Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Skalka Reservoir Sediment Sampling
2.3. Sampling and Processing SPM and Plants
2.4. Chemical Analyses
2.5. Gamma Spectrometry and Ways to Time Constraints
3. Results
3.1. Mercury Concentrations in SPM and River Water
3.2. Skalka Reservoir Sedimentary Archive
3.3. Hg Concentrations in Aquatic Plants
4. Discussion
4.1. Timing of Sediment Contamination Climax
4.2. Current Contamination Status and Its Causes
4.3. Priorities and Pitfalls in River Revitalisation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossoff, D.; Hudson-Edwards, K.A.; Howard, A.J.; Knight, D. Industrial mining heritage and the legacy of environmental pollution in the Derbyshire Derwent catchment: Quantifying contamination at a regional scale and developing integrated strategies for management of the wider historic environment. J. Archaeol. Sci. Rep. 2016, 6, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Hošek, M.; Bednárek, J.; Popelka, J.; Elznicová, J.; Tůmová, Š.; Rohovec, J.; Navrátil, T.; Matys Grygar, T. Persistent mercury hot spot in Central Europe and Skalka Dam reservoir as a long-term mercury trap. Environ. Geochem. Health 2020, 42, 1273–1290. [Google Scholar] [CrossRef] [PubMed]
- Sinnett, D.E.; Sardo, A.M. Former metal mining landscapes in England and Wales: Five perspectives from local residents. Landsc. Urban Plan. 2020, 193, 103685. [Google Scholar] [CrossRef]
- Nardini, A.G.C.; Conte, G. River Management & Restoration: What River Do We Wish for. Water 2021, 13, 1336. [Google Scholar] [CrossRef]
- Pedall, S.; Pedall, G.; Walgren, K. Quecksilber im Zulauf zum Stausee Skalka; Bewertung und Abhilfevorschläge (Mercury in Inflow to the Skalka Reservoir: Evaluation and Remediation Measures); Dr. G. Pedall Ingenieurbüro GmbH: Haag, Germany, 2011. [Google Scholar]
- Ciszewski, D.; Kubsik, U.; Aleksander-Kwaterczak, U. Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining. J. Soils Sediments 2012, 12, 1445–1462. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.J.; Coulthard, T.J.; Knight, D. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK. Geomorphology 2017, 293, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Defregger, F. Remediation of the Marktredwitz Chemical Factory—First Experiences of a Large-Scale Washing and Distillation Plant for Mercury Contaminated Sites in Bavaria. In Contaminated Soil ’95. Soil & Environment; Van Den Brink, W.J., Bosman, R., Arendt, F., Eds.; Springer: Dordrecht, The Netherland, 1995; Volume 5. [Google Scholar] [CrossRef]
- Maršálek, P.; Svobodová, Z.; Randák, T.; Švehla, J. Mercury and methylmercury contamination of fish from the Skalka reservoir: A case study. Acta Vet. Brno 2005, 74, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Paulin, T.; Titl, F.; Kozubek, P.; Valentová, M. Opatření na Vodních Tocích Kösseinu a Reslavě ke Zmírnění Problematiky Rtuti na Vodní Nádrži Skalka (Measures in the Kössein and Röslau Watercourses to Mitigate Mercury Problem in the Skalka Reservoir); Aquatest: Praha, Czech Republic, 2019. [Google Scholar]
- Nováková, T.; Navrátil, T.; Schütz, M.; Rohovec, J.; Matoušková, Š.; Hošek, M.; Matys Grygar, T. Reconstructing atmospheric Hg levels near the oldest chemical factory in central Europe using a tree ring archive. Environ. Pollut. 2022, 304, 119215. [Google Scholar] [CrossRef]
- Wachs, B. 30 Jahre Biomonitoring auf Quecksilber im Vorflutersystem des Raumes Marktredwitz. Stadt Marktredwitz Bodenschutz Und Altlastensanierung Marktredwitzer Bodenschutztage 1999, 1, 53–57. [Google Scholar]
