Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling
2.3. Analytical Methods
3. Results
3.1. CO2, TVOC, and Rn Anomalies of the Boiling-Wells
3.2. Hydrochemical Anomalies of the Boiling-Wells
3.3. REE Anomalies of the Boiling-Wells
4. Discussion
4.1. Link between CO2, Rn, and TVOC Anomalies in Boiling-Wells and the Maodong Fault
4.2. Geochemical Significance of REE Anomalies in Boiling-Wells
4.3. Relationship between Water Chemistry Anomaly of the Boiling-Wells and the Activity of the Maodong Fault
5. Conclusions
- (1)
- CO2 and TVOC in the Boiling-Wells originated from Cenozoic magmatism and associated intrusive rocks. High concentrations of Rn are closely linked to tectonic activities of the Maodong Fault. CO2, TVOC, and Rn are all transported to the Boiling-Wells along the Maodong Fault, with CO2 acting as a carrier gas for Rn.
- (2)
- REE in the Boiling-Wells was mainly sourced from CO2 fluids that originated from deep-seated Cenozoic magmas and intrusive rocks. The concentrations of the REE and their distribution patterns were controlled by the input of CO2 fluids and by epigenetic processes.
- (3)
- The abnormally high contents of Ca2+, HCO3−, Pb2+, and Al3+ in the Boiling-Wells are attributed to the migration of externally-derived (deep) CO2 fluids through the Maodong Fault.
- (4)
- The anomalies of the gaseous (Rn, CO2, and TVOC) and hydrochemical components (Ca2+, HCO3−, Pb2+, Al3+, ∑REE, and REE patterns) in the Boiling-Wells are closely related to the tectonic activity of Maodong Fault. Therefore, the long-lasting Boiling-Wells provide an excellent geochemical window into the evolution of the Maodong Fault.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walia, V.; Yang, T.F.; Lin, S.-J.; Kumar, A.; Fu, C.-C.; Chiu, J.-M.; Chang, H.-H.; Wen, K.-L.; Chen, C.-H. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiat. Meas. 2013, 50, 154–159. [Google Scholar] [CrossRef]
- Tedesco, D.; Scarsi, P. Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the solfatara crater (southern italy): Mixing of different sources in relation to seismic activity. Earth Planet. Sci. Lett. 1999, 171, 465–480. [Google Scholar] [CrossRef]
- Tsunogai, U.; Wakita, H. Precursory chemical changes in ground water: Kobe earthquake, Japan. Science 1995, 269, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhong, J.; Zhao, J.; Yan, R.; Tian, L.; Fu, H. Two Mechanisms of Earthquake-Induced Hydrochemical Variations in an Observation Well. Water 2021, 13, 2385. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.; Yan, R.; Wang, B.; Yu, H.; Yu, C.; Yue, C.; Wang, Y. Relationship between Earthquake-Induced Hydrologic Changes and Faults. Water 2021, 13, 2795. [Google Scholar] [CrossRef]
- Barbieri, M.; Franchini, S.; Barberio, M.D.; Billi, A.; Boschetti, T.; Giansante, L.; Gori, F.; Jonsson, S.; Petitta, M.; Skelton, A.; et al. Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010–2018. Sci. Total Environ. 2021, 793, 148635. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Shao, Z.; Si, X. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone. Earth Sci. Front. 2016, 23, 140–150. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Wang, F.; Zhou, X.; Pan, X.; Wei, R. Geochemical characteristics of soil gas in the Yanhuai basin, northern China. Earthq. Sci. 2009, 22, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Perrier, F.; Richon, P.; Byrdina, S.; France-Lanord, C.; Rajaure, S.; Koirala, B.P.; Shrestha, P.L.; Gautam, U.P.; Tiwari, D.R.; Revil, A.; et al. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth Planet. Sci. Lett. 2009, 278, 198–207. [Google Scholar] [CrossRef]
