Adsorption of Cr(VI) by Mesoporous Pomegranate Peel Biowaste from Synthetic Wastewater under Dynamic Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Powdered PGP
2.2. Biosorption of Cr(VI) on PGP—Batch and Dynamic Experiments
2.2.1. Batch Studies
2.2.2. Dynamic Studies
2.3. Biosorption Modeling in Continuous Systems
3. Results and Discussion
3.1. Characterizations
3.1.1. Effect of pH Value
3.1.2. Effect of Contact Time
3.2. Adsorption Isotherms
3.3. Influence of Parameters on Fixed Bed
3.3.1. Flow Rate
3.3.2. Bed Height
3.3.3. Initial Concentration
3.3.4. Temperature
3.4. Modeling of Column Data
3.5. Adsorption Mechanism
3.6. Comparison with Other Sorbents in the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laxmi, V.; Kaushik, G. Toxicity of Hexavalent Chromium in Environment, Health Threats, and Its Bioremediation and Detoxification from Tannery Wastewater for Environmental Safety. In Bioremediation of Industrial Waste for Environmental Safety; Springer: Berlin/Heidelberg, Germany, 2020; pp. 223–243. [Google Scholar]
- Ina, S. Chromium, an Essential Nutrient and Pollutant: A Review. African J. Pure Appl. Chem. 2013, 7, 310–317. [Google Scholar]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Esmaeilbeigi, M.; Sahebi, Z.; Ansari, A. Health Risk Assessment of Total Chromium in the Qanat as Historical Drinking Water Supplying System. Sci. Total Environ. 2022, 807, 150795. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Panigrahi, A.K. A Comprehensive Review on Chromium Induced Alterations in Fresh Water Fishes. Toxicol. Rep. 2018, 5, 440–447. [Google Scholar] [CrossRef]
- Abdel-Galil, E.A.; Hussin, L.M.S.; El-Kenany, W.M. Adsorption of Cr (VI) from Aqueous Solutions onto Activated Pomegranate Peel Waste. Desalin. WATER Treat. 2021, 211, 250–266. [Google Scholar] [CrossRef]
- Minas, F.; Chandravanshi, B.S.; Leta, S. Chemical Precipitation Method for Chromium Removal and Its Recovery from Tannery Wastewater in Ethiopia. Chem. Int. 2017, 3, 291–305. [Google Scholar]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-Activated Porous Biochar with High Specific Surface Area for Adsorptive Removal of Chromium (VI) and Naphthalene from Water: Affecting Factors, Mechanisms and Reusability Exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Q.; Xue, J.; Guan, R.; Li, Q.; Liu, X.; Jia, H.; Wu, Y. 3D Hierarchically Porous NiO/NF Electrode for the Removal of Chromium (VI) from Wastewater by Electrocoagulation. Chem. Eng. J. 2020, 402, 126151. [Google Scholar] [CrossRef]
- Fotsing, P.N.; Woumfo, E.D.; Mezghich, S.; Mignot, M.; Mofaddel, N.; Le Derf, F.; Vieillard, J. Surface Modification of Biomaterials Based on Cocoa Shell with Improved Nitrate and Cr (vi) Removal. RSC Adv. 2020, 10, 20009–20019. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Karri, R.R.; Lima, E.C.; Mahvi, A.H.; Nazmara, S.; Ghaedi, A.M.; Fazlzadeh, M.; Gholami, S. Regression and Mathematical Modeling of Fluoride Ion Adsorption from Contaminated Water Using a Magnetic Versatile Biomaterial & Chelating Agent: Insight on Production & Experimental Approaches, Mechanism and Effects of Potential Interferers. J. Mol. Liq. 2020, 315, 113653. [Google Scholar]