- Garcia-Ordiales, E.; Loredo, J.; Esbrí, J.M.; Lominchar, M.A.; Millan, R.; Higueras, P. Stream bottom sediments as a means to assess metal contamination in the historic mining district of Almadén (Spain). Int. J. Min. Reclam. Environ. 2014, 28, 357–376. [Google Scholar] [CrossRef]
- Colica, A.; Benvenuti, M.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Rimondi, V.; Rinaldi, M. From point source to diffuse source of contaminants: The example of mercury dispersion in the Paglia River (Central Italy). Catena 2019, 172, 488–500. [Google Scholar] [CrossRef]
- Fornasaro, S.; Morelli, G.; Rimondi, V.; Fagotti, C.; Friani, R.; Lattanzi, P.; Costagliola, P. Mercury distribution around the Siele Hg mine (Mt. Amiata district, Italy) twenty years after reclamation: Spatial and temporal variability in soil, stream sediments, and air. J. Geochem. Explor. 2022, 232, 106886. [Google Scholar] [CrossRef]
- Baptista-Salazar, C.; Biester, H. The role of hydrological conditions for riverine Hg species transport in the Idrija mining area. Environ. Pollut. 2019, 247, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Acquavita, A.; Davide Brandolin, D.; Cattaruzza, C.; Felluga, A.; Maddaleni, P.; Meloni, C.; Pasquon, M.; Predonzani, S.; Poli, L.; Skert, N.; et al. Mercury distribution and speciation in historically contaminated soils of the Isonzo River Plain (NE Italy). J. Soils Sediments 2022, 22, 79–92. [Google Scholar] [CrossRef]
- Frémion, F.; Bordas, F.; Mourier, B.; Lenain, J.F.; Kestens, T.; Courtin-Nomade, A. Influence of dams on sediment continuity: A study case of a natural metallic contamination. Sci. Total Environ. 2016, 547, 282–294. [Google Scholar] [CrossRef]
- Majerová, L.; Bábek, O.; Navrátil, T.; Nováková, T.; Štojdl, J.; Elznicová, J.; Hron, K.; Matys Grygar, T. Dam reservoirs as an efficient trap for historical pollution: The passage of Hg and Pb through the Ohre River, Czech Republic. Environ. Earth Sci. 2018, 77, 545. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Hošek, M.; Pacina, J.; Štojdl, J.; Bábek, O.; Sedláček, J.; Hron, K.; Talská, R.; Kříženecká, S.; Tolaszová, J. Changes in the geochemistry of fluvial sediments after dam construction (the Chrudimka River, the Czech Republic). Appl. Geochem. 2018, 98, 94–108. [Google Scholar] [CrossRef]
- Matys Grygar, T.; Bábek, O.; Sedláček, J.; Lenďáková, Z.; Faměra, M.; Štojdl, J.; Pacina, J.; Tolaszová, J.; Kříženecká, S. Segregation and retention of As, potentially toxic metals, and organic pollutants in a reservoir from the Ohre River (the Czech Republic). J. Soils Sediments 2020, 20, 2931–2948. [Google Scholar] [CrossRef]
- Hahn, J.; Opp, C.; Ganzenmüller, R.; Ewert, A.; Schneider, B.; Zitzer, N.; Laufenberg, G. Catchment soils as a factor of trace metal accumulation in sediments of the reservoir Klingenberg (eastern Ore Mountains, Germany). J. Environ. Sci. 2019, 86, 1–14. [Google Scholar] [CrossRef]
- Zahrádka, V.; Hönig, J.; Haussel, E. Mercury in the inflow to the Skalka Reservoir—Appraisal and Proposed Measures. Die Elbe und ihre Sedimente—Tagungsband. In Proceedings of the Magdeburger Gewässerschutzseminar 2012, Hamburg, Germany, 10–11 October 2012; Available online: https://www.ikse-mkol.org/en/themen/magdeburger-gewaesserschutzseminar/mgs-2012 (accessed on 9 July 2022).
- Adams, M.S.; Ballin, U.; Gaumert, T.; Hale, B.W.; Kausch, H.; Kruse, R. Monitoring selected indicators of ecological change in the Elbe River since the fall of the Iron Curtain. Environ. Conserv. 2001, 28, 333–344. [Google Scholar] [CrossRef]
- Merz, G.; (Bavarian Water Authorities, Hof, Germany). Personal communication, 2022.