- Annunziatellis, A.; Beaubien, S.; Bigi, S.; Ciotoli, G.; Coltella, M.; Lombardi, S. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage. Int. J. Greenh. Gas Control 2008, 2, 353–372. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Z.; Xu, S.; Barry, P.H.; Sano, Y.; Zhang, L.; Halldorsson, S.A.; Chen, A.T.; Cheng, Z.; Liu, C.Q.; et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nat. Commun. 2021, 12, 4157. [Google Scholar] [CrossRef] [PubMed]
- Seminsky, K.Z.; Demberel, S. The first estimations of soil-radon activity near faults in Central Mongolia. Radiat. Meas. 2013, 49, 19–34. [Google Scholar] [CrossRef]
- Li, G. The preliminary study on hydrogeochemistry precursor anomaly and short-imminent term forecast criterion for earthquake(Ms>5.0) in ningxia and vicinity. Inland Earthq. 1992, 6, 106–114. (In Chinese) [Google Scholar]
- Meng, G.; He, K.; Ban, T.; Jiao, D. Study on activity and segmentation of active fault using measurements of radon and mercury gases. Earthq. Res. China 1997, 13, 45–50. (In Chinese) [Google Scholar]
- He, Z. Investigation and Study on the Late Quaternary Activity of Maodong Fault Zone in the Central Part of Southern Jiangsu. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. (In Chinese). [Google Scholar]
- Zong, K.; Zong, W.; Kang, C.; Bai, S. Research on the major active faults in Zhenjiang, Jiangsu and their late Quaternary activities. J. Geomech. 2016, 22, 439–453. (In Chinese) [Google Scholar]
- Hu, L.; Xu, X. An analysis of geological factors for the occurrence and gestation in Liyang earthquake. Jiangsu Geol. 2001, 25, 11–16. (In Chinese) [Google Scholar]
- Gao, X.; Hu, L.; Xu, X.; Sun, S. A dynamic model of eastern Maoshan’s fault movement relating to Liyang earthquake. J. Seismol. Res. 1993, 16, 401–409. (In Chinese) [Google Scholar]
- Gao, Z.; Hu, L.; Sun, S.; Zheng, Q. On the relations between deep-seated crustal structures and genesis of Liyang earthquakes in Maoshan area-a new ideas. J. Seismol. 1989, 2, 37–47. (In Chinese) [Google Scholar]
- Jiang, Y.; Zhou, Q.; Li, Y.; Su, J.; Zhang, T.; Jia, J.; Ge, W.; Yang, H.; Liu, L.; Yang, G.; et al. Geological origin and formation mechanism of the millennium “boiling well” in Danyang, Jiangsu Province. Acta Geol. Sin. 2019, 93, 1778–1791. (In Chinese) [Google Scholar] [CrossRef]
- Hydrogeological Team of Jiangsu Geological Bureau. Regional Hydrogeological Survey Report of the People’s Republic of China (Changzhou); Hydrogeological Team of Jiangsu Geological Bureau: Nanjing, China, 1979; p. 5. [Google Scholar]
- Li, Q.; Zhu, Q.; Hu, L. Review on geological and seismic studies in Maoshan, Jiangsu province. J. Seismol. 1983, 2, 63–71. (In Chinese) [Google Scholar]
- Min, N.; Cui, H.; He, S. Determination of trace rare earth elements in water by HR-ICP-MS method. J. Suzhou Univ. 2017, 32, 117–119, 124. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Xu, C.; Yang, Z.; Ji, J.; Xia, X.; An, Z.; Yuan, J. Hydro-geochemistry and genesis of major ions in the Yangtze River, China. Geol. Bull. China 2010, 29, 446–456. (In Chinese) [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Feth, J.H.; Gibbs, R.J. Mechanisms controlling world water chemistry: Evaporation-crystallization process. Science 1971, 172, 870–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raju, N.J.; Shukla, U.K.; Ram, P. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: A fast-urbanizing center in Uttar Pradesh, India. Environ. Monit. Assess. 