- Giri, R.; Kumari, N.; Behera, M.; Sharma, A.; Kumar, S.; Kumar, N.; Singh, R. Adsorption of Hexavalent Chromium from Aqueous Solution Using Pomegranate Peel as Low-Cost Biosorbent. Environ. Sustain. 2021, 4, 401–417. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New Insights into the Capture Performance and Mechanism of Hazardous Metals Cr3+ and Cd2+ onto an Effective Layered Double Hydroxide Based Material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Bouchelkia, N.; Mouni, L.; Belkhiri, L.; Bouzaza, A.; Bollinger, J.C.; Madani, K.; Dahmoune, F. Removal of Lead(II) from Water Using Activated Carbon Developed from Jujube Stones, a Low-Cost Sorbent. Sep. Sci. Technol. 2016, 51, 1645–1653. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Bollinger, J.C.; Belkhiri, L.; Tiri, A.; Bouzaza, A.; El Jery, A.; Assadi, A.; Amrane, A.; Mouni, L. Zeolite Waste Characterization and Use as Low-Cost, Ecofriendly, and Sustainable Material for Malachite Green and Methylene Blue Dyes Removal: Box–Behnken Design, Kinetics, and Thermodynamics. Appl. Sci. 2022, 12, 7587. [Google Scholar] [CrossRef]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Applied Clay Science Adsorption and Desorption of Pb (II) on L -Lysine Modi Fi Ed Montmorillonite and the Simulation of Interlayer Structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Chestnut, A.; Pigment, S. Cu (II) Adsorption from Aqueous Solution onto Poly (Acrylic Acid/Chestnut Shell Pigment) Hydrogel. Water 2022, 14, 3500. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J. Utilizations of Agricultural Waste as Adsorbent for the Removal of Contaminants: A Review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef]
- Salam, F.A.; Narayanan, A. Biosorption-a Case Study of Hexavalent Chromium Removal with Raw Pomegranate Peel. Desalin. Water Treat. 2019, 156, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Chedri Mammar, A.; Mouni, L.; Bollinger, J.C.; Belkhiri, L.; Bouzaza, A.; Assadi, A.A.; Belkacemi, H. Modeling and Optimization of Process Parameters in Elucidating the Adsorption Mechanism of Gallic Acid on Activated Carbon Prepared from Date Stones. Sep. Sci. Technol. 2020, 55, 3113–3125. [Google Scholar] [CrossRef]
- Zamouche, M.; Mouni, L.; Ayachi, A.; Merniz, I. Use of Commercial Activated Carbon for the Purification of Synthetic Water Polluted by a Pharmaceutical Product. Desalin. Water Treat. 2019, 172, 86–95. [Google Scholar] [CrossRef]
- Morton, J. Pomegranate. In Fruits of Warm Climates; J. F. Morton: Miami, FL, USA, 1987; pp. 352–355. [Google Scholar]
- Ravikumar, K.V.G.; Sudakaran, S.V.; Ravichandran, K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Green Synthesis of NiFe Nano Particles Using Punica Granatum Peel Extract for Tetracycline Removal. J. Clean. Prod. 2019, 210, 767–776. [Google Scholar] [CrossRef]