- Matys Grygar, T.; Elznicová, J.; Kiss, T.; Smith, H.G. Using sedimentary archives to reconstruct pollution history and sediment provenance: The Ohře River, Czech Republic. Catena 2016, 144, 109–129. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, M.Á.; Hošek, M.; Elznicová, J.; Pacina, J.; Hron, K.; Fačevicová, K.; Talská, R.; Bábek, O.; Matys Grygar, T. Separation of geochemical signals in fluvial sediments: New approaches to grain-size control and anthropogenic contamination. Appl. Geochem. 2020, 123, 104791. [Google Scholar] [CrossRef]
- Sedláček, J.; Bábek, O.; Nováková, T. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic. Sci. Tot. Environ. 2017, 574, 1456–1471. [Google Scholar] [CrossRef]
- Sedláček, J.; Bábek, O.; Matys Grygar, T.; Lenďáková, Z.; Pacina, J.; Štojdl, J.; Hošek, M.; Elznicová, J. A closer look at sedimentation processes in two dam reservoirs. J. Hydrol. 2022, 605, 127397. [Google Scholar] [CrossRef]
- Mokwe-Ozonzeadi, N.; Foster, I.; Valsami-Jones, E.; McEldowney, S. Trace metal distribution in the bed, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. J. Soils Sediments 2019, 19, 946–963. [Google Scholar] [CrossRef]
- Cosio, C.; Flück, R.; Regier, N.; Slaveykova, V.I. Effects of macrophytes on the fate of mercury in aquatic systems. Environ. Toxicol. Chem. 2014, 33, 1225–1237. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Vymazal, J.; Cirelli, G.L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Tot. Environ. 2018, 631–632, 252–261. [Google Scholar] [CrossRef]
- Pelcová, P.; Kopp, R.; Ridošková, A.; Grmela, J.; Štěrbová, D. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. Chemosphere 2022, 288, 132545. [Google Scholar] [CrossRef]
- Talská, R.; Hron, K.; Matys Grygar, T. Compositional scalar-on-function regression with application to sediment particle size distributions. Mathemat. Geosci. 2021, 53, 1667–1695. [Google Scholar] [CrossRef]
- Ivanov, M.M.; Konoplev, A.V.; Walling, D.E.; Konstantinov, E.A.; Gurinov, A.L.; Ivanova, N.N.; Kuzmenkova, N.V.; Tsyplenkov, A.S.; Ivanov, M.A.; Golosov, V.N. Using reservoir sediment deposits to determine the longer-term fate of Chernobyl-derived 137Cs fallout in the fluvial system. Environ. Pollut. 2021, 274, 116588. [Google Scholar] [CrossRef]
- Rulík, P.; Helebrant, J. Mapa Kontaminace Půdy České Republiky 137Cs po Havárii JE Černobyl (Map of Soil Contamination by 137Cs after Chernobyl Accident). Zpráva SÚRO č. 22/2011. Available online: https://docplayer.cz/16172646-Mapa-kontaminace-pudy-ceske-republiky-137-cs-po-havarii-je-cernobyl.html (accessed on 9 July 2022).
- Sedláček, J.; Bábek, O.; Matys Grygar, T. Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: The Brno Dam, Moravia, Czech Republic. Environ. Earth Sci. 2013, 69, 2581–2593. [Google Scholar] [CrossRef]
- Pacina, J.; Lenďáková, Z.; Štojdl, J.; Matys Grygar, T.; Dolejš, M. Dynamics of Sediments in Reservoir Inflows: A Case Study of the Skalka and Nechranice Reservoirs, Czech Republic. ISPRS Int. J. Geo-Inform. 2020, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Shotbolt, L.A.; Thomas, A.D.; Hutchinson, S.M. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Progr. Phys. Geogr. 2005, 29, 337–361. [Google Scholar] [CrossRef]
- Miller, J.R. Forensic assessment of metal contaminated rivers in the 21st century using geochemical and isotopic tracers. Minerals 2013, 3, 192–246. [Google Scholar] [CrossRef] [Green Version]
- Alberts, J.J.; Wahlgran, M.A.; Orlandini, K.A.; Durbahn, C.A. The distribution of 239,240Pu, 238Pu, 241Am and 137Cs among chemically-defined components of sediments, settling particulates and net plankton of Lake Michigan. J. Environ. Radioactiv. 1989, 9, 89–103. [Google Scholar] [CrossRef]
- Ilus, E.; Saxén, R. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J. Environ. Radioactiv. 2005, 82, 199–221. [Google Scholar] [CrossRef]