2011, 173, 279–300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Deng, Y.; Lu, Z.; Gan, Y. Geochemistry and implications of rare earth elements in arsenic-affected shallow aquifer from Jianghan plain, central China. Earth Sci. 2017, 42, 693–706. (In Chinese) [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y.; Li, J.; Su, C.; Wu, Y.; Yu, Q.; Li, M. Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin. Earth Sci. 2012, 37, 381–390. (In Chinese) [Google Scholar] [CrossRef]
- Haskin, M.A.; Haskin, L.A. Rare Earths in European Shales: A Redetermination. Science 1966, 154, 507–509. [Google Scholar] [CrossRef]
- Haskin, M.A.; Haskin, L.A.; Frey, F.A. Wildeman, Relative and Absolute Terrestrial Abundances of the Rare Earths; Elsevier Ltd.: Amsterdam, The Netherlands, 1968; pp. 889–912. [Google Scholar] [CrossRef]
- Jiang, G. A exploration of recent tectonic stress field from remote sensing geology in Maoshan and adjacent region. J. Seismol. 1989, 2, 65–68. (In Chinese) [Google Scholar]
- Guo, Y.; Li, Q. The study history on seismo-geology and its relation to the occurrence of earthquakes in Maoshan district. J. Seismol. 1989, 10, 1–5. (In Chinese) [Google Scholar]
- Chen, D.; Peng, Z. K-Ar ages and Pb, Sr isotopic characteristics of some Cenozoic volcanic rocks from Anhui and Jiangsu proviences, China. Acta Petrol. Sin. 1988, 4, 3–12. (In Chinese) [Google Scholar]
- Dai, C.; Song, Y.; Sun, Y. Genetic Characteristics and Distribution of Carbon Dioxide Gas Reservoirs in Eastern China. Sci. China Ser. B 1995, 25, 764–771. (In Chinese) [Google Scholar] [CrossRef]
- He, J.; Xia, B.; Liu, B.; Zhang, S. Origin, migration and accumulation of CO2 in east China and offshore shelf basins. Petrol. Explor. Dev. 2005, 32, 42–49. (In Chinese) [Google Scholar]
- Lin, S. Fault and Magmatic Activity as Control of Mantle Source CO2 Gas Accumulation: A Case Study of Jiyang Depression. Earth Sci. 2005, 14, 3473–3479. (In Chinese) [Google Scholar]
- Wang, J.; Liu, W.; Qin, J.; Zhang, J. Mantle-derived gas reservoir and its forming rules in eastern China. Nat. Gas. Geosci. 2007, 18, 19–26. (In Chinese) [Google Scholar]
- Wang, J.; Liu, W.; Qin, J.; Zhang, J.; Shen, B. Reservoir forming mechanism and origin characteristics in Huangqiao carbon dioxide gas field, north Jiangsu Basin. Nat. Gas. Geosci. 2008, 19, 826–833. (In Chinese) [Google Scholar]
- Zhang, J.; Hu, H. Summarization on the researches of the releasing process of the mantle-originated CO2 through deep faults. Carsol. Sin. 1999, 18, 95–102. (In Chinese) [Google Scholar]
- Tao, M.; Xu, Y.; Shi, B.; Jiang, Z.; Shen, P.; Li, X.; Sun, M. The characteristics of mantle degassing and deep geological structure in different types of fault zones in China. Sci. China Ser. D 2005, 35, 441–451. [Google Scholar] [CrossRef]
- Luo, Q. Concept, principle, model and significance of the fault controlling hydrocarbon theory. Petrol. Explor. Dev. 2010, 37, 316–324. (In Chinese) [Google Scholar]
- Guo, J. Study on the theory and application of abiogenic natural gas. Adv. Earth Sci. 1966, 11, 224. (In Chinese) [Google Scholar]
- Li, X.; Dai, J. Geochemical characteristics and genetic analysis of CO2 fields (pools) in east China. Exp. Pet. Geol. 1997, 19, 215–221. (In Chinese) [Google Scholar]
- Dai, J.; Dai, C.; Song, Y.; Hong, F. CO2 gas reservoirs of inorganic origin and their characteristics in eastern China. China Offshore Oil Gas (Geol.) 1994, 8, 215–222. (In Chinese) [Google Scholar]