- Khwairakpam, A.D.; Bordoloi, D.; Thakur, K.K.; Monisha, J. Possible Use of Punica Granatum (Pomegranate) in Cancer Therapy. Pharmacol. Res. 2018, 133, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ali, S. Application of Raw and Modified Pomegranate Peel for Wastewater Treatment: A Literature Overview and Analysis. Int. J. Chem. Eng. 2021, 2021, 8840907. [Google Scholar] [CrossRef]
- Benabderrahim, M.A.; Yahia, Y.; Bettaieb, I.; Elfalleh, W.; Nagaz, K. Antioxidant Activity and Phenolic Profile of a Collection of Medicinal Plants from Tunisian Arid and Saharan Regions. Ind. Crops Prod. 2019, 138, 111427. [Google Scholar] [CrossRef]
- Elbatanony, M.M.; El-Feky, A.M.; Hemdan, B.A.; El-Liethy, M.A. Assessment of the Antimicrobial Activity of the Lipoidal and Pigment Extracts of Punica Granatum L. Leaves. Acta Ecol. Sin. 2019, 39, 89–94. [Google Scholar] [CrossRef]
- Naeem, G.A.; Muslim, R.F.; Rabeea, M.A.; Owaid, M.N.; Abd-Alghafour, N.M. Punica Granatum L. Mesocarp-Assisted Rapid Fabrication of Gold Nanoparticles and Characterization of Nano-Crystals. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100390. [Google Scholar] [CrossRef]
- Tan, W.-K.; Lee, S.-Y.; Lee, W.-J.; Hee, Y.-Y.; Abedin, N.H.Z.; Abas, F.; Chong, G.-H. Supercritical Carbon Dioxide Extraction of Pomegranate Peel-Seed Mixture: Yield and Modelling. J. Food Eng. 2021, 301, 110550. [Google Scholar] [CrossRef]
- Msaadi, R.; Sassi, W.; Hihn, J.-Y.; Ammar, S.; Chehimi, M.M. Valorization of Pomegranate Peel Balls as Bioadsorbents of Methylene Blue in Aqueous Media. Emergent Mater. 2021, 5, 381–390. [Google Scholar] [CrossRef]
- Abbas, M.; Harrache, Z.; Trari, M. Mass-Transfer Processes in the Adsorption of Crystal Violet by Activated Carbon Derived from Pomegranate Peels: Kinetics and Thermodynamic Studies. J. Eng. Fiber. Fabr. 2020, 15, 1558925020919847. [Google Scholar] [CrossRef]
- Noli, F.; Avgerinou, A.; Kapashi, E.; Kapnisti, M. Uranium and Thorium Retention onto Sorbents from Raw and Modified Pomegranate Peel. Water Air Soil Pollut. 2021, 232, 437. [Google Scholar] [CrossRef]
- Kenessova, A.K.; Seilkhanova, G.A.; Rakhym, A.B.; Mastai, Y. Composite Materials Based on Orange and Pomegranate Peels for Cu (II) and Zn (II) Ions Extraction. Int. J. Biol. Chem. 2020, 13, 154–160. [Google Scholar] [CrossRef]
- Seliem, M.K.; Mobarak, M.; Selim, A.Q.; Mohamed, E.A.; Halfaya, R.A.; Gomaa, H.K.; Anastopoulos, I.; Giannakoudakis, D.A.; Lima, E.C.; Bonilla-Petriciolet, A. A Novel Multifunctional Adsorbent of Pomegranate Peel Extract and Activated Anthracite for Mn (VII) and Cr (VI) Uptake from Solutions: Experiments and Theoretical Treatment. J. Mol. Liq. 2020, 311, 113169. [Google Scholar] [CrossRef]
- Yi, Y.; Lv, J.; Liu, Y.; Wu, G. Synthesis and Application of Modified Litchi Peel for Removal of Hexavalent Chromium from Aqueous Solutions. J. Mol. Liq. 2017, 225, 28–33. [Google Scholar] [CrossRef]
