Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Irrigation Application and ET Determination
2.3. Latent Heat of Vaporisation
3. Results and Discussion
3.1. Water Balance
3.2. Latent Heat of Vaporisation
ET rate for January 2018 from the weather station | =92.3 mm/month |
Minimum ET calculation: | |
Relative ET rate (minimum) | =41.0 mL/mm of ET per pot |
Minimum ET per LW pot | =41.0 mL/mm × 92.3 mm/month =3784.3 mL/month per pot |
Minimum ET rate per m2 | =3784.3 mL/month per pot × 20 LW pots/m2 =75.7 L/month/m2 |
Minimum latent heat of vaporisation per m2 from Equation (4). | =75.7 × 2260 kJ/month/m2 =171 MJ/month/m2 |
Maximum ET calculation: | |
Relative ET rate (maximum) | =91.9 mL/mm of ET per pot |
Maximum ET per LW pot: | =91.9 mL/mm × 92.3 mm/month =8482.4 mL/month per pot |
Maximum ET rate per m2 | =8482.4 mL/month per pot × 20 LW pots/m2 =169.6 L/month/m2 |
Maximum latent heat of vaporisation per m2 from Equation (4). | =169.6 × 2260 kJ/month/m2 =383 MJ/month/m2 |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beecham, S.; Razzaghmanesh, M.; Bustami, R.; Ward, J. The Role of Green Roofs and Living Walls as WSUD Approaches in a Dry Climate. In Approaches to Water Sensitive Urban Design; Sharma, A., Gardner, T., Begbie, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 409–430. [Google Scholar] [CrossRef]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Scarpa, M.; Mazzali, U.; Peron, F. Modeling the energy performance of living walls: Validation against field measurements in temperate climate. Energy Build. 2014, 79, 155–163. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Razzaghmanesh, M. Thermal performance investigation of a living wall in a dry climate of Australia. Build. Environ. 2017, 112, 45–62. [Google Scholar] [CrossRef]
- Mazzali, U.; Peron, F.; Romagnoni, P.; Pulselli, R.M.; Bastianoni, S. Experimental investigation on the energy performance of Living Walls in a temperate climate. Build. Environ. 2013, 64, 57–66. [Google Scholar] [CrossRef]
- Gromke, C.; Blocken, B.; Janssen, W.; Merema, B.; van Hooff, T.; Timmermans, H. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build. Environ. 2015, 83, 11–26. [Google Scholar] [CrossRef]
- Hoelscher, M.-T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Koyama, T.; Yoshinaga, M.; Maeda, K.-I.; Yamauchi, A. Transpiration cooling effect of climber greenwall with an air gap on indoor thermal environment. Ecol. Eng. 2015, 83, 343–353. [Google Scholar] [CrossRef]
- Hopkins, G.; Goodwin, C.; Milutinovic, M.; Andrew, M. Feasibility Study: Living Wall System for Multi-Storey Buildings in the Adelaide Climate. 2010. Available online: https://www.environment.sa.gov.au/files/sharedassets/public/climate-change/bif_completed_projects/living-wall-system-fs-city-central-tower-franklin-street-summary.pdf (accessed on 15 September 2022).