- Liao, F.; Wu, X.; Huang, S. Geochemical characteristics of CO2 gases in eastern China and the distribution patterns of their accumulations. Acta Petrol. Sin. 2012, 28, 939–948. (In Chinese) [Google Scholar]
- Florea, N.; Duliu, O.G. Eighteen years of continuous observation of Radon and Thoron progenies atmospheric activity. J. Environ. Radioact. 2012, 104, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Li, Y.; Du, J.; Zhou, X.; Xie, C.; Zhang, W. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China. Nat. Hazard. Earth Syst. Sci. 2014, 14, 2803–2815. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Du, J.; Wang, X.; Zhou, X.; Xie, C.; Cui, Y. Spatial variations of soil gas geochemistry in the Tangshan area of northern China. Terr. Atmos. Ocean. Sci. 2013, 24, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A. Continental-scale patterns in soil geochemistry and mineralogy: Results from two transects across the United States and Canada. Appl. Geochem. 2009, 24, 1369–1381. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, A.; Bajwa, B.S.; Mahajan, S.; Kumar, V.; Dhar, S. Radon monitoring in soil gas and ground water for earthquake prediction studies in north west Himalayas, India. TAO Terr. Atmos. Ocean. Sci. 2010, 21, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Kobeissi, M.A.; Gomez, F.; Tabet, C. Measurement of anomalous radon gas emanation across the Yammouneh Fault in southern Lebanon; a possible approach to earthquake prediction. Int. J. Disaster. Risk Sci. 2015, 6, 250–266. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, S.; Oltattorni, N.V. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Appl. Geochem. 2010, 25, 1206–1220. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Chen, Z.; Sun, F.; Zhao, J.; Li, J.; Wang, J. Geochemical characteristics of soil gas in the south-west and north-east segments of the Tangshan fault zone, Northern China. Earthquake 2019, 39, 61–70. [Google Scholar] [CrossRef]
- Toutain, J.-P.; Baubron, J.-C. Gas geochemistry and seismotectonics: A review. Tectonophysics 1999, 304, 1–27. [Google Scholar] [CrossRef]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere; an overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Yang, T.F.; Chou, C.Y.; Chen, C.-H.; Chyi, L.L.; Jiang, J.H. Exhalation of radon and its carrier gases in SW Taiwan. Radiat. Meas. 2003, 36, 425–429. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, L.; Ye, Y. Contents and distribution pattern of rare earth elements in phreatic water from Nantong area along the Yangtze river and their hydrochemical indication Significance. Geol. Sci. Technol. Inf. 2018, 37, 210–218. [Google Scholar] [CrossRef]
- Dia, A.; Gruau, G.; Olivie-Lauquet, G.; Riou, C.; Molenat, J.; Curmi, P. The distribution of rare earth elements in groundwaters; assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta 2000, 64, 4131–4151. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Xing, L.; Zhan, Y.; Li, F.; Shao, J.; Niu, H.; Liang, X.; Li, C. Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. J. Asian Earth Sci. 2016, 117, 33–51. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Li, Y.; Wei, L.; Zhang, Y. Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao Plain, Inner Mongolia. Earth Sci. Front. 2010, 17, 59–66. (In Chinese) [Google Scholar]
- Fan, Q.; Liu, R.; Yang, R. LREE-Rich CO2 fluid inclusions in mantle minerals in eastern China and their geological significance. Acta Petrol. Sin. 1993, 9, 411–417. (In Chinese) [Google Scholar]