- Rafiaee, S.; Samani, M.R.; Toghraie, D. Removal of Hexavalent Chromium from Aqueous Media Using Pomegranate Peels Modified by Polymeric Coatings: Effects of Various Composite Synthesis Parameters. Synth. Met. 2020, 265, 116416. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Q.; Gao, B.; Li, Q.; Xu, X.; Fu, K. Dsorption of Hexavalent Chromium from Aqueous Solution by Modified Corn Stalk: A Fixed-Bed Column StudyA. Bioresour. Technol. 2012, 113, 114–120. [Google Scholar] [CrossRef]
- Hu, Q.; Pang, S.; Wang, D.; Yang, Y.; Liu, H. Deeper Insights into the Bohart–Adams Model in a Fixed-Bed Column. J. Phys. Chem. B 2021, 125, 8494–8501. [Google Scholar] [CrossRef] [PubMed]
- Nithya, K.; Sathish, A.; Kumar, P.S. Packed Bed Column Optimization and Modeling Studies for Removal of Chromium Ions Using Chemically Modified Lantana Camara Adsorbent. J. Water Process Eng. 2020, 33, 101069. [Google Scholar] [CrossRef]
- Vera, M.; Juela, D.M.; Cruzat, C.; Vanegas, E. Modeling and Computational Fluid Dynamic Simulation of Acetaminophen Adsorption Using Sugarcane Bagasse. J. Environ. Chem. Eng. 2021, 9, 105056. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, H.; Zhang, Z.; Pei, X. Development of Fractal-like Clark Model in a Fixed-Bed Column. Sep. Purif. Technol. 2020, 251, 117396. [Google Scholar] [CrossRef]
- Turkmen Koc, S.N.; Kipcak, A.S.; Moroydor Derun, E.; Tugrul, N. Removal of Zinc from Wastewater Using Orange, Pineapple and Pomegranate Peels. Int. J. Environ. Sci. Technol. 2021, 18, 2781–2791. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal Degradation of Lignin—A Review. Cellul. Chem. Technol. 2010, 44, 353. [Google Scholar]
- Bidhendi, M.E.; Poursorkh, Z.; Sereshti, H.; Nodeh, H.R.; Rezania, S.; Kamboh, M.A. Nano-Size Biomass Derived from Pomegranate Peel for Enhanced Removal of Cefixime Antibiotic from Aqueous Media: Kinetic, Equilibrium and Thermodynamic Study. Int. J. Environ. Res. Public Health 2020, 17, 4223. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, Y.; Zheng, C.; Yu, X.; Li, S.; Wei, W. Enhanced Cr(VI) Removal from Water Using a Green Synthesized Nanocrystalline Chlorapatite: Physicochemical Interpretations and Fixed-Bed Column Mathematical Model Study. Chemosphere 2021, 264, 128421. [Google Scholar] [CrossRef]
- Liang, X.; Fan, X.; Li, R.; Li, S.; Shen, S.; Hu, D. Efficient Removal of Cr (VI) from Water by Quaternized Chitin/Branched Polyethylenimine Biosorbent with Hierarchical Pore Structure. Bioresour. Technol. 2018, 250, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Lahmar, A.; Hattab, Z.; Zerdoum, R.; Boutemine, N.; Djellabi, R.; Filali, N.; Guerfi, K. Dynamic Sorption of Hexavalent Chromium Using Sustainable Low-Cost Eggshell Membrane. Desalin. Water Treat. 2020, 181, 289–299. [Google Scholar] [CrossRef]
- Djelloul, C.; Hamdaoui, O. Dynamic Adsorption of Methylene Blue by Melon Peel in Fixed-Bed Columns. Desalin. Water Treat. 2015, 56, 2966–2975. [Google Scholar] [CrossRef]