- Cortês, A.; Almeida, J.; Tadeu, A.; Ramezani, B.; Fino, M.R.; de Brito, J.; Silva, C.M. The effect of cork-based living walls on the energy performance of buildings and local microclimate. Build. Environ. 2022, 216, 109048. [Google Scholar] [CrossRef]
- Lausen, E.D.; Emilsson, T.; Jensen, M.B. Water use and drought responses of eight native herbaceous perennials for living wall systems. Urban For. Urban Green. 2020, 54, 126772. [Google Scholar] [CrossRef]
- van de Wouw, P.M.F.; Ros, E.J.M.; Brouwers, H.J.H. Precipitation collection and evapo(transpi)ration of living wall systems: A comparative study between a panel system and a planter box system. Build. Environ. 2017, 126, 221–237. [Google Scholar] [CrossRef]
- Tziampou, N.; Coupe, S.; Sañudo-Fontaneda, L.; Newman, A.P.; Castro-Fresno, D. Fluid transport within permeable pavement systems: A review of evaporation processes, moisture loss measurement and the current state of knowledge. Constr. Build. Mater. 2020, 243, 179–188. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.; Ge, Z. Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Constr. Build. Mater. 2014, 65, 367–375. [Google Scholar] [CrossRef]
- Yang, Q.; Dai, F.; Beecham, S. The influence of evaporation from porous concrete on air temperature and humidity. J. Environ. Manag. 2022, 306, 114472. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Adelaide (Kent Town) Monthly Climate Statistics; Australian Government: Canberra, Australia, 2022. Available online: https://www.bom.gov.au/climate/averages/tables/cw_023090.shtml (accessed on 15 September 2022).
- Maxim Integrated. DS1923 iButton Hygrochron Temperature/Humidity Logger with 8KB Data-Log Memory—Maxim; Maxim Integrated: Sunnyvale, CA, USA, 2016; Available online: https://www.maximintegrated.com/en/products/ibutton/data-loggers/DS1923.html (accessed on 12 May 2022).
- Bustami, R.A.; Brien, C.; Ward, J.; Beecham, S.; Rawlings, R. A Statistically Rigorous Approach to Experimental Design of Vertical Living Walls for Green Buildings. Urban Sci. 2019, 3, 71. [Google Scholar] [CrossRef] [Green Version]
- Verstraeten, W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis Instruments. User Manual Console for Vantage Pro2 and Vantage Pro2 Plus Weather Stations; Davis Instruments: Hayward, CA, USA, 2019. [Google Scholar]
- Datt, P. Latent Heat of Vaporization/Condensation. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; p. 703. [Google Scholar]
- He, Y.; Yu, H.; Ozaki, A.; Dong, N.; Zheng, S. An investigation on the thermal and energy performance of living wall system in Shanghai area. Energy Build. 2017, 140, 324–335. [Google Scholar] [CrossRef]
Column | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Row | |||||||||||||
12 | EN-PM-I1 | TT-PM-I1 | WF-PM-I2 | EN-L-I1 | MP-NS-I2 | DR-NS-I1 | WF-L-I1 | MP-L-I2 | DR-L-I2 | EN-L-I2 | GV-PM-I1 | DR-NS-I2 | |