- Domínguez, M.T.; Alegre, J.M.; Madejón, P.; Madejón, E.; Burgos, P.; Cabrera, F.; Marañón, T.; Murillo, J.M. River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma 2016, 261, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Matys Grygar, T.; Elznicová, J.; Bábek, O.; Hošek, M.; Engel, Z.; Kiss, T. Obtaining isochrones from pollution signals in a fluvial sediment record: A case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic. Appl. Geochem. 2014, 48, 1–15. [Google Scholar] [CrossRef]
- García, J.H.; Ollero, A.; Ibisate, A.; Fuller, I.C.; Death, R.G.; Piégay, H. Promoting fluvial geomorphology to “live with rivers” in the Anthropocene Era. Geomorphology 2021, 380, 107649. [Google Scholar] [CrossRef]
- Werther, L.; Mehler, N.; Schenk, G.J.; Zielhofer, C. On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research. Water 2021, 13, 2188. [Google Scholar] [CrossRef]
- Kotková, K.; Nováková, T.; Tůmová, Š.; Kiss, T.; Popelka, J.; Faměra, M. Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology 2019, 329, 46–57. [Google Scholar] [CrossRef]
- Tůmová, Š.; Matys Grygar, T.; Elznicová, J.; Hrubešová, D. Historické a současné znečištění sedimentů Panenského potoka Zn a Pb a jeho vliv na znečištění sedimentů řeky Ploučnice (Historical and current contamination of the Panenský Creek sediments by Zn and Pb and their impact on the Ploučnice River sediment contamination). Stud. Oecol. 2018, 12, 3–24. [Google Scholar]
- Tůmová, Š.; Hrubešová, D.; Vorm, P.; Hošek, M.; Matys Grygar, T. Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: Case study in the Ploučnice River system, Czech Republic. J. Soils Sediments 2019, 19, 2020–2033. [Google Scholar] [CrossRef]
- Slabá, E. Posouzení Navržených Revitalizačních Opatření Řeky Ploučnice u Mimoně z Hlediska Remobilizace Historické Kontaminace (Evaluation of Proposed Revitalisation of the Ploučnice River near Mimoň with Respect to Its Historical Contamination). phd Faculty of Enviroment, J.E; Purkyně University in Ústí nad Labem: Ústí nad Labem, Czech Republic, 2015. [Google Scholar]
- Hornberger, M.I.; Luoma, S.N.; Johnson, M.L.; Holyoak, M. Influence of remediation in a mine-impacted river: Metal trends over large spatial and temporal scales. Ecol. Appl. 2019, 19, 1522–1535. [Google Scholar] [CrossRef] [PubMed]
Water Depth (m) | Position of Core | Core Length (cm) | Fluvial Base (cm) | 137Cs Peak (cm) [(Bq kg−1)] | Hg in 137Cs Peak (mg kg−1) | Hg below 137Cs Peak (mg kg−1) | Hg above 137Cs Peak (mg kg−1) | 210Pb* above 137Cs Peak | 137Cs above 137Cs Peak | |
---|---|---|---|---|---|---|---|---|---|---|
SKA1 | 8.9 | Near dam | 72 | No | 59 [348] | 9 | 12–14 | 4–8 | Variable | Decline |
SKA3 | 8.4 | In thalweg | 98 | No | 32.5 [394] | 9.8 | 6–8 | 13–18 | Low | Low |
SKA4 | 7.5 | In thalweg | 82 | 78 | 13 [193] | 10 | 6–8 | 13–14 | Increase | Low |
SKA6 | 6.0 | Basin | 36 | 20 | 20 [79] | 8.7 | 2 | 7–9 | Increase | Slow decline |
SKA9 | 5.1 | Basin | 65 | 38 | 25 [180] | 12.8 | 8–11 | 18 | Low | low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matys Grygar, T.; Hošek, M.; Navrátil, T.; Bednárek, J.; Hönig, J.; Elznicová, J.; Pacina, J.; Rohovec, J.; Sedláček, J.; Sass, O. Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful. Water 2022, 14, 3481. https://doi.org/10.3390/w14213481
Matys Grygar T, Hošek M, Navrátil T, Bednárek J, Hönig J, Elznicová J, Pacina J, Rohovec J, Sedláček J, Sass O. Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful. Water. 2022; 14(21):3481. https://doi.org/10.3390/w14213481
Chicago/Turabian StyleMatys Grygar, Tomáš, Michal Hošek, Tomáš Navrátil, Jan Bednárek, Jindřich Hönig, Jitka Elznicová, Jan Pacina, Jan Rohovec, Jan Sedláček, and Oliver Sass. 2022. "Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful" Water 14, no. 21: 3481. https://doi.org/10.3390/w14213481
APA StyleMatys Grygar, T., Hošek, M., Navrátil, T., Bednárek, J., Hönig, J., Elznicová, J., Pacina, J., Rohovec, J., Sedláček, J., & Sass, O. (2022). Lessons Learnt from the Revitalisation of Chemical Factory in Marktredwitz and River Banks Downstream: When ‘Renaturation’ Can Be Harmful. Water, 14(21), 3481. https://doi.org/10.3390/w14213481