- Dovi, E.; Aryee, A.A.; Kani, A.N.; Mpatani, F.M.; Li, J.; Qu, L.; Han, R. High-Capacity Amino-Functionalized Walnut Shell for Efficient Removal of Toxic Hexavalent Chromium Ions in Batch and Column Mode. J. Environ. Chem. Eng. 2022, 10, 107292. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, M.; Jiang, H.; Geng, W.; Wei, W.; Lian, Z. Plasma Polymerization Mediated Construction of Surface Ion-Imprinted Polypropylene Fibers for the Selective Adsorption of Cr(VI). React. Funct. Polym. 2020, 150, 104552. [Google Scholar] [CrossRef]
- Lin, S.-H.; Juang, R.-S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Environ. Manage. 2009, 90, 1336–1349. [Google Scholar] [CrossRef]
- Lima, E.C.; Gomes, A.A.; Tran, H.N. Comparison of the Nonlinear and Linear Forms of the van’t Hoff Equation for Calculation of Adsorption Thermodynamic Parameters (∆ S° and ∆H°). J. Mol. Liq. 2020, 311, 113315. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Naik, T.S.S.K.; Basavaraju, U.; Khasnabis, S.; Nath, B.; Kumar, V.; Subramanian, S.; Singh, J.; Ramamurthy, P.C. Mechanism and Kinetics of Cr (VI) Adsorption on Biochar Derived from Citrobacter Freundii under Different Pyrolysis Temperatures. J. Water Process Eng. 2022, 47, 102723. [Google Scholar] [CrossRef]
- Van Nguyen, N.; Lee, J.c.; Jeong, J.; Pandey, B.D. Enhancing the Adsorption of Chromium(VI) from the Acidic Chloride Media Using Solvent Impregnated Resin (SIR). Chem. Eng. J. 2013, 219, 174–182. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Zain, S.M.; Rashid, A.K.; Rafique, R.F.; Khalid, K. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from Wastewater by Using Mangostana Garcinia Peel-Based Granular-Activated Carbon. J. Chem. 2013, 2013, 959761. [Google Scholar] [CrossRef] [Green Version]
- Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Bankole, M.T.; Bo, S.; Roos, W.D. Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) Ions by KIAgNPs Decorated MWCNTs in a Batch and Fixed Bed Process. Sci. Rep. 2021, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Unuabonah, E.I.; El-Khaiary, M.I.; Olu-Owolabi, B.I.; Adebowale, K.O. Predicting the Dynamics and Performance of a Polymer-Clay Based Composite in a Fixed Bed System for the Removal of Lead (II) Ion. Chem. Eng. Res. Des. 2012, 90, 1105–1115. [Google Scholar] [CrossRef]
Model | Equation and Corresponding Plot | Parameters | References | |
---|---|---|---|---|
Bohart-Adams | vs. t | (10) | : KBA (L/mg.min): sorption rate coefficient N0 (mg/L): fixed bed sorption capacity per unit volume Z(mm): bed–depth in the column U (mm/min): linear velocity, t(min): contact time | [38] |
Thomas | vs. t | (11) | : m(g): adsorbent mass Kth (L/mg.min): kinetic constant of Thomas model qth (mg/g): adsorption capacity t (min): contact time | [39] |
Modified Dose Response | vs. t | (12) | : Veff (mL): volume of the effluent q0 (mg/g): adsorption capacity : constant values in Dose Response model m (g): adsorbent mass | [40] |
(13) | ||||
Clarck | vs. t | (14) | A and r (min−1): constant of the Clarck model. t(min): contact time n: constant value of Freundlich model | [41] |
BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (Å) | Particle Density (g/cm3) | |
