. Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet. Water. 2022; 14(21):3440. https://doi.org/10.3390/w14213440
Chicago/Turabian StyleAli, Noreen, Ashfaq Ahmad Khan, Muhammad Wakeel, Ijaz Ahmed Khan, Salah Ud Din, Saeed Ahmad Qaisrani, Abdul Majid Khan, and Muhammad Usman Hameed. 2022. "Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet" Water 14, no. 21: 3440. https://doi.org/10.3390/w14213440
APA StyleAli, N., Khan, A. A., Wakeel, M., Khan, I. A., Din, S. U., Qaisrani, S. A., Khan, A. M., & Hameed, M. U. (2022). Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet. Water, 14(21), 3440. https://doi.org/10.3390/w14213440