- Schrauder, M.; Koeberl, C.; Navon, O. Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1996, 60, 4711–4724. [Google Scholar] [CrossRef]
- Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1994, 58, 761–771. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Z.; Li, H.; Su, G. The geofluid in the mantle and its role in ore-forming processes. Earth Sci. Front. 2001, 8, 231–244. (In Chinese) [Google Scholar]
- Li, Y.; Ma, C.; Robinson, P.T. Petrology and geochemistry of Cenozoic intra-plate basalts in east-central China: Constraints on recycling of an oceanic slab in the source region. Lithos 2016, 262, 27–43. [Google Scholar] [CrossRef]
- Wang, Y. Geochemical Study of Cenozoic Continental Basalts in Northern Jiangsu-Hefei, Eastern China. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2011. (In Chinese). [Google Scholar]
- Qi, L.; Qiao, Y.; Wang, Y.; Peng, S.; Yang, S.; Bai, W. Geochemical characteristics of the Xiashu loess-palaeosol sequence in Nanjing and their implications for provenance. Quat. Sci. 2020, 40, 190–202. [Google Scholar] [CrossRef]
- Choi, H.; Woo, N.C. Natural analogue monitoring to estimate the hydrochemical change of groundwater by the carbonating process from the introduction of CO2. J. Hydrol. 2018, 562, 318–334. [Google Scholar] [CrossRef]
- Koh, D.-C.; Genereux, D.P.; Koh, G.-W.; Ko, K.-S. Relationship of groundwater geochemistry and flow to volcanic stratigraphy in basaltic aquifers affected by magmatic CO2, Jeju Island, Korea. Chem. Geol. 2017, 467, 143–158. [Google Scholar] [CrossRef]
- Franchini, S.; Agostini, S.; Barberio, M.D.; Barbieri, M.; Billi, A.; Boschetti, T.; Pennisi, M.; Petitta, M. Hydro Quakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. J. Hydrol. 2021, 598, 125754. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, C.; Huang, X.; Zhao, G.; Tan, C. Main active faults and seismic activity along the Yangtze River Economic Belt: Based on remote sensing geological survey. China Geol. 2020, 3, 314–338. [Google Scholar] [CrossRef]
- Jiang, Y.; Lin, L.; Chen, L.; Ni, H.; Ge, W.; Cheng, H.; Zhai, G.; Wang, G.; Ban, Y.; Li, Y.; et al. Research on conditions of resources and environment and major geological problems in the Yangtze River Economic Zone. Geol. China 2017, 44, 1045–1061. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Du, J.; Chen, Z.; Zhou, X.; Li, X.; Cui, Y.; Wang, H.; Zhang, Z. Geochemical characteristics of soil gases Rn, Hg and CO2 and their genesis in the capital area of China. Acta Seismol. Sin. 2017, 39, 85–101. [Google Scholar] [CrossRef]
Site Name | Free CO2 (mg/L) | pH | Rn (pCi/L) | TVOC (μg/L) | Boiling Degree | Turbid State |
---|---|---|---|---|---|---|
BW1 | 439 | 6.25 | 962 | 0.013 | Strongest | limpid |
BW2 | 476 | 6.54 | 694 | 0.021 | Strong | limpid |
BW3 | 464 | 5.61 | 709 | 0.015 | weak | limpid |
BW4 | 453 | 6.00 | 857 | 0.014 | Strong | Turbid |
BW5 | 491 | 4.52 | 520 | 0.017 | weakest | Turbid |
BW6 | 447 | 5.12 | 843 | 0.019 | moderate | Turbid |
BL7 | bdl | 5.24 | bdl | bdl | very weak | limpid |
BSG8 | bdl | 8.88 | bdl | bdl | no boiling | limpid |
Parameters | Boiling-Wells | Surrounding Wells | % 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | Max | Min | Mean | SD | ||
K+ (mg/L) | 45.6 | 15.6 | 37.8 | 10.1 | 58.8 | 0.4 | 7.7 | 14.1 | 392.6% |
Na+ (mg/L) | 50.2 | 33.9 | 37.5 | 5.8 | 108.6 | 13.9 | 54.3 | 21.3 | −31.0% |
Ca2+ (mg/L) | 375.5 | 203.3 | 299.1 | 56.0 | 119.5 | 29.6 | 79.5 | 19.8 | 276.1% |
Mg2+ (mg/L) | 40.9 | 35.1 | 36.7 | 2.0 | 43.6 | 8.1 | 25.9 | 7.5 | 42.1% |