---|---|---|---|---|
PGP | 40.38 | 2.77 × 10−3 | 32.13 | 0.25 |
Langmuir | Freundlich | |||||||
---|---|---|---|---|---|---|---|---|
(mg/g) | (mg/g) | (L/mg) | (mg1−1/n.L1/n) | |||||
50.32 | 38.29 ± 2.58 | 0.08 ± 0.01 | 0.990 | 0.528 | 3.00 ± 0.07 | 4.49 ± 0.28 | 0.994 | 0.33 |
F (mL/min) | H (mm) | C0 (mg/L) | tb (min) | te (min) | Veff (L) | Area (mg/min.L) | (mg) | (mg) | Total Removal (%) | (mg/g) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 50 | 20 | 108 | 700 | 0.70 | 6087 | 6.08 | 14.00 | 43.47 | 28.67 |
2 | 50 | 20 | 45 | 320 | 0.64 | 2803 | 5.60 | 12.80 | 43.75 | 26.73 |
3 | 50 | 20 | 36 | 204 | 0.61 | 1746 | 5.23 | 12.24 | 42.79 | 24.85 |
2 | 25 | 20 | 24 | 201 | 0.40 | 1083 | 2.16 | 8.04 | 20.57 | 20.62 |
2 | 75 | 20 | 78 | 430 | 0.86 | 4187 | 8.37 | 17.20 | 48.66 | 26.62 |
2 | 50 | 10 | 72 | 385 | 0.77 | 1924 | 3.84 | 7.70 | 49.87 | 18.28 |
2 | 50 | 30 | 27 | 270 | 0.54 | 3151 | 6.30 | 16.20 | 38.88 | 30.00 |
T (K) | Z (mm) | a | b (mL) | q0 (mg/g) | qexp (mg/g) | Total Removal (%) | R2 | SD | |
---|---|---|---|---|---|---|---|---|---|
303 | 25 | 2.24 ± 0.04 | 52.85 ± 0.51 | 10.06 | 10.15 | 38.00 | 0.997 | 2.76 | 0.01 |
50 | 2.75 ± 0.07 | 138.32± 1.47 | 13.17 | 13.38 | 44.00 | 0.996 | 5.94 | 0.02 | |
75 | 2.92± 0.08 | 194.12 ± 2.12 | 13.98 | 13.93 | 44.12 | 0.996 | 5.20 | 0.02 | |
313 | 25 | 1.28± 0.10 | 20.96 ± 1.67 | 3.99 | 3.89 | 30.06 | 0.927 | 38.50 | 0.06 |
50 | 2.20 ± 0.14 | 51.85 ± 1.65 | 4.93 | 4.90 | 33.09 | 0.977 | 27.80 | 0.05 | |
75 | 3.00 ± 0.11 | 98.13 ± 1.38 | 6.23 | 6.20 | 34.10 | 0.994 | 9.17 | 0.03 |
Sample | (kJ/mol) | (J/mol.K) | (kJ/mol) | ||
---|---|---|---|---|---|
298 K | 308 K | 318 K | |||
PGP | −44.69 | −139.28 | −3.98 | −2.30 | −0.48 |
Parameters | Thomas Model | Dose Response Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F (mL/min) | H (mm) | C0 (mg/L) | qecal (mg/g) | Total Removal (%) | KThX103 (L/mg) | R2 | ±SD × 103 | a | b (mL) | q0 (mg/g) | R2 | ±SD 103 | ||
1 | 50 | 20 | 25.69 ± 0.37 | 43.47 | 0.59 ± 0.02 | 0.976 | 3.16 | 56.22 | 2.73 ± 0.07 | 269.78 ± 2.98 | 27.79 | 0.988 | 1.47 | 38.38 |
2 | 50 | 20 | 21.59 ± 0.54 | 43.75 | 1.16± 0.07 | 0.953 | 5.85 | 76.50 | 2.46 ± 0.07 | 226.74 ± 2.73 | 23.26 | 0.988 | 1.45 | 38.05 |
3 | 50 | 20 | 21.52 ± 0.34 | 42.79 | 2.04 ± 0.09 | 0.976 | 3.11 | 55.80 | 2.94 ± 0.06 | 226.04± 1.80 | 22.86 | 0.994 | 0.71 | 26.73 |
2 | 25 | 20 | 16.63 ± 0.44 | 20.57 | 3.70 ± 0.28 | 0.970 | 4.50 | 67.05 | 3.07 ± 0.11 | 87.34± 1.12 | 17.57 | 0.993 | 1.02 | 31.89 |
2 | 75 | 20 | 22.77 ± 0.56 | 48.66 | 0.72 ± 0.03 | 0.956 | 5.72 | 75.63 | 2.49± 0.08 | 358.64 ± 5.95 | 26.02 | 0.979 | 2.71 | 52.09 |
2 | 50 | 10 | 15.75 ± 0.42 | 49.87 | 1.53 ±0.09 | 0.952 | 6.34 | 79.63 | 2.50 ± 0.09 | 330.88 ± 5.75 | 18.02 | 0.977 | 2.98 | 54.57 |
2 | 50 | 30 | 25.39 ± 0.45 | 38.88 | 0.95 ±0.04 | 0.972 | 3.19 | 56.48 | 2.35 ± 0.06 | 177.37 ± 1.84 | 27.22 | 0.991 | 0.99 | 31.53 |
Clark model | Bohart-Adams model | |||||||||||||
D mL.min−1 | H (mm) | C0 (mg/L) | (min−1) | ±SD 103 | KBA103 (mL/mg.min) | N0 (mg/L) | R2 | ±SD 103 | ||||||