11 | GV-NS-I2 | GV-NS-I1 | WF-NS-I2 | MP-L-I1 | WF-L-I2 | WF-PM-I2 | TT-L-I1 | EN-NS-I1 | DR-PM-I2 | DR-L-I2 | WF-PM-I1 | DR-NS-I1 | |
10 | TT-PM-I2 | GV-PM-I2 | EN-PM-I2 | DR-PM-I1 | EN-L-I1 | MP-L-I1 | MP-NS-I1 | WF-NS-I2 | TT-L-I2 | GV-L-I1 | DR-NS-I2 | GV-NS-I1 | |
9 | MP-NS-I2 | EN-PM-I1 | TT-L-I1 | WF-L-I2 | TT-NS-I1 | GV-L-I2 | MP-PM-I1 | WF-L-I1 | GV-PM-I2 | EN-NS-I1 | EN-L-I2 | MP-L-I1 | |
8 | DR-NS-I1 | WF-NS-I2 | DR-L-I1 | MP-NS-I1 | GV-L-I2 | EN-PM-I1 | EN-NS-I2 | DR-PM-I2 | GV-L-I1 | TT-PM-I2 | GV-NS-I2 | TT-PM-I1 | |
7 | MP-L-I2 | EN-L-I1 | GV-PM-I1 | TT-NS-I2 | EN-NS-I2 | TT-PM-I1 | WF-NS-I2 | TT-PM-I2 | MP-PM-I1 | DR-PM-I2 | DR-L-I1 | EN-L-I2 | |
6 | MP-L-I1 | DR-NS-I1 | TT-NS-I2 | GV-NS-I1 | MP-PM-I1 | DR-PM-I2 | GV-NS-I2 | GV-L-I2 | MP-PM-I2 | EN-L-I1 | TT-L-I2 | WF-PM-I1 | |
5 | EN-NS-I1 | DR-L-I1 | MP-PM-I2 | DR-NS-I2 | WF-PM-I1 | DR-L-I2 | GV-PM-I1 | TT-NS-I1 | EN-NS-I2 | GV-PM-I2 | MP-PM-I1 | MP-L-I2 | |
4 | WF-NS-I1 | TT-NS-I2 | WF-L-I1 | WF-PM-I1 | DR-PM-I1 | WF-L-I2 | GV-L-I1 | EN-PM-I2 | EN-PM-I1 | MP-NS-I2 | TT-L-I1 | GV-NS-I2 | |
3 | WF-PM-I2 | TT-L-I2 | EN-NS-I1 | TT-L-I1 | MP-NS-I1 | TT-PM-I2 | MP-L-I2 | WF-NS-I1 | DR-L-I1 | DR-PM-I1 | MP-NS-I2 | EN-NS-I2 | |
2 | DR-PM-I1 | WF-L-I2 | GV-L-I1 | EN-PM-I2 | MP-PM-I2 | WF-NS-I1 | WF-PM-I2 | DR-L-I2 | MP-NS-I1 | TT-NS-I1 | TT-NS-I2 | GV-L-I2 | |
1 | EN-L-I2 | DR-NS-I2 | TT-L-I2 | GV-PM-I2 | GV-PM-I1 | TT-NS-I1 | EN-PM-I2 | GV-NS-I1 | WF-L-I1 | WF-NS-I1 | TT-PM-I1 | MP-PM-I2 |
Substrate | Bulk Density (g/cm3) | Voltage vs. VWC Calibration | R2 |
---|---|---|---|
Loam (L) | 1.411 | y = 17.163 x − 16.871 | 0.968 |
Native soil (NS) | 1.345 | y = 21.442 x − 16.195 | 0.745 |
Potting mix (PM) | 0.470 | y = 25.838 x + 2.4266 | 0.950 |
Substrate Plant Species | L | NS | PM | |||
---|---|---|---|---|---|---|
I1 | I2 | I1 | I2 | I1 | I2 | |
DR | N/A | 49.7 | 63.7 | 59.5 | 76.6 | 54.4 |
EN | 91.9 | 43.7 | 79.0 | 51.1 | 74.0 | 41.0 |
GV | 54.0 | 43.0 | 72.6 | 50.2 | 54.5 | 52.4 |
MP | 71.5 | 51.9 | 81.1 | 53.2 | 70.0 | 52.3 |
TT | 54.7 | 45.0 | 58.2 | 54.4 | 46.7 | 48.3 |
WF | 60.8 | 67.5 | 66.3 | 48.1 | 62.5 | 41.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustami, R.A.; Beecham, S.; Hopeward, J. Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System. Water 2022, 14, 3759. https://doi.org/10.3390/w14223759
Bustami RA, Beecham S, Hopeward J. Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System. Water. 2022; 14(22):3759. https://doi.org/10.3390/w14223759
Chicago/Turabian StyleBustami, Rosmina A., Simon Beecham, and James Hopeward. 2022. "Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System" Water 14, no. 22: 3759. https://doi.org/10.3390/w14223759
APA StyleBustami, R. A., Beecham, S., & Hopeward, J. (2022). Evaporative Cooling Effect of Water-Sensitive Urban Design: Comparing a Living Wall with a Porous Concrete Pavement System. Water, 14(22), 3759. https://doi.org/10.3390/w14223759