HCO3− (mg/L) | 1289.0 | 618.0 | 1009.8 | 214.5 | 589.7 | 47.6 | 290.3 | 110.7 | 247.9% |
SO42− (mg/L) | 118.0 | 66.4 | 101.1 | 16.9 | 170.0 | 22.0 | 74.6 | 33.2 | 35.5% |
Cl− (mg/L) | 188.0 | 70.6 | 92.6 | 42.8 | 135.0 | 20.5 | 65.7 | 28.3 | 41.0% |
NO3− (mg/L) | 5.3 | 0.1 | 1.0 | 1.9 | 144.0 | 0.0 | 29.6 | 31.4 | −96.7% |
H2SiO3 (mg/L) | 54.6 | 48.7 | 51.8 | 2.1 | 44.1 | 18.4 | 26.5 | 6.4 | 95.0% |
F− (mg/L) | 0.7 | 0.5 | 0.6 | 0.1 | 3.0 | 0.1 | 0.5 | 0.5 | 17.6% |
Fe2+ (mg/L) | 17.0 | 3.0 | 11.2 | 4.4 | 3.3 | 0 | 0.3 | 0.6 | 3493.0% |
Mn2+ (mg/L) | 5.8 | 1.2 | 3.4 | 1.3 | 9.1 | 0 | 0.5 | 1.6 | 580.8% |
Al3+ (mg/L) | 4.8 | 0.1 | 1.4 | 1.6 | 0.4 | 0 | 0 | 0.1 | 4088.3% |
Pb2+ (μg/L) | 55.0 | 2.0 | 19.7 | 17.9 | 2.0 | 0 | 0.2 | 0.4 | 12,145.3% |
As (μg/L) | 8.5 | 1.5 | 5.7 | 2.7 | 48.1 | 0 | 3.8 | 8.3 | 51.1% |
Zn2+ (mg/L) | 0.1 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 46.3% |
Total hardness(mg/L) | 1102.0 | 702.0 | 918.2 | 129.4 | 469.1 | 107.0 | 307.2 | 71.6 | 198.9% |
TDS (mg/L) | 1386.0 | 1012.0 | 1176.7 | 136.8 | 836.0 | 211.0 | 572.8 | 145.1 | 105.4% |
CODMn (mg/L) | 1.6 | 1.0 | 1.4 | 0.2 | 7.2 | 0.5 | 1.8 | 1.5 | −20.3% |
pH | 4.5 | 6.5 | 5.7 | 0.8 | 8.9 | 5.8 | 6.8 | 0.6 | −16.6% |
Parameters | BW1 | BW2 | BW3 | BW4 | BW5 | BW6 | BL7 | BSG8 |
---|---|---|---|---|---|---|---|---|
La | 58.1750 | 1.0020 | 0.7590 | 8.1990 | 6.2840 | 1.1290 | 8.7590 | 0.3240 |
Ce | 138.9280 | 1.6320 | 1.1300 | 18.2230 | 13.6180 | 2.0410 | 18.1080 | 0.4220 |
Pr | 14.3150 | 0.2300 | 0.1810 | 1.9760 | 1.4900 | 0.2760 | 2.1730 | 0.0810 |
Nd | 52.9760 | 0.7070 | 0.5040 | 7.3130 | 5.4880 | 0.9400 | 7.3760 | 0.2220 |
Sm | 10.6910 | 0.1460 | 0.1110 | 1.3200 | 1.0140 | 0.1900 | 1.4810 | 0.0510 |
Eu | 3.6480 | 0.4340 | 0.3800 | 0.9600 | 0.7640 | 0.2940 | 0.9760 | 0.1260 |
Gd | 10.0240 | 0.1550 | 0.1180 | 1.3310 | 1.0300 | 0.2070 | 1.4640 | 0.0630 |
Tb | 4.0020 | 0.0730 | 0.0600 | 0.5430 | 0.4110 | 0.0900 | 0.5980 | 0.0350 |
Dy | 8.6620 | 0.1170 | 0.0890 | 1.0540 | 0.7010 | 0.1280 | 1.1760 | 0.0420 |
Ho | 1.6020 | 0.0410 | 0.0370 | 0.2210 | 0.1480 | 0.0420 | 0.2340 | 0.0250 |
Er | 6.3260 | 0.1070 | 0.0860 | 0.8430 | 0.6050 | 0.1240 | 0.8970 | 0.0420 |
Tm | 0.5380 | 0.0300 | 0.0300 | 0.0930 | 0.0660 | 0.0320 | 0.0920 | 0.0230 |
Yb | 4.0850 | 0.0750 | 0.0650 | 0.5650 | 0.3840 | 0.0870 | 0.5850 | 0.0350 |
Lu | 0.6160 | 0.0320 | 0.0300 | 0.1010 | 0.0750 | 0.0300 | 0.1030 | 0.0240 |
∑REE | 314.5880 | 4.7810 | 3.5800 | 42.7420 | 32.0780 | 5.6100 | 44.0220 | 1.5150 |
(La/Yb)N 1 | 1.3796 | 1.2943 | 1.1312 | 1.4058 | 1.5853 | 1.2571 | 1.4505 | 0.8968 |
δEu 2 | 1.5472 | 12.6667 | 14.5780 | 3.1799 | 3.2823 | 6.5088 | 2.9102 | 9.7596 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Jiang, Y.; Zhou, X.; Li, Y.; Zhou, Q.; Su, J.; Jia, J.; Yang, G.; Jin, Y. Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China). Water 2022, 14, 427. https://doi.org/10.3390/w14030427
Liu L, Jiang Y, Zhou X, Li Y, Zhou Q, Su J, Jia J, Yang G, Jin Y. Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China). Water. 2022; 14(3):427. https://doi.org/10.3390/w14030427
Chicago/Turabian StyleLiu, Lin, Yuehua Jiang, Xun Zhou, Yun Li, Quanping Zhou, Jingwen Su, Junyuan Jia, Guoqiang Yang, and Yang Jin. 2022. "Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China)" Water 14, no. 3: 427. https://doi.org/10.3390/w14030427
APA StyleLiu, L., Jiang, Y., Zhou, X., Li, Y., Zhou, Q., Su, J., Jia, J., Yang, G., & Jin, Y. (2022). Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China). Water, 14(3), 427. https://doi.org/10.3390/w14030427