1 | 50 | 20 | 535.29 ± 139.02 | 17.31 ± 0.85 | 0.964 | 4.72 | 68.69 | 4.16 ± 0.36 | 6024.43 ± 88.76 | 0.900 | 0.26 | 16.32 | ||
2 | 50 | 20 | 184.20 ± 56.80 | 33.24 ± 2.64 | 0.933 | 8.44 | 91.87 | 4.24 ± 0.11 | 6689.07 ± 218.38 | 0.914 | 0.32 | 17.99 | ||
3 | 50 | 20 | 298.95 ± 89.87 | 56.11 ± 3.49 | 0.962 | 4.99 | 70.65 | 7.92 ±0.11 | 6839.09 ± 209.58 | 0.923 | 0.40 | 20.21 | ||
2 | 25 | 20 | 383.93 ± 188.25 | 103.12 ± 10.26 | 0.933 | 6.66 | 81.63 | 10.30± 1.52 | 6222.88 ± 213.18 | 0.946 | 0.37 | 19.39 | ||
2 | 75 | 20 | 206.66 ± 52.18 | 19.67 ± 1.16 | 0.941 | 7.76 | 88.12 | 3.30± 1.52 | 6721.11 ± 91.34 | 0.940 | 0.20 | 14.32 | ||
2 | 50 | 10 | 186.00 ± 42.24 | 20.76 ± 1.31 | 0.936 | 8.52 | 92.29 | 11.28 ± 1.16 | 4208.87 ± 73.41 | 0.923 | 0.27 | 16.49 | ||
2 | 50 | 30 | 154.18 ± 37.66 | 40.68 ± 2.51 | 0.957 | 4.91 | 70.10 | 3.28 ± 0.43 | 7191.59 ± 323.61 | 0.922 | 0.48 | 21.94 |
Adsorbent | Qmax (mg/g)/R (%) | Operating Conditions | References |
---|---|---|---|
Pomegranate peel (Batch study) | 22.87 mg/g | pH 2, dose 300 mg/L, contact time 30 min | [12] |
Solvent impregnated resin (SIR)(Batch study) | 28.2 0 mg/g | pH (0.3–2), dose 1 mg/L, contact time 30 min | [54] |
Pomegranate peel (PGP) powder modified by polyaniline (PANI) and polypyrrole (PPy) (Batch study) | 47.59% | pH 1, dose 10 mg/L, contact time 90 min | [36] |
Nanocrystalline chlorapatite (ClAP) (Batch study) | 63.47 mg/g | pH 3, dose 0.1 mg/L, contact time 25 min | [45] |
Pomegranate peel (PGP) activated (PGP-1N H2SO4) (Batch study) | 28.28 mg/g | pH 3, dose 4 mg/L, contact time 3 h | [6] |
Modified Lantana Camara (Column study) | 362.80 mg/g | pH 1.5, adsorbent bed height 40 mm, Breakthrough time 1250 min | [39] |
Pomegranate peel (Column study) (Batch study) | 30.00 mg/g 50.32 mg/g | pH 2, adsorbent bed height 50 mm, Breakthrough time 27 min pH 2, dose 1 mg/L, contact time 24 h | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutaleb, Y.; Zerdoum, R.; Bensid, N.; Abumousa, R.A.; Hattab, Z.; Bououdina, M. Adsorption of Cr(VI) by Mesoporous Pomegranate Peel Biowaste from Synthetic Wastewater under Dynamic Mode. Water 2022, 14, 3885. https://doi.org/10.3390/w14233885
Boutaleb Y, Zerdoum R, Bensid N, Abumousa RA, Hattab Z, Bououdina M. Adsorption of Cr(VI) by Mesoporous Pomegranate Peel Biowaste from Synthetic Wastewater under Dynamic Mode. Water. 2022; 14(23):3885. https://doi.org/10.3390/w14233885
Chicago/Turabian StyleBoutaleb, Yassira, Radia Zerdoum, Nadia Bensid, Rasha A. Abumousa, Zhour Hattab, and Mohamed Bououdina. 2022. "Adsorption of Cr(VI) by Mesoporous Pomegranate Peel Biowaste from Synthetic Wastewater under Dynamic Mode" Water 14, no. 23: 3885. https://doi.org/10.3390/w14233885
APA StyleBoutaleb, Y., Zerdoum, R., Bensid, N., Abumousa, R. A., Hattab, Z., & Bououdina, M. (2022). Adsorption of Cr(VI) by Mesoporous Pomegranate Peel Biowaste from Synthetic Wastewater under Dynamic Mode. Water, 14(23), 3885. https://doi.org/10.3390